TASKING VX-toolset for
TriCore User Guide

MA160-800 (v3.2) February 25, 2009

TASKING VX-toolset for TriCore User Guide

Copyright © 2009 Altium Limited.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only
and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the
document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic,
including translation into another language, except for brief excerpts in published reviews, is prohibited without the
express written permission of Altium Limited. Unauthorized duplication of this work may also be prohibited by local
statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium,
TASKING, and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All
other registered or unregistered trademarks referenced herein are the property of their respective owners and no
trademark rights to the same are claimed.

Table of Contents

I O 1= T o > T TS 1
1.1 DALA TYPES - 1
O O = 1 B = - T Y/ o = PP 2
1.1.2. FraCtional TYPES .ouiniiiiiii e e e 3
1.1.3. Packed Data TYPES ..uiuitititit ettt et et 4
1.1.4. Changing the Alignment: __ align()covoviiiii e 6

1.2, ACCESSING MEBMIOIY ..ottt e e e e e e e e e e 6
1.2.2. Memory QUANIfIEIS 6
1.2.2. Placing an Object at an Absolute Address: __at() and _athit()ccenene. 8

1.3. Data Type QUANMIEIS ... v e 10
1.3.1. Data Type Alignment: __ align32oiiiiii e 10
1.3.2. Circular BUFfErS: _ CIFC ..iuiiiiii e 10
1.3.3. Accessing Hardware from C ... 11
1.3.4. SAtUIALION: ST ittt 13

1.4. Using Assembly in the C Source: _ asm() ..o.iuiririroriiitii e aas 13
LD AHIIDULES et 18
1.6. Pragmas to Control the COmMPIIEr ... e 18
1.7. Predefined PreproCeSSOr MACIOSi.i.iiiiiee e ettt e e e e aaaas 23
1.8, SWILCH STAIEMENT ...t e e 25
L0 FUNCHIONS .ot 26
1.9.1. Calling CONVENLION ...uitiii e aaans 26
1.9.2. REQISIEI USAQE ..uiuiiiiiiitii et 28
1.9.3. Inlining FUNCLONS: INHINE ... et 28
1.9.4. Interrupt and Trap FUNCHIONSviiiii e aaaes 30
1.9.5. INtriNSIC FUNCHONS ...\iutii e 34

1.10. Compiler Generated SECHONSviiiii i e 43
1.10.1. RENAME SECHOMNS ...euitiiiit ittt et eeaes 44
1.10.2. Influence Section DEfiNItIONc.iiiiiiiii e 45
1.10.3. Change Section AlIGNMENT ...t 45

B O - o 1= Vo = 47
2.1. C++ Language EXtension KEYWOIScuiuiiiiiiiiiiiiii e aaana a7
2.2, CH+ DialeCt ACCEPIEA ...oteiii i a7
2.2.1. Standard Language Features ACCEPEdo.vviiiiiiiiiiiiiiee e 48
2.2.2. C++0x Language Features ACCEPIEAvuiniririiit i a e aaes 51
2.2.3. ANachronisSms ACCEPIEAviritit i 52
2.2.4. Extensions Accepted in Normal C++ Modecceiiiiiiiiii e 53

2.3, GNU EXEENSIONS ...ttt ettt et e et ettt aees 55
2.4, NAMESPACE SUP PO ettt ettt ittt ettt e et e ettt 65
2.5. Template INStANtiationcoouininieiii e 67
2.5.1. Automatic INSTANIALIONvuieiie e 68
2.5.2. InStantiation MOGES ...t 69
2.5.3. Instantiation #pragma Dir€CIVESooiiiiiiiiiii e 70
2.5.4. IMPHCIt INCIUSION ...t e e 71
2.5.5. EXpPOrted TemMPIAteS ...ouoniiieiiiiiie e e 72

2.6. INlINING FUNCHONS ... e e e e e e ans 75
2.7. EXtern INlinNe FUNCHONSouiiii e e e 76
2.8. Pragmas to Control the C++ COMPIIETouiuiii e 76
2.9. Predefine@d IMACIOSvuiit it 77

TASKING VX-toolset for TriCore User Guide

2.10. Precompiled HEAUEISiuiiiii e e 81
2.10.1. Automatic Precompiled Header ProCessingcocovevvvieiiiiieiiniiiieieeennen 81
2.10.2. Manual Precompiled Header ProCeSSINgGocvvvieiriiiiiiiiiieenieieeeeen 84
2.10.3. Other Ways to Control Precompiled Headerscooviiiiiiiniiiiiieeen 84
2.10.4. PerfOrManCe ISSUESuuiuiiiet et ettt et nens 85

3. ASSEMDIY LANGUAGE .. .eeietiiei et et ettt et 87

3.1 ASSEMDBIY SYNTAX .. eeetiniti e 87

3.2. Assembler Significant CharaCtersc.ouiiiiii e 88

3.3. Operands of an Assembly INSTFUCHIONc.eniiiei e 88

3.4, SYMDOI NAIMES .ot 89
3.4.1. Predefined Preprocessor SYmMDOISc.oviiniiiiiiiiiie e 90

3D RO OIS .ttt 91
3.5.1. Special FUNCLON REQISIEISieii i 91

3.6. ASSEMDIY EXPIrESSIONS ...ttt e 91
3.6.1. NUMEIIC CONSLANTSeutiiiteitt ettt et et 92
3B, SHIINOS ettt e 92
3.6.3. EXPreSSioN OPEIALOISiueiieiteiatiet ettt et 93

3.7. WOrKiNG WIth SECHONScutiit e 95

3.8. Built-in Assembly FUNCLONS e 96

3.9. Assembler Directives and CONIOIScuveitieii e 108
3.9.1. ASSEMDIET DIFECHIVESeeieeieeiet e e e 109
3.9.2. ASSEMDIEr CONLIOISvieeieee e e 154

3.10. MACKIO OPEIALIONSet ettt et et ettt et ettt e et et e e eenas 171
3.10.1. DEfiNING @ MACKO ...cuviiitee ettt e 171
3.10.2. CAlliNG @ MBCTO .. ettt et 171
3.10.3. Using Operators for Macro ArgUMENTScuivuiiieieerieniiieeeeeeeieenneneanes 172

4.USING the C COMPIIET ...ceeei e et 177

4. 1. COMPIlALION PIOCESS ... ittt et et 177

4.2. Calling the C COMPIIET ... et eeaes 180

4.3.The C STArtUP COOEvniiiteee ettt ettt e e e e 182

4.4. How the Compiler Searches Include Files ..o 183

4.5. Compiling fOr DEDUGGING ... vuerieieee e 184

4.6. Compiler OPtMIZALIONSireiiee e et 185
4.6.1. Generic Optimizations (frontend)coooiiriiii i 186
4.6.2. Core Specific Optimizations (backend)c.cooiiiiiiii 187
4.6.3. Optimize for SiZe OF SPEEMvinii e 188

4.7. Influencing the BUild TIMe ... e 191

4.8. C Code Checking: MISRA-C ..ot 194

4.9. C ComMPIlEr ErrOr MESSAGES ... cuuvuittiietiee et ettt et et e eenes 195

5.USING the CH+ COMPIIET ..ottt et e 197

5.1. Calling the CH+ COMPIIET ..o et 197

5.2. How the C++ Compiler Searches Include Filesoviiiiiii e 199

5.3. C++ ComPiler ErOr MESSAQES ... vueueiiiniet ettt et aenes 200

B. PrOfIlING et e 203

6.1. What is Profiling?c.ooniii e 203
6.1.1. Four Methods of Profilingc.cooiiiii e 203

6.2. Profiling using Code Instrumentation (Dynamic Profiling)cccoiviiiiiiinnnns 205
6.2.1. Step 1: Build your Application for Profilingcccoooiiiiiiie, 206
6.2.2. Step 2: Execute the APPlICALIONovuieii i 207
6.2.3. Step 3: Displaying Profiling ReSUItScooviiiiiii e 209

TASKING VX-toolset for TriCore User Guide

6.3. Profiling at Compile Time (Static Profiling)coooiiiiii e 212
6.3.1. Step 1: Build your Application with Static Profilingcccooiiiiiiiiin, 212
6.3.2. Step 2: Displaying Static Profiling RESUISccoviiiiiiiiie, 213

7.USING the ASSEMDIETot 215

7.1 ASSEMDIY PrOCESSottt e et 215

7.2. Calling the ASSEMDIETo e 216

7.3. How the Assembler Searches Include Fles ..o, 217

7.4. Assembler OPtiMIZAtIONSie e 218

7.5.Generating @ LISt FIlE ...v.iei e 218

7.6. ASSEMDIET EITOr MESSAUES .. vieuitiiteiet ettt et 219

8. USING the LINKET ... e et e 221

8.1, LINKING PrOCESS ...ttt et 221
8.1.1. Ph@SE 1: LINKING .. .uenetiiteei et et et et 223
8.1.2. PhaSE 2: LOCALING ... tteinetetete ettt et et 224

8.2. CalliNg the LINKET ... et et 225

8.3. LiNKiNg WIth LIDIariesooieieiii e 226
8.3.1. How the Linker Searches Librariescoocoiiiiiiiiiii e 228
8.3.2. How the Linker Extracts Objects from Librariesocoooveiiiiiiiniiineenn. 229

8.4. Incremental LINKINGouiniii et e 230

8.5. IMporting BiNAry FilES ... 230

8.6. LIiNKer OPtMIZALIONScuiiititee et e 231

8.7. Controlling the Linker With @ SCFPtouiii e 232
8.7.1. Purpose of the Linker Script LanQUagecovuviniriiiiiiiiiiieenee e 232
8.7.2. ECIPSE @NA LSL ...eiiiiiii e 233
8.7.3. Structure of a Linker SCript Fileccieiiiii e 234
8.7.4. The Architecture Definitionccoiiiiiii e 237
8.7.5. The Derivative DefiNItionovuiiiii e 240
8.7.6. The Processor Definitionc.vveieiiiieiiii e 242
8.7.7.The Memory DefiNitionociuiiiii e 242
8.7.8. The Section Layout Definition: Locating SeCtionscovovvvieiiieiniininieninnn. 244

8.8. LINKEr LADEIS ... 246

8.9.Generating aMap File ... e 248

8.10. LINKETr ErrOr MESSAUES ...cuuvuiiitiiet ettt ettt ettt ene e 249

9. USING the ULIITIESeeiee ettt 251

LS B o] o1 (o] I = (oo £= 1 o H PP PP 251

9.2. MaKe ULIItY MKEC ...ttt ettt aenas 253
9.2.1. Calling the Make ULIlItYc.ouiiieiii e 254
9.2.2. Writing a Makefile ... 255

9.3. Make ULIlItY @IMK ..o 264
9.3.1. MAKEFIlE RUIES ..ot e 264
9.3.2. MAKETIIE DIFECHIVES ... v et e 265
9.3.3. MACrO DEfINItIONS ..o 265
9.3.4. MAKETIIE PAISING .. .uierieiiiee e 266
9.3.5. Makefile Command ProCESSINGuuvuireniiiiiiie e 267
9.3.6. Calling the amk Make ULIlItYcoviriiii e 268

9.4, ATCRIVET o 269
9.4.1. Calling the ArChIVET ..o 269
9.4.2. ArChiVer EXAMPIES ...t 271

10. USING the DEDUGOET ... ettt ettt et et ettt e eene e 273

10.1. Reading the Eclipse DOCUMENTALIONouirieiiiiie e 273

TASKING VX-toolset for TriCore User Guide

10.2. Creating a Customized Debug Configurationcocviiiiiiiiiiiiieee 273
10.3. TrOUDBIESNOOINGee et e 280
10.4. TASKING DebUQ PEISPECLIVEvuitiiiiieie e e 281
10.4.1. DEDBUQG VIBW .. .eeiie et e e 282
10.4.2. BreakpOinNtS VIEWcuieiie ettt ettt aes 284
10.4.3. File System Simulation (FSS) VIEWvuiiiieiiiiii e 285
10.4.4. DIiSASSEMDBIY VIBWeeiieiiie et 286
10.4.5. EXPrESSIONS VIBW ...ouiiiiiiit ettt ettt 286
10.4.6. MEMOIY VIBW ...ttt et et et et et eenes 287
10.4.7. Compare APPlICAtION VIBWiuiiie i 288
10.4.8. HEBAP VIBW ettt et et 288
10.4.9. LOGGING VIBW ...ttt ettt et et et aeas 288
10.4.20. RTOS VIBW .ttt ettt ettt et ettt et e ees 289
10.4.11. TASKING REQISIEIS VIBWvieniiiiit ettt 289
L0.4.12. TrACE VIBW ..ottt ettt et et et es 290

10.5. Programming @ FIash DEVICEc.ouuiiiii e 290
5 [oTo 1 @ o1 i o] o I PPN 295
11.1. C COMPIIEr OPLIONS ...ttt et 295
11.2. C++ COMPIIEr OPLIONS ..v.eniteete ettt ettt e 372
11.3. ASSEMDIET OPLIONS ...ttt e et 481
11,4, LINKEE OPLIONS ...ttt ettt 522
11.5. Control Program OPLONSvuceiit ettt et et 569
11.6. Make ULIlity OPUIONS ... ettt e 633
11.7. Parallel Make ULility OPLONSoueieieeteie et e 661
11.8. ArCRhIVET OPLIONS . ..vieit ettt 671
I I o = T =T PP 685
12.1. LIbrary FUNCHONS ...t et et 686
12,00, @SSO N e 686
12.1.2. COMPIEX.N Lo 687
12.1.3. CStANT N oo 688
12.1.4. ctype.h and WCLYPE.N ..o 688
12,05, dBG. N e 689
12,16, ITNO.N L 689

12, 0.7 fONtl N e 690
12,08, NV 690
12.1.9. flOAtN .o 691
12,100 fPDIES. N e 692
12.1.11. inttypes.h and Stdint.h ... 692
T 2 To Y PP 692
12,103, 080646.1 ..ot 693
12,004, IMIES. N e e 693
12.1.05. 10CAIE.N ..o 693
12.1.16. MAIIOC.N L. 694
12.1.17. math.h and tgmath.h ... 694
12,008, SO M. e 698
12.1.019. SIgNALIN o e 699
12.1.20. SEAAIG.N .o 699
12.1.20. StADOOLN <ot 700
12.1.22, StAAET.N oo 700
12.1.23. SEAINEN oo 700

Vi

TASKING VX-toolset for TriCore User Guide

12.1.24. stdio.h @and WChar.h ... 700
12.1.25. stdlib.h @and Wehar.h ... 708
12.1.26. string.h and weharh ... 711
12.1.27. time.h and Wehar.h ... 713
12.1.28. UNISEA.N oo 715
12.1.29. WCNAIN oo 716
12.1.30. WOYPE. N e 717

12.2. C LiDrary REENIIANCYuuieitiei ettt 718
13 LISt FHIE FOIMALS ... ceitiit et et ettt ettt et et eenae 729
13.1. Assembler List File FOrMALc.ovuiuiiii e 729
13.2. Linker Map File FOIMAL e 730
14, OBJECE File FOIMALS .. .ottt et ettt ettt e enenas 737
14.1. ELF/DWARF ODJECT FOIMALouiteieeie et 737
14.2. Intel HEX RECOIA FOIMALovtieieit e 737
14.3. Motorola S-ReCOrd FOIMALiuitiiiiii e 740
15. Linker SCript LANGUAGE (LSL) .. .uuniitiiit et ettt et et 743
15.1. Structure of @ Linker SCript File ... 743
15.2. Syntax of the Linker SCript LANQUAGEovuiriuieiiiiiee e 745
15.2.0. PrePIrOCESSING . cteutttiietet et et et ettt 745
15.2.2. LEXICAI SYNIAX ..ttt et et 746
15.2.3. 1dentifiers @nd TAOS . ..vvvuineetie e 746
15,24, EXPIESSIONS ...ttt ettt et 747
15.2.5. BUIlt-IN FUNCLONS ..ottt e 747
15.2.6. LSL Definitions in the Linker SCript Fileoooiiiiiii e 749
15.2.7. Memory and Bus DefinitioNSc.vviiieiiiiiii e 749
15.2.8. Architecture Definitioncooieiriiii e 751
15.2.9. Derivative Definitionc.ouiiiriiii e 754
15.2.10. Processor Definition and Board Specificationcccovviriiiiiiiiiinnenanne. 755
15.2.11. Section Layout Definition and Section SEtupccovevviieiirienieniiennenennes 755

15.3. EXPression EVAIUALIONvuiriieii e e e 759
15.4. Semantics of the Architecture Definitionoooiiiiiiii 760
15.4.1. Defining @an ArChiteCIUIEieiriie i e 761
15.4.2. Defining INternal BUSESiiiiiieie e 762
15.4.3. Defining AdAreSS SPACESuiuinie ittt 762
15.4.4. MAPPINGS -t neneteteee ettt ettt et 766

15.5. Semantics of the Derivative Definitionooiiiii 768
15.5.1. Defining @ DErVALIVEouiirieie e 768
15.5.2. Instantiating Core ArChitECIUIESooiuiriiitieie e 769
15.5.3. Defining Internal Memory and BUSESccveiiiiiiiiiiiiiiieece e 769

15.6. Semantics of the Board SpecifiCationcooiiiiiiii e 770
15.6.1. DefiniNg @ PrOCESSONvuieiiieiie e 771
15.6.2. Instantiating DeriVALIVESc.ieiiiiiii e 771
15.6.3. Defining External Memory and BUSEScveiiiiiiiiiiiiiiece e 772

15.7. Semantics of the Section Setup Definitioncooiiiiiiii 772
15.7.1. SEtting UP 8 SECHIONvuirieiitieit ettt et 773

15.8. Semantics of the Section Layout Definitioncoooviiiiiii e 773
15.8.1. Defining & SeCHiON LAYOULvuiiieiiei e 774
15.8.2. Creating and Locating Groups Of SECHONSccviviiiiiiniiiieiiieieeeene 775
15.8.3. Creating or Modifying Special SECHONScccoviiiiiiiiiiii e 781
15.8.4. Creating SYMDOIS ..o 784

Vii

TASKING VX-toolset for TriCore User Guide

15.8.5. Conditional Group StatemMENTSc.oriuiiiiii e 784

16. Debug Target Configuration FileSoouiiiirii e 787
16.1. CUStOM BOArd SUPPOITttt ettt e 787

16.2. Description of DTC Elements and Attributes ... 788

16.3. Special Resource Identifierso 790

16.4. INItIAliZe EIBMENLS ..ot e 791

17. CPU Problem Bypasses and CheCKSc.ouiiiiii e 793
18, MISRA-C RUIES ...t ettt 835
18,1 MISRA-CILO98 ..ottt 835

18.2. MISRA-CI2004 ...ttt et 839

viii

Chapter 1. C Language

This chapter describes the target specific features of the C language, including language extensions that
are not standard in ISO-C. For example, pragmas are a way to control the compiler from within the C
source.

The TASKING VX-toolset for TriCore® C compiler fully supports the ISO-C standard and adds extra
possibilities to program the special functions of the target.

In addition to the standard C language, the compiler supports the following:
» extra data types, like __bit, __fract, __ laccumand ___packb

» keywords to specify memory types for data and functions

« attribute to specify alignment and absolute addresses

« intrinsic (built-in) functions that result in target specific assembly instructions
» pragmas to control the compiler from within the C source

» predefined macros

« the possibility to use assembly instructions in the C source

» keywords for inlining functions and programming interrupt routines

* libraries

All non-standard keywords have two leading underscores (__).

In this chapter the target specific characteristics of the C language are described, including the above
mentioned extensions.

1.1. Data Types

The C compiler supports the ISO C99 defined data types, and additionally the bit data type, fractional
types and packed data types. The sizes of these types are shown in the following table.

C Type Size Align Limits
__bit 1 8 Oor1l
_Bool 1 8 Oorl
signed char 8 8 [-27, 27-1]
unsigned char 8 8 [0, 28-1]
short 16 16 [-27°, 27°-1)
unsigned short 16 16 [0, 216-1]
int 32 16 [-2°% 2%1.q)
unsigned int 32 16 [0, 232-1]

TASKING VX-toolset for TriCore User Guide

C Type Size Align Limits
enum 8 8 [-27 2"-1] or [0, 28'11,
16 16 [-25, 285-1] or [0, 2%°-1]
32 [-2%, 2%L-1] or [0, 2%2-1]

long 32 16 [-2°, 2%1.1)
unsigned long 32 16 [0, 232-1]
long long 64 32 [-263, 263-1]
unsigned long long 64 32 [0, 264-1]
float (23-bit mantissa) 32 16 [-3.402E+38, —1.175E-38]

[+1.175E-38, +3.402E+38]
double 64 32 [-1.797E+308, -2.225E-308]
long double (52-bit mantissa) [+2.225E-308, +1.797E+308]
_Imaginary float 32 16 [-3.402E+38i, —1.175E-38i]

[+1.175E-38i, +3.402E+38i]
_Imaginary double 64 32 [-1.797E+308i, -2.225E-308i]
_Imaginary long double [+2.225E-308i, +1.797E+308i]
_Complex float 64 32 real part + imaginary part
_Complex double 128 32 real part + imaginary part
_Complex long double
pointer to data or function 32 32 [0, 232-1]
__sfract 16 16 [-1, 1>
__fract 32 32 [-1, 1>
_ _laccum 64 32 [[131072,131072>
__packb 32 16 ax:[-2, 2"-1]
sighed __packb
unsigned __packb 32 16 4x: [0, 28-1]
__packhw 32 16 2x: [-27°, 27°-1)
signed __packhw
unsigned __packhw 32 16 2x: [0, 216-1]

" When you use the enum type, the compiler will use the smallest sufficient integer type (char,
short or int), unless you use C compiler option --integer-enumeration (always use 32-bit

integers for enumeration).

1.1.1. Bit Data Type

The TASKING C compiler for the TriCore supports the data type __bit. The TriCore instruction set

supports some operations of the __bit type directly.

The following rules apply to __bit type variables:

C Language

* A __ bittype variable is always unsigned.

« A __ bittype variable can be exchanged with all other type-variables. The compiler generates the
correct conversion.

A __ bittype variable is like a boolean. Therefore, if you convert an int type variabletoa __ bittype
variable, it becomes 1 (true) if the integer is not equal to 0, and 0 (false) if the integer is 0. The next
two C source lines have the same effect:

bit_variable
bit_variable

int_variable;
int_variable ? 1 : O;

» Pointerto __bitis not allowed when it has the __atbit() qualifier.

e The __bit data type is allowed as a struct/union member.

* A__ bittype variable is allowed as a parameter of a function.

* A __ bittype variable is allowed as a return type of a function.

A __ bittyped expression is allowed as switch expression.

» The sizeofofa__ bittypeis 1.

» Global or static __bit type variables can be initialized.

« A _ bittype variable can be declared absolute using the __atbit attribute. See
* A __ bittype variable can be declared volatile.

Promotion rules

For the __bit type, the promotion rules are similar to the promotion rules for char, short, int, long
and long long.

1.1.2. Fractional Types

The TASKING C compiler fully supports fractional data types which allow you to use normal expressions:

__Ffract f, f1, f2; /* Declaration of fractional variables */
1l = 0.5; /* Assignment of a fractional constants */
2 = 0.242;

f=Ff1* f2; /* Multiplication of two fractionals */

The __sfract type has 1 sign bit + 15 mantissa bits. The __fract type has 1 sign bit + 31 mantissa
bits. The ___laccum type has 1 sign bit + 17 integral bits + 46 mantissa bits.

The __accum type is only included for compatibility reasons and is mapped to ___laccum.

TASKING VX-toolset for TriCore User Guide

The TriCore instruction set supports most basic operations on fractional types directly. To obtain more
portable code, you can use several intrinsic functions that use fractional types. Fractional values are
automatically saturated.

Section 1.9.5, Intrinsic Functions explains intrinsic functions. Section 1.9.5.2, Fractional Arithmetic Support
lists the intrinsic functions.

Promotion rules

For the three fractional types, the promotion rules are similar to the promotion rules for char, short,
int, long and long long. This means that for an operation on two different fractional types, the smaller
type is promoted to the larger type before the operation is performed.

When you mix a fractional type with a float or double type, the fractional number is first promoted to
float respectively double.

When you mix an integer type with the __laccum type, the integer is first promoted to ___laccum.

Because of the limited range of __sfract and __fract, only a few operations make sense when
combining an integer withan __sfractor__ fract. Therefore, the C compiler only supports the following
operations for integers combined with fractional types:

left operand |right result
fractional | * integer |fractional
integer |* fractional |fractional
fractional |/ integer |fractional
fractional | << integer |fractional
fractional |>> integer |fractional
fractional: __sfract, __ fract

integer: char, short, int, long, long long

1.1.3. Packed Data Types

The TASKING C compiler additionally supports the packed types __packb and ___packhw.

A __ packb value consists of four signed or unsigned char values. A __packhw value consists of two
signed or unsigned short values.

The TriCore instruction set supports a number of arithmetic operations on packed data types directly. For
example, the following function:

__packb add4 (__packb a,
{

}

results into the following assembly code:

packb b)

return a + b;

C Language

add4:
add.b d2,d4,d5
retl6

Section 1.9.5, Intrinsic Functions explains intrinsic functions. Section 1.9.5.3, Packed Data Type Support
lists the intrinsic functions.

Halfword packed unions and structures

To minimize space consumed by alignment padding with unions and structures, elements follow the
minimum alignment requirements imposed by the architecture. The TriCore architecture supports access
to 32-bit integer variables on halfword boundaries.

Because only doubles, circular buffers, ___Taccum or pointers require the full word access, structures
that do not contain members of these types are automatically halfword (2 bytes) packed.

Structures and unions that are divisible by 64-hit or contain members that are divisible by 64-bit, are word
packed to allow efficient access through LD.D and ST.D instructions. These load and store operations
require word aligned structures that are divisible by 64-bit. If necessary, 64-bit divisible structure elements
are aligned or padded to make the structure 64-bit accessible.

With #pragma pack 2 you can disable the LD.D/ST .D structure and union copy optimization to ensure
halfword structure and union packing when possible. This "limited" halfword packing only supports
structures and unions that do not contain double, circular buffer, __laccum or pointer type members and
that are not qualified with #pragma al ign to get an alignment larger than 2-byte. With #pragma pack
0 you turn off halfword packing again.

#pragma pack 2

typedef struct {
unsigned char ucl;
unsigned char uc2;
unsigned short usl;
unsigned short us2;
unsigned short us3;

} packed_struct;

#pragma pack 0O

When you place a #pragma pack 0 before a structure or union, its alignment will not be changed:

#pragma pack O
packed_struct pstruct;

The alignment of data sections and stack can also affect the alignment of the base address of a halfword
packed structure. A halfword packed structure can be aligned on a halfword boundary or larger alignment.
When located on the stack or at the beginning of a section, the alignment becomes a word, because of
the minimum required alignment of data sections and stack objects. A stack or data section can contain
any type of object. To avoid wrong word alignment of objects in the section, the section base is also word
aligned.

TASKING VX-toolset for TriCore User Guide

1.1.4. Changing the Alignment: __align()

By default the TriCore compiler aligns objects to the minimum alignment required by the architecture.
With the attribute __align() you can change the object alignment.

Caution: Use __al ign() with extreme care! You should know exactly how to use it properly,
otherwise it may result in incorrect (trapping) code, as shown in the following example. Use it only
to increase the alignment; and the alignment must always be a multiple of the original required
alignment!

Example:

#include <stdio.h>
short int i[3] = {1,2,3};
__align(2) char *hello="Hello World\n"; /* trap */

int main(void)

{
}

The pointer 'hel 10’ is given an alignment of 2 and is actually stored at a non-word aligned address. The
compiler however does not take into account that pointers are aligned at 2 and uses a load address
instruction. This will lead to a trap at run-time.

printfF(""%s" ,hello);

Instead of the attribute __align() you can also use #pragma align.

1.2. Accessing Memory

You can use static memory qualifiers to allocate static objects in a particular part of the addressing space
of the processor.

In addition, you can place variables at absolute addresses with the keyword __at(). If you declare an
integer at an absolute address, you can declare a single bit of that variable as bit variable with the keyword
__atbit(Q).

1.2.1. Memory Qualifiers

In the C language you can specify that a variable must lie in a specific part of memory. You can do this
with a memory qualifier.

You can specify the following memory qualifiers:

Quialifier | Description Location Maximum |Pointer |Section types
object size |size
__hear " [Near data, direct First 16 kB of a 256 MB 16 kB 32-bit neardata, nearrom,
addressable block nearbss,
nearnoclear

C Language

Qualifier | Description Location Maximum |[Pointer |Section types
object size |size

_ far " |Far data, indirect |Anywhere no limit 32-bit fardata, farrom,
addressable farbss, farnoclear

_ a0 Small data Sign-extended 16-bit offset|64 kB 32-bit aOdata, aObss

from address register AO.

_al Literal data, Sign-extended 16-bit offset|64 kB 32-bit alrom
read-only from address register Al.

__ a8 Data, reserved for |Sign-extended 16-bit offset |64 kB 32-bit a8data, a8rom,
oS from address register A8. a8bss

_ a9 Data, reserved for |Sign-extended 16-bit offset |64 kB 32-bit a9data, a9rom,
oS from address register A9. a9bss

“If you do not specify __near or __far, the compiler chooses where to place the declared object.
With the C compiler option --default-near-size (maximum size in bytes for data elements that are
by default located in __near sections) you can specify the size of data objects which the compiler
then by default places in near memory.

Address registers A0, Al, A8, and A9 are designated as system global registers. They are not part of
either context partition and are not saved/restored across calls. They can be protected against write
access by user applications.

By convention, A0 and Al are reserved for compiler use, while A8 and A9 are reserved for OS or application
use. A0 is used as a base pointer to the small data section, where global data elements can be accessed
using base + offset addressing. A0 is initialized by the execution environment.

Al is used as a base pointer to the literal data section. The literal data section is a read-only data section
intended for holding address constants and program literal values. Like AQ, it is initialized by the execution
environment.

As noted, A8 and A9 are reserved for OS use, or for application use in cases where the application and
OS are tightly coupled.

All these memory qualifiers (__near, ___far, __a0, __al, a8 and __a9) are related to the object
being defined, they influence where the object will be located in memory. They are not part of the type of
the object defined. Therefore, you cannot use these qualifiers in typedefs, type casts or for members of
a struct or union.

Examples using memory qualifiers

To declare a fast accessible integer in directly addressable memory:

int _ _near Var_in_near;

To allocate a pointer in far memory (the compiler will not use absolute addressing mode):

__far int *Ptr_in_far;

TASKING VX-toolset for TriCore User Guide

To declare and initialize a string in AO memory:
char __a0 string[] = "TriCore";

If you use the __near memory qualifier, the compiler generates faster access code for those (frequently
used) variables. Pointers are always 32-bit.

Functions are by default allocated in ROM. In this case you can omit the memory qualifier. You cannot
use memory qualifiers for function return values.

Some examples of using pointers with memory qualifiers:

int _ near *p; /* pointer to int in __near memory
(pointer has 32-bit size) */

int _ far *g; /* pointer to int in __ far memory
(pointer has 32-bit size) */

g = p; /* the compiler issues a warning */

You cannot use memory qualifiers in structure declarations:

struct S {
__hear int i; /* put an integer in near
memory: Incorrect ! */
__Ffar int *p; /* put an integer pointer in
far memory: Incorrect ! */

}

If a library function declares a variable in near memory and you try to redeclare the variable in far memory,
the linker issues an error:

extern int _ near foo; /* extern int in near memory*/
int __ far foo; /* int in far memory */
The usage of the variables is always without a storage specifier:

char _ _near example;
example = 2;

The generated assembly would be:

mov1l6 d15,2
st.b example,dl5

All allocations with the same storage specifiers are collected in units called 'sections'. The section with
the __near attribute will be located within the first 16 kB of each 256 MB block.

1.2.2. Placing an Object at an Absolute Address: __at() and __ atbit()

Just like you can declare a variable in a specific part of memory (using memory qualifiers), you can also
place an object at an absolute address in memory.

C Language
With the attribute __at() you can specify an absolute address. The address is a 32-bit linear address.
If you use this keyword on __bit objects, the address is a bit address.
Examples
unsigned char Display[80*24] __ at(0x2000);

The array Display is placed at address 0x2000. In the generated assembly, an absolute section is
created. On this position space is reserved for the variable Display.

int i __ at(0x1000) = 1;

Restrictions

Take note of the following restrictions if you place a variable at an absolute address:
» The argument of the __at() attribute must be a constant address expression.

» You can place only global variables at absolute addresses. Parameters of functions, or automatic
variables within functions cannot be placed at absolute addresses.

* You cannot place functions at absolute addresses.

» A variable that is declared extern, is not allocated by the compiler in the current module. Hence it is
not possible to use the keyword __at() on an external variable. Use __at() at the definition of the
variable.

» You cannot place structure members at an absolute address.

» Absolute variables cannot overlap each other. If you declare two absolute variables at the same address,
the assembler and/or linker issues an error. The compiler does not check this.

Declaring a bit variable with __atbit()

If you have defined a 32-bit base variable (int, long) you can declare a single bit of that variable as a
bit variable with the keyword __atbit(). The syntax is:

__atbit(nane,of fset)

where, name is the name of an integer variable in which the bit is located. offset (range 0-31) is the
bit-offset within the variable.

If you have defined an absolute integer variable with the keyword __at(), you can declare a single bit
of that variable as an absolute bit variable with __atbit().

The following restrictions apply:
» This keyword can only be applied to __bit type symbols.

* When a variable is __atbit() qualified it represents an alias of a bit in another variable. Therefore,
it cannot be initialized.

* You can only use the __atbit() qualifier on variables which have either a global scope or file scope.

TASKING VX-toolset for TriCore User Guide

Example
int bw _ at(0x100);
__bit myb _ atbit(bw, 3);

Note that the keyword __bitis used to declare the variable myb as a bit, and that the keyword __atbit()
is used to declare that variable at an absolute offset in variable bw.

1.3. Data Type Qualifiers
1.3.1. Data Type Alignment: __align32

With the qualifier __al ign32 you can force 32-bit access on a data type.
Example:

int *i; /* 16-bit aligned */
__align32 int *j; /* 32-bit aligned */

This qualifier is used in some intrinsic functions.
1.3.2. Circular Buffers: __circ

The TriCore core has support for implementing specific DSP tasks, such as finite impulse response (FIR)
and infinite impulse response (lIR) filters and fast Fourier transforms (FFTs). For the FIR and IIR filters
the TriCore architecture supports the circular addressing mode and for the FFT the bit-reverse addressing
mode. The TriCore C compiler supports circular buffers for these DSP tasks. This way, the TriCore C
compiler makes hardware features available at C source level instead of at assembly level only.

A circular buffer is a linear (one dimensional) array that you can access by moving a pointer through the
data. The pointer can jump from the last location in the array to the first, or vice-versa (the pointer
wraps-around). This way the buffer appears to be continuous. The TriCore C compiler supports the
keyword ___circ (circular addressing mode) for this type of buffer.

Example:

__Ffract ___circ circbuffer[10];
__Ffract ___circ *ptr_to_circbuffer = circbuffer;

Here, circbuffer is declared as a circular buffer. The compiler aligns the base address of the buffer
on the access width (in this example an int, so 4 bytes). The compiler keeps the buffer size and uses it
to control pointer arithmetic of pointers that are assigned to the buffer later.

Circular pointers

You can perform operations on circular pointers with the usual C pointer arithmetic with the difference
that the pointer will wrap. When you access the circular buffer with a circular pointer, it wraps at the buffer
limits. Circular pointer variables are 64 bits in size.

Example:

while(*Pptr_to_circbuf++);

10

C Language

Indexing

Indexing in the circular buffer, using an integer index, is treated equally to indexing in a non-circular array.
Example:

int i = circbuf[3];

The index is not calculated modulo; indexing outside the array boundaries yields undefined results.
Intrinsic function __initcirc()

If you want to initialize a circular pointer with a dynamically allocated buffer at run-time, you should use
the intrinsic function __initcirc():

#define N 100

unsigned short s = sizeof(_ fract);

__fract *ptr_to_circbuf = calloc(N, s);

circbuf = __initcirc(ptr_to_circbuf, N * s, 0 * s);
1.3.3. Accessing Hardware from C

Using Special Function Registers

It is easy to access Special Function Registers (SFRs) that relate to peripherals from C. The SFRs are
defined in a special function register file (*.sfr) as symbol names for use with the compiler. An SFR file
contains the names of the SFRs and the bits in the SFRs.

Example use in C (SFRs from regtcl1165.sfr):

void set_sfr(void)

{
LBCU_SRC.1 |= Oxb32a; /* access LBCU Service Request
Control register as a whole */
LBCU SRC.B.SRE = 0x1; /* access SRE bit-field of LBCU
Service Request Control register */
}

You can find a list of defined SFRs and defined bits by inspecting the SFR file for a specific processor.
The files are named regcpu.sfr, where cpu is the CPU specified with the C compiler option --cpu (you
can use the compiler option --cpu=tc1165 to compile the example above). The compiler automatically
includes this register file, unless you specify option --no-tasking-sfr. The files are located in the standard
include directory.

Defining Special Function Registers: __sfrbitl6, _ sfrbit32

SFRs are defined in SFR files and are written in C. With the data type qualifiers __ sfrbitl6 and
__sTrbit32 you can declare bit-fields in special function registers.

11

TASKING VX-toolset for TriCore User Guide

According to the TriCore Embedded Applications Binary Interface, 'normal’ bit-fields are accessed as
char, short or int. Bit-fields are aligned according to the table in Section 1.1, Data Types.

If you declare bit-fields in special function registers, this behavior is not always desired: some special
function registers require 16-bit or 32-bit access. To force 16-bit or 32-bit access, you can use the data
type qualifiers __sfrbitl6 and __sfrbit32.

When the SFR contains fields, the layout of the SFR is defined by a typedef-ed union. The next example
is part of an SFR file and illustrates the declaration of a special function register using the data type
qualifier __sfrbit32:

typedef volatile union

{
struct
{
unsigned __ sfrbit32 SRPN : 8; /* Service Priority Number */
unsigned __sfrbit32 :2;
unsigned __sfrbit32 TOS : 2; /* Type-of-Service Control */
unsigned __ sfrbit32 SRE : 1; /* Service Request Enable Control */
unsigned __sfrbit32 SRR : 1; /* Service Request Flag */
unsigned __sfrbit32 CLRR : 1; /* Request Flag Clear Bit */
unsigned __sfrbit32 SETR : 1; /* Request Flag Set Bit */
unsigned __ sfrbit32 : 16;
} B:

int |;
unsigned int U;
} LBCU_SRC_type;
Read-only fields can be marked by using the const keyword.

The SFR is defined by a cast to a ‘typedef-ed union’ pointer. The SFR address is given in parenthesis.
Read-only SFRs are marked by using the const keyword in the macro definition.

#define LBCU_SRC (*(LBCU_SRC_type*)(0xF87FFEFCu))
/* LBCU Service Control Register */

Restrictions

* You can use the __sfrbit32 and __sfrbitl6 data type qualifiers only for int types. The compiler
issues an error if you use for example __sfrbit32 char x : 8;

* When you use the __sfrbit32 and __sfrbitl6 data type qualifiers for other types than a bit-field,
the compiler ignores this without a warning. For example, __sfrbit32 int global; is equal to
int global;.

« Structures or unions that contain a member qualified with __sfrbitl6, are zero padded to complete
a halfword if necessary. The structure or union will be halfword aligned. Structures or unions that contain
a member qualified with __sFrbit32, are zero padded to complete a full word if necessary. The
structure or union will be word aligned.

12

C Language

1.3.4. Saturation: __sat

When a variable is declared with the type qualifier __sat, all operations on that variable will be performed
using saturating arithmetic. When an operation is performed on a plain variable and a __sat variable,
the __sat takes precedence, and the operation is done using saturating arithmetic. The type of the result
of such an operation also includes the qualifier __sat, so that another operation on the result will also
be saturated. In this respect, the behavior of the type qualifier __sat is comparable to the unsigned
keyword. You can overrule this behavior by inserting type casts with or without the type qualifier __sat
in an expression.

You can only use the type qualifier __sat on type int (fractional types are always saturated).

Care should be taken when combining signed and unsigned integers, since no saturation between signed
and unsigned is done.

Examples:

__sat int si = OX7FFFFFFF;
int i = 0x12345;
unsigned int ui = OXFFFFFFFF;

si + 1 // a saturated addition is performed,
// yielding a saturated int

si + ui // a saturated unsigned addition is performed,
// yielding a saturated unsigned int

i + ui // a normal unsigned addition is performed,
// yielding an unsigned int

1.4. Using Assembly in the C Source: __asm()

With the keyword ___asm you can use assembly instructions in the C source and pass C variables as
operands to the assembly code. Be aware that C modules that contain assembly are not portable and
harder to compile in other environments.

The compiler does not interpret assembly blocks but passes the assembly code to the assembly source
file; they are regarded as a black box. So, it is your responsibility to make sure that the assembly block
is syntactically correct. Possible errors can only be detected by the assembler.

General syntax of the __asm keyword
_asm("instruction_tenpl ate"

[: output_paramli st

[: input_param.li st

[: register_save_list]]]):

instruction_template Assembly instructions that may contain parameters from the input
list or output list in the form: %parm_nr[.regnum]

13

TASKING VX-toolset for TriCore User Guide

%parm_nr[.regnum] Parameter number in the range 0 .. 9. With the optional .regnum you
can access an individual register from a register pair or register quad.
For example, with register pair d0/d1, .0 selects register dO.

output_param_list [["=[&]constraint_char"(C_expression)],...]
input_param_list [["constraint_char"(C_expression)],...]
& Says that an output operand is written to before the inputs are read,
so this output must not be the same register as any input.
constraint _char Constraint character: the type of register to be used for the
C_expression. See the table below.
C_expression Any C expression. For output parameters it must be an Ivalue, that
is, something that is legal to have on the left side of an assignment.
register_save_list ["register_name"],...]
register_name Name of the register you want to reserve. Note that saving too much

registers can make register allocation impossible.

Specifying registers for C variables
With a constraint character you specify the register type for a parameter.

You can reserve the registers that are used in the assembly instructions, either in the parameter lists or
in the reserved register list (register_save_list). The compiler takes account of these lists, so no
unnecessary register saves and restores are placed around the inline assembly instructions.

Constraint | Type Operand Remark

character

a address register a0 ..al5

b address register pair b2, b4, b6, b12, b14|b2 = pair a2/a3, b4 = a4/a5, ...

d data register do ..d15

e date register pair e0,e2,...,el4d €0 = pair d0/d1, e2 = d2/d3, ...

m memory variable memory operand

i immediate value value

number type of operand it is same as %number |Input constraint only. The number

associated with must refer to an output parameter.

Indicates that %number and number
are the same register.

Loops and conditional jumps

The compiler does not detect loops with multiple __asm() statements or (conditional) jumps across
__asm() statements and will generate incorrect code for the registers involved.

If you want to create a loop with __asm(), the whole loop must be contained in a single __asm()
statement. The same counts for (conditional) jumps. As a rule of thumb, all references to a label in an
___asm() statement must be in that same statement. You can use numeric labels for these purposes.

14

C Language

Example 1: no input or output

A simple example without input or output parameters. You can use any instruction or label. When it is
required that a sequence of __asm() statements generates a contiguous sequence of instructions, then
they can be best combined to a single __asm() statement. Compiler optimizations can insert instruction(s)
in between __asm() statements. Use newline characters ‘\n’ to continue on a new lineina __asm(Q)
statement. For multi-line output, use tab characters '\t' to indent instructions.

__asm("nop\n"
"\tnop™);

Example 2: using output parameters

Assign the result of inline assembly to a variable. With the constraint m memory is chosen for the parameter;
the compiler decides where to put the variable. The %0 in the instruction template is replaced with the
name of the variable. The compiler generates code to assign the result to the output variable.

__near int out;

void func(void)

{

__asm("st.w %0,0x1234"

: "=m" (out));
}

Generated assembly code:

st.w out,0x1234

Example 3: using input parameters

Assign a variable to a data register. A data register is chosen for the parameter because of the constraint
d; the compiler decides which register is best to use. The %0 in the instruction template is replaced with
the name of this register. The compiler generates code to move the input variable to the input register.
Because there are no output parameters, the output parameter list is empty. Only the colon has to be
present.

int in;
void initreg(void)
{

__asm(MOV DO,%0"

"dr (in))
¥

Generated assembly code:

Id.w di5,1in
MOV DO,d15

15

TASKING VX-toolset for TriCore User Guide

Example 4: using input and output parameters

Multiply two C variables and assign the result to a third C variable. Data type registers are necessary for
the input and output parameters (constraint d, %0 for out, %1 for inl1, %2 for in2 in the instruction
template). The compiler generates code to move the input expressions into the input registers and to
assign the result to the output variable.

int inl, in2, out;

void multiply32(void)

{
__asm("mul %0, %1, %2"

: "=d" (out)

: "d" (inl), "d" (in2));
3

Generated assembly code:

Id.w di5,inl

Id.w do, in2

mul di5, di5, doO
st.w out,dl5

Example 5: reserving registers

Sometimes an instruction knocks out certain specific registers. The most common example of this is a
function call, where the called function is allowed to do whatever it likes with some registers. If this is the
case, you can list specific registers that get clobbered by an operation after the inputs.

Same as Example 4, but now register dO is a reserved register. You can do this by adding a reserved
register list (: "'d0'"). As you can see in the generated assembly code, register dO is not used (the first
register used is d1).

int inl, in2, out;

void multiply32(void)

{
__asm("mul %0, %1, %2"
: "=d" (out)
: "d" (inl), "d" (in2)
"do");
3

Generated assembly code:

Id.w di5,inl1

Id.w di,in2

mul di5, dis5, di
st.w out,dl5

16

C Language

Example 6: input and output are the same

If the input and output must be the same you must use a number constraint. The following example inverts
the value of the input variable invar and returns this value to outvar. Since the assembly instruction
not uses only one register, the return value has to go in the same place as the input value. Parameter
%0 corresponds to outvar. To indicate that invar uses the same register as outvar, the input constraint
'0" is used which indicates that invar also corresponds to %0.

int outvar;

void invert(int invar)

{
__asm (""not %0": "=d"(outvar): "0"(invar));
3
void main(void)
{
invert(255);
3
Generated assembly code:
invert:
not d4

st.w ovar,d4

mov d4,#255
j invert

Example 7: accessing individual registers in a register pair

You can access the individual registers in a register pair by adding a '." after the operand specifier in the
assembly part, followed by the index in the register pair.

int outl, out2;

void foo(double din)
{
_asm ("ld.w %0, %2.0\n"
"\tld.w %1, %2.1":"=&d"(outl),"=d"(out2):"e"(din));
}

The first 1d.w instruction uses index #0 of argument 2 (which is a double placed in a DxDx register) and
the second Id.w instruction uses index #1. The input operand is located in register pair d4/d5. The
assembly output becomes:

Id.w di5, d4
Id.w dO, e4,1 ; note that e4,1 corresponds to d5
st.w outl,dl15
st.w out2,d0

17

TASKING VX-toolset for TriCore User Guide

If the index is not a valid index (for example, the register is not a register pair, or the argument has not a
register constraint), the '." is passed into the assembly output. This way you can still use the '." in assembly
instructions.

1.5. Attributes

Attributes, introduced by the keyword __attribute__, can be used on declarations of variables,
functions, types, and fields. The al ias, always_inline, const, export, format, malloc, noinline,
noreturn, pure, section, unique, unused, used, and weak attributes are supported.

1.6. Pragmas to Control the Compiler

Pragmas are keywords in the C source that control the behavior of the compiler. Pragmas overrule
compiler options.

The syntax is:

#pragma pragnma- spec pragma-argunents [on | off | default | restore]

or:

_Pragma("pragna-spec pragnme-argunents [on | off | default | restore]”)

Some pragmas can accept the following special arguments:

on switch the flag on (same as without argument)
off switch the flag off

default set the pragma to the initial value

restore restore the previous value of the pragma

The compiler recognizes the following pragmas, other pragmas are ignored.
alias symbol=defined_symbol
Define symbol as an alias for defined_symbol. It corresponds to a . ALIAS directive at assembly level.

The symbol should not be defined elsewhere, and defined_symbol should be defined with static storage
duration (not extern or automatic).

align {value | default | restore}

Increase the alignment of object of four bytes or longer.

See C compiler option --align.

clear [on | off | default | restore] / noclear

By default, uninitialized global or static variables are cleared to zero on startup. With pragma noclear,

this step is skipped. Pragma clear resumes normal behavior. This pragma applies to constant data as
well as non-constant data.

18

C Language

compactmaxmatch {value | default | restore}

With this pragma you can control the maximum size of a match.

See C compiler option --compact-max-size.
CPU_functional_problem / DMU_functional_problem
Use software workarounds for the specified functional problem.

See C compiler option --silicon-bug.

default_aO_size [value] [default | restore]

With this pragma you can specify a threshold value for __a0 allocation.
See C compiler option --default-a0-size (-Z).

default_al_size [value] [default | restore]

With this pragma you can specify a threshold value for __al allocation.
See C compiler option --default-al-size (-Y).

default_near_size [value] [default | restore]

With this pragma you can specify a threshold value for __near allocation.
See C compiler option --default-near-size (-N).

extension isuffix [on | off | default | restore]

Enables a language extension to specify imaginary floating-point constants. With this extension, you can
use an "i" suffix on a floating-point constant, to make the type _Imaginary.

float 0.5i

extern symbol

Normally, when you use the C keyword extern, the compiler generates an . EXTERN directive in the
generated assembly source. However, if the compiler does not find any references to the extern symbol
in the C module, it optimizes the assembly source by leaving the .EXTERN directive out.

With this pragma you can force an external reference (.EXTERN assembler directive), even when the
symbol is not used in the module.

for_constant_data_use_memory memory
for_extern_data_use_memory memory
for_initialized_data_use_memory memory

19

TASKING VX-toolset for TriCore User Guide

for_uninitialized_data_use_memory memory

Use the specified memory for the type of data mentioned in the pragma name. You can specify the
following memories: near, far, a0, a8 or a9. For pragma for_constant_data_use_memory you
can also specify the al memory.

This pragma overrules the pragmas default_aO_size, default_al_size, default_near_size,
and the memory qualifiers __near and __ far.

immediate_in_code [on | off | default | restore]

With this pragma you force the compiler to encode all immediate values into instructions.
See C compiler option --immediate-in-code.

indirect [on | off | default | restore]

Generates code for indirect function calling.

See C compiler option --indirect.

indirect_runtime [on | off | default | restore]

Generates code for indirect calls to run-time functions.

See C compiler option --indirect-runtime.

inline / noinline / smartinline

See Section 1.9.3, Inlining Functions: inline.

inline_max_incr {value | default | restore}
inline_max_size {value | default | restore}

With these pragmas you can control the automatic function inlining optimization process of the compiler.
It has effect only when you have enable the inlining optimization (C compiler option --optimize=+inline).

See C compiler options --inline-max-incr / --inline-max-size.
loop_alignment {value | default | restore}

Specify the alignment loop bodies will get when the loop-alignment optimization is used.

See C compiler option --loop-alignment.

macro / nomacro [on | off | default | restore]

Turns macro expansion on or off. By default, macro expansion is enabled.

20

C Language

maxcalldepth {value | default | restore}

With this pragma you can control the maximum call depth. Default is infinite (-1).
See C compiler option --max-call-depth.

message "'message" ...

Print the message string(s) on standard output.

nomisrac [nr,...] [default | restore]

Without arguments, this pragma disables MISRA-C checking. Alternatively, you can specify a
comma-separated list of MISRA-C rules to disable.

See C compiler option --misrac and Section 4.8, C Code Checking: MISRA-C.

object_comment "string" ... | default | restore

This pragma generates a .comment section in the assembly file with the specified string. After assembling,
this string appears in the generated .o or .el ¥ object file. If you specify this pragma more than once in
the same module, only the last pragma has effect.

See C compiler option --object-comment.

optimize [flags | default | restore] / endoptimize

You can overrule the C compiler option --optimize for the code between the pragmas optimize and
endoptimize. The pragma works the same as C compiler option --optimize.

See Section 4.6, Compiler Optimizations.

pack {0 | 2 | default | restore}

Specifies packing of structures. See Section 1.1.3, Packed Data Types.

profile [flags | default | restore] / endprofile

Control the profile settings. The pragma works the same as C compiler option --profile. Note that this
pragma will only be checked at the start of a function. endprofi le switches back to the previous profiling

settings.

profiling [on | off | default | restore]

If profiling is enabled on the command line (C compiler option --profile), you can disable part of your
source code for profiling with the pragmas profiling off and profiling.

21

TASKING VX-toolset for TriCore User Guide

protect [on | off | default | restore] / endprotect

With these pragmas you can protect sections against linker optimizations. This excludes a section from
unreferenced section removal and duplicate section removal by the linker. endprotect restores the
default section protection.

runtime [flags | default | restore]

With this pragma you can control the generation of additional code to check for a number of errors at
run-time. The pragma argument syntax is the same as for the arguments of the C compiler option --runtime.
You can use this pragma to control the run-time checks for individual statements. In addition, objects
declared when the "bounds" sub-option is disabled are not bounds checked. The "malloc" sub-option
cannot be controlled at statement level, as it only extracts an alternative malloc implementation from the
library.

section all "name"

section type "name"
section_name_with_module
section_name_with_symbol
section_per_data_object

Changes section names. See Section 1.10, Compiler Generated Sections and C compiler option
--rename-sections for more information.

section code_init | const_init | vector_init

At startup copies corresponding sections to RAM for initialization.

section data_overlay

Allow overlaying data sections.

source [on | off | default | restore] / nosource

With these pragmas you can choose which C source lines must be listed as comments in assembly output.
See C compiler option --source.

stdinc [on | off | default | restore]

This pragma changes the behavior of the #include directive. When set, the C compiler options
--include-directory and --no-stdinc are ignored.

switch auto | jump_tab | linear | lookup | restore
With these pragmas you can overrule the C compiler chosen switch method.

See Section 1.8, Switch Statement and C compiler option --switch.

22

C Language

tradeoff level [default | restore]

Specify tradeoff between speed (0) and size (4). See C compiler option --tradeoff

unroll_factor value | default | restore] / endunroll_factor

Specify how many times the following loop should be unrolled, if possible. At the end of the loop use
endunroll_factor.

See C compiler option --unroll-factor.

user_mode user-0 | user-1 | kernel | default | restore
With this pragma you specify the user mode (I/O privilege mode) the TriCore runs in.

See C compiler option --user-mode.

warning [number,...] [default | restore]

With this pragma you can disable warning messages. If you do not specify a warning number, all warnings
will be suppressed.

weak symbol

Mark a symbol as "weak" (.WEAK assembler directive). The symbol must have external linkage, which
means a global or external object or function. A static symbol cannot be declared weak.

A weak external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference. When a weak external reference cannot be resolved, the null pointer is substituted.

A weak definition can be overruled by a normal global definition. The linker will not complain about the
duplicate definition, and ignore the weak definition.

1.7. Predefined Preprocessor Macros

The TASKING C compiler supports the predefined macros as defined in the table below. The macros are
useful to create conditional C code.

Macro Description

__ BUILD__ Identifies the build number of the compiler, composed of decimal digits for
the build number, three digits for the major branch number and three digits
for the minor branch number. For example, if you use build 1.22.1 of the
compiler, _ BUILD___ expands to 1022001. If there is no branch number,
the branch digits expand to zero. For example, build 127 results in
127000000.

__CTC__ Identifies the compiler. You can use this symbol to flag parts of the source
which must be recognized by the TASKING ctc compiler only. It expands
to 1.

23

TASKING VX-toolset for TriCore User Guide

Macro Description

__CPU__ Expands to a string with the CPU supplied with the option --cpu. When no
--cpu is supplied, this symbol is not defined.

__ DATE___ Expands to the compilation date: “mmm dd yyyy”.

_ DOUBLE_FP__ Expands to 1 if you did not use option --no-double (Treat ‘double’ as ‘float’),
otherwise unrecognized as macro.

__DSPC__ Indicates conformation to the DSP-C standard. It expands to 1.

__DSPC_VERSION__

Expands to the decimal constant 200001L.

_FILE__

Expands to the current source file name.

__FPU__ Expands to 1 if you used option --fpu-present (Use hardware floating-point
instructions), otherwise unrecognized as macro.

__LINE__ Expands to the line number of the line where this macro is called.

__PROF_ENABLE___ Expands to 1 if profiling is enabled, otherwise expands to 0.

_ REVISION__ Expands to the revision number of the compiler. Digits are represented as

they are; characters (for prototypes, alphas, betas) are represented by -1.
Examples: v1.0r1 -> 1, v1.0rb -> -1

__SFRFILE__(cpu)

This macro expands to the filename of the used SFR file, including the < >.
The cpu is the argument of the macro. For example, if --cpu=tc1165 is
specified, the macro ___ SFRFILE__ (__CPU__) expands to

_ SFRFILE__(tc1165), which expands to <regtc1165.sfr>.

__SFRFILE_WANTED__

Expands to 1 if TASKING . sfr files are used. Not defined when option
--no-tasking-sfr is used.

__SINGLE_FP__ Expands to 1 if you used option --no-double (Treat ‘double’ as ‘float’),
otherwise unrecognized as macro.
__STDC__ Identifies the level of ANSI standard. The macro expands to 1 if you set

option --language (Control language extensions), otherwise expands to 0.

__STDC_HOSTED__

Always expands to 0, indicating the implementation is not a hosted
implementation.

__STDC_VERSION__

Identifies the ISO-C version number. Expands to 199901L for ISO C99 or
199409L for ISO C90.

__TASKING__ Identifies the compiler as a TASKING compiler. Expands to 1 if a TASKING
compiler is used.

__TC131__ Expands to 1 if the TriCore 1.3.1 architecture is selected (option
--core=tcl1.3.1).

__TIME__ Expands to the compilation time: “hh:mm:ss”

__VERSION__ Identifies the version number of the compiler. For example, if you use version

2.1r1 of the compiler, _ VERSION__ expands to 2001 (dot and revision
number are omitted, minor version number in 3 digits).

24

C Language

Example

#ifdef _ FPU__

/* this part is only valid if an FPU is present */
#endif

1.8. Switch Statement

The TASKING C compiler supports three ways of code generation for a switch statement: a jump chain
(linear switch), a jump table or a lookup table.

A jump chain is comparable with an if/else-if/else-if/else construction. A jump table table filled with target
addresses for each possible switch value. The switch argument is used as an index within this table. A
lookup table is a table filled with a value to compare the switch argument with and a target address to
jump to. A binary search lookup is performed to select the correct target address.

By default, the compiler will automatically choose the most efficient switch implementation based on code
and data size and execution speed. With the C compiler option --tradeoff you can tell the compiler to
emphasis more on speed than on ROM size.

Especially for large switch statements, the jump table approach executes faster than the lookup table
approach. Also the jump table has a predictable behavior in execution speed: independent of the switch
argument, every case is reached in the same execution time. However, when the case labels are distributed
far apart, the jump table becomes sparse, wasting code memory. The compiler will not use the jump table
method when the waste becomes excessive.

With a small number of cases, the jump chain method can be faster in execution and shorter in size.

How to overrule the default switch method
You can overrule the compiler chosen switch method by using a pragma:

#pragma switch linear force jump chain code

#pragma switch jumptab force jump table code

#pragma switch lookup force lookup table code

#pragma switch auto let the compiler decide the switch method used (this is the default)

#pragma switch restore restore previous switch method

The switch pragmas must be placed before the switch statement. Nested swi tch statements use the
same switch method, unless the nested switch is implemented in a separate function which is preceded
by a different switch pragma.

Example:

/* place pragma before function body */

#pragma switch jumptab

25

TASKING VX-toolset for TriCore User Guide

void test(unsigned char val)
{ /* function containing the switch */
switch (val)

{
}

/* use jump table */

}

On the command line you can use C compiler option --switch.
1.9. Functions

1.9.1. Calling Convention

Parameter Passing

A lot of execution time of an application is spent transferring parameters between functions. The fastest
parameter transport is via registers. Therefore, function parameters are first passed via registers. If no
more registers are available for a parameter, the compiler pushes parameters on the stack.

Registers available for parameter passing are D4, D5, E4, D6, D7, E6, A4, A5, A6, A7. Up to 4 arithmetic
types and 4 pointers can be passed this way. A 64-bit argument is passed in an even/odd data register
pair. Parameter registers skipped because of alignment for a 64-bit argument are used by subsequent
32-bit arguments. Any remaining function arguments are passed on the stack. Stack arguments are
pushed in reversed order, so that the first one is at the lowest address. On function entry, the first stack
parameter is at the address (SP+0).

Structures up to eight bytes are passed via a data register or data register pair. Larger structures are
passed via the stack.

All function arguments passed on the stack are aligned on a multiple of 4 bytes. As a result, the stack
offsets for all types except float are compatible with the stack offsets used by a function declared without
a prototype.

Examples:

void funcl(int i, char *p, char c); /* D4 A4 D5 */
void func2(int il, double d, int i2); /* D4 E6 D5 */
void func3(char cl, char c2, char c3[]); /7* D4 D5 A4 */
void func4(double di1, int il, double d2, int i2);
/* E4 D6 stack D7 */

Function Return Values

The C compiler uses registers to store C function return values, depending on the function return types.

Return Type Register
Arithmetic 32 bit D2
Arithmetic 64 bit D2/D3 (E2)

26

C Language

Return Type Register
Pointer A2
Circular pointer A2/A3

When the function return type is a structure, it is copied to a "return area" that is allocated by the caller.
The address of this area is passed as an implicit first argument in A4.

Stack model: __stackparm

The function qualifier __stackparm changes the standard calling convention of a function into a convention
where all function arguments are passed via the stack, conforming a so-called stack model. This qualifier
is only needed for situations where you need to use an indirect call to a function for which you do not
have a valid prototype.

The compiler sets the least significant bit of the function pointer when you take the address of a function
declared with the __stackparm qualifier, so that these function pointers can be identified at run-time.
The least significant bit of a function pointer address is ignored by the hardware.

Example:

void plain_func (int);
void __stackparm stack_func (int);

void call_indirect (unsigned int fp, int arg)

{
typedef __ stackparm void (*SFP)(int);

typedef void (*RFP)(int);

SFP fp_stack;
RFP fp_reg;

if (fpp&l)

{
fp_stack = (SFP) fp;
fp_stack(arg);

}

else

{
fp_reg = (RFP) fp;

fp_reg(arg);

void main (void)

call_indirect((unsinged int) plain_func, 1)
call_indirect((unsinged int) stack_func, 2)

27

TASKING VX-toolset for TriCore User Guide

Function Calling Modes: __indirect

Functions are by default called with a single word direct call. However, when you link the application and
the target address appears to be out of reach (+/- 16 MB from the cal Ig or jg instruction), the linker
generates an error. In this case you can use the __indirect keyword to force the less efficient, two
and a half word indirect call to the function:

int __indirect foo(void)

{

}

With C compiler option --indirect you tell the C compiler to generate far calls for all functions.

1.9.2. Register Usage

The C compiler uses the data registers and address registers according to the convention given in the
following table.

Register Usage Register |Usage

DO EO scratch AO global

D1 scratch Al global

D2 E2 return register for arithmetic types|A2 return register for pointers
D3 most significant part of 64 bit result| A3 scratch

D4 E4 parameter passing Ad parameter passing

D5 parameter passing A5 parameter passing

D6 E6 parameter passing A6 parameter passing

D7 parameter passing A7 parameter passing

D8 E8 saved register A8 global

D9 saved register A9 global

D10 E10 saved register A10 stack pointer

D11 saved register All link register

D12 E12 saved register Al12 saved register

D13 saved register A13 saved register

D14 E14 saved register Al4 saved register

D15 saved register, implicit pointer A15 saved register, implicit pointer

1.9.3. Inlining Functions: inline

With the C compiler option --optimize=+inline, the C compiler automatically inlines small functions in
order to reduce execution time (smart inlining). The compiler inserts the function body at the place the
function is called. The C compiler decides which functions will be inlined. You can overrule this behavior
with the two keywords inline (ISO-C) and __noinline.

28

C Language

With the inline keyword you force the compiler to inline the specified function, regardless of the
optimization strategy of the compiler itself:

inline unsigned int abs(int val)

{
unsigned int abs val = val;
if (val < 0) abs val = -val;
return abs val;

}

If a function with the keyword inline is not called at all, the compiler does not generate code for it.

You must define inline functions in the same source module as in which you call the function, because
the compiler only inlines a function in the module that contains the function definition. When you need to
call the inline function from several source modules, you must include the definition of the inline function
in each module (for example using a header file).

With the __noinline keyword, you prevent a function from being inlined:

__noinline unsigned int abs(int val)

{
unsigned int abs_val = val;
if (val < 0) abs_val = -val;
return abs_val;

}

Using pragmas: inline, noinline, smartinline

Instead of the inline qualifier, you can also use #pragma inline and #pragma noinline to inline
a function body:

#pragma inline
unsigned int abs(int val)

{
unsigned int abs_val = val;
if (val < 0) abs_val = -val;
return abs_val;

3

#pragma noinline
void main(void)

{

aés(—l);

~+

n

i
}

If a function has an inline/__noinline function qualifier, then this qualifier will overrule the current
pragma setting.

With the #pragma noinline/#pragma smartinline you cantemporarily disable the default behavior
that the C compiler automatically inlines small functions when you turn on the C compiler option
--optimize=+inline.

29

TASKING VX-toolset for TriCore User Guide

With the C compiler options --inline-max-incr and --inline-max-size you have more control over the
automatic function inlining process of the compiler.

Combining inline with __asm to create intrinsic functions

With the keyword ___asm it is possible to use assembly instructions in the body of an inline function.
Because the compiler inserts the (assembly) body at the place the function is called, you can create your
own intrinsic function. See Section 1.9.5, Intrinsic Functions.

1.9.4. Interrupt and Trap Functions

The TriCore C compiler supports a number of function qualifiers and keywords to program interrupt service
routines (ISR) or trap handlers. Trap handlers may also be defined by the operating system if your target
system uses one.

An interrupt service routine (or: interrupt function, or: interrupt handler) is called when an interrupt event
(or: service request) occurs. This is always an external event; peripherals or external inputs can generate
an interrupt signals to the CPU to request for service. Unlike other interrupt systems, each interrupt has
a unique interrupt request priority number (IRPN). This number (0 to 255) is set as the pending interrupt
priority number (PIPN) in the interrupt control register (ICR) by the interrupt control unit. If multiple interrupts
occur at the same time, the priority number of the request with the highest priority is set, so this interrupt
is handled.

The TriCore vector table provides an entry for each pending interrupt priority number, not for a specific
interrupt source. A request is handled if the priority number is higher than the CPU priority number (CCPN).
An interrupt service routine can be interrupted again by another interrupt request with a higher priority.
Interrupts with priority number 0 are never handled.

A trap service routine (or: trap function, or: trap handler) is called when a trap event occurs. This is always
an event generated within or by the application. For example, a divide by zero or an invalid memory
access.

Overview of function qualifiers
With the following function qualifiers you can declare an interrupt handler or trap handler:

__interrupt() __interrupt_fast()
__trapQ __trap_fast()

There is one special type of trap function which you can call manually, the system call exception (trap
class 6). See Section 1.9.4.3, Defining a Trap Service Routine Class 6: __syscallfunc().

__syscallfunc(Q

During the execution of an interrupt service routine or trap service routine, the system blocks the CPU
from taking further interrupt requests. With the following keywords you can enable interrupts again,
immediately after an interrupt or trap function is called:

__enable_ __bisr_QO

30

C Language

1.9.4.1. Defining an Interrupt Service Routine: __interrupt(), __interrupt_fast()

With the function type qualifier __interrupt() you can declare a function as an interrupt service routine.
The function type qualifier __interrupt() takes one interrupt vector (0..255) as argument.

Interrupt functions cannot return anything and must have a void argument type list:

void __interrupt(vector)
isr(void)

{

}

The argument vector identifies the entry into the interrupt vector table (0..255). Unlike other interrupt
systems, the priority number (PIPN) of the interrupt now being serviced by the CPU identifies the entry
into the vector table.

For an extensive description of the TriCore interrupt system, see the TriCore 1 Unified Processor Core
v1.3 Architecture Manual, Doc v1.3.3 [2002-09, Infineon].

The compiler generates an interrupt service frame for interrupts. The difference between a normal function
and an interrupt function is that an interrupt function ends with an RFE instruction instead of a RET, and
that the lower context is saved and restored with a pair of SVLCX / RSLCX instructions when one of the
lower context registers is used in the interrupt handler.

When you define an interrupt service routine with the ___interrupt() qualifier, the compiler generates
an entry for the interrupt vector table. This vector jumps to the interrupt handler.

The next example illustrates the function definition for a function for a software interrupt with vector number
0x30:

int c;

void __interrupt(0x30) transmit(void)
{

}

Fast interrupts

c =1;

When you define an interrupt service routine with the __interrupt_fast() qualifier, the interrupt
handler is directly placed in the interrupt vector table, thereby eliminating the jump code. You should only
use this when the interrupt handler is very small, as there is only 32 bytes of space available in the vector
table. The compiler does not check this restriction.

1.9.4.2. Defining a Trap Service Routine: __trap(), _ trap_fast()

The definition of a trap service routine is similar to the definition of an interrupt service routine. Trap
functions cannot accept arguments and do not return anything:

void __trap(class) tsr(void)

{

31

TASKING VX-toolset for TriCore User Guide

}

The argument class identifies the entry into the trap vector table. TriCore defines eight classes of trap
functions. Each class has its own trap handler.

When a trap service routine is called, the d15 register contains the so-called Trap Identification Number
(TIN). This number identifies the cause of the trap. In the trap service routine you can test and branch on
the value in d15 to reach the sub-handler for a specific TIN.

The next table shows the classes supported by TriCore.

Class |Description

Class 0 |Reset

Class 1 |Internal Protection Traps

Class 2 |Instruction Errors

Class 3 |Context Management

Class 4 |System Bus and Peripheral Errors

Class 5 |Assertion Traps

Class 6 |System Call

Class 7 |[Non-Maskable Interrupt

For a complete overview of the trap system and the meaning of the trap identification numbers, see the
TriCore 1 Unified Processor Core v1.3 Architecture Manual, Doc v1.3.3 [2002-09, Infineon]

Analogous to interrupt service routines, the compiler generates a trap service frame for interrupts.

When you define a trap service routine with the __trap() qualifier, the compiler generates an entry for
the interrupt vector table. This vector jumps to the trap handler.

Fast traps

When you define a trap service routine with the __trap_Tfast() qualifier, the trap handler is directly
placed in the trap vector table, thereby eliminating the jump code. You should only use this when the trap
handler is very small, as there is only 32 bytes of space available in the vector table. The compiler does
not check this restriction.

1.9.4.3. Defining a Trap Service Routine Class 6: __syscallfunc()

A special kind of trap service routine is the system call trap. With a system call the trap service routine
of class 6 is called. For the system call trap, the trap identification number (TIN) is taken from the immediate
constant specified with the function qualifier __syscal Ifunc():

__syscallfunc(TI N)

The TIN is a value in the range 0 and 255.You can only use __syscal Ifunc() in the function declaration.
A function body is useless, because when you call the function declared with __syscal 1func(), a trap
class 6 occurs which calls the corresponding trap service routine.

32

C Language

In case of the other traps, when a trap service routine is called, the system places a trap
identification number in d15.

Unlike the other traps, a class 6 trap service routine can contain arguments and return a value (the lower
context is not saved and restored). Arguments that are passed via the stack, remain on the stack of the
caller because it is not possible to pass arguments from the user stack to the interrupt stack on a system
call. This restriction, caused by the TriCore's run-time behavior, cannot be checked by the compiler.

Example

The next example illustrates the definition of a class 6 trap service routine and the corresponding system
call:

__syscallfunc(l) int syscall_a(int, i
__syscallfunc(?2) int syscall_b(int, i

int x;

void main(void)
{
X
X

syscall_a(1,2); // causes a trap class 6 with TIN
syscall_b(4,3); // causes a trap class 6 with TIN

}

int _ _trap(6) trap6(int a, int b) // trap class 6 handler

int tin;
__asm('mov %0,d15" - *'=d"(tin)); // put di5 in C variable tin

switch(tin)
{
case 1:
a += b;
break;
case 2:
a -= b;
break;
default:
break;
¥

return a;

¥
1.9.4.4. Enabling Interrupt Requests: __enable_, _ bisr_()
Enabling interrupt service requests

During the execution of an interrupt service routine or trap service routine, the system blocks the CPU
from taking further interrupt requests. You can immediately re-enable the system to accept interrupt
requests:

33

TASKING VX-toolset for TriCore User Guide

__interrupt(vector) _ _enable_ isr(void)
__trap(cl ass) __enable_ tsr(void)

The compiler generates an enabl e instruction as first instruction in the routine. The enable instruction
sets the interrupt enable bit (ICR.IE) in the interrupt control register.

You can also generate the enable instruction with the intrinsic function __enable (), but it is not
guaranteed that it will be the first instruction in the routine.

Enabling interrupt service requests and setting CPU priority number

The function qualifier __bisr_() also re-enables the system to accept interrupt requests. In addition,
the current CPU priority number (CCPN) in the interrupt control register is set:

__interrupt(vector) _ bisr_(CCPN) isr(void)
__trap(class) __bisr_(CCPN) tsr(void)

The argument CCPN is a number between 0 and 255. The system accepts all interrupt requests that
have a higher pending interrupt priority number (PIPN) than the current CPU priority number. So, if the
CPU priority number is set to 0, the system accepts all interrupts. If it is set to 255, no interrupts are
accepted.

The compiler generates a bisr instruction as first instruction in the routine. The bisr instruction sets
the interrupt enable bit (ICR.IE) and the current CPU priority number (ICR.CCPN) in the interrupt control
register.

You can also generate the bisr instruction with the intrinsic function __bisr(), but it is not guaranteed
that it will be the first instruction in the routine.

Setting the CPU priority number in a Class 6 trap service routine

The bisr instruction saves the lower context so passing and returning arguments is not possible.
Therefore, you cannot use the function qualifier __bisr_() for class 6 traps.

Instead, you can use the function qualifier __enable_ to set the ICR.IE bit, and the intrinsic function
__mtcer(int, int) tosetthe ICR.CCPN value at the beginning of a class 6 trap service routine (or
use the intrinsic function __mtcr () to set both the ICR.IE bit and the ICR.CCPN value).

1.9.5. Intrinsic Functions

Some specific assembly instructions have no equivalence in C. Intrinsic functions give the possibility to
use these instructions. Intrinsic functions are predefined functions that are recognized by the compiler.
The compiler generates the most efficient assembly code for these functions.

The compiler always inlines the corresponding assembly instructions in the assembly source (rather than
calling it as a function). This avoids parameter passing and register saving instructions which are normally
necessary during function calls.

Intrinsic functions produce very efficient assembly code. Though it is possible to inline assembly code by
hand, intrinsic functions use registers even more efficiently. At the same time your C source remains very
readable.

34

C Language
You can use intrinsic functions in C as if they were ordinary C (library) functions. All intrinsics begin with
a double underscore character (__).
The following example illustrates the use of an intrinsic function and its resulting assembly code.
X = _min(4,5);
The resulting assembly code is inlined rather than being called:

movl6 d2,#4
min d2,d2,#5

The intrinsics cover the following subjects:

e Minimum and maximum of (short) integers
 Fractional data type support

» Packed data type support

* Interrupt handling

* Insert single assembly instruction

» Register handling

* Insert / extract bit-fields and bits

» Miscellaneous
Writing your own intrinsic function

Because you can use any assembly instruction with the __asm() keyword, you can use the __asm()
keyword to create your own intrinsic functions. The essence of an intrinsic function is that it is inlined.

1. First write a function with assembly in the body using the keyword __asm(). See Section 1.4, Using
Assembly in the C Source: __asm()

2. Next make sure that the function is inlined rather than being called. You can do this with the function
qualifier inline. This qualifier is discussed in more detail in Section 1.9.3, Inlining Functions: inline.

int a, b, result;

inline void __my mul(void)

{
}

__asm("mul %0, %1, %2': "=d"(result): "d"(a), "d"(b));

void main(void)

// call to function __my_mul
__my_mulQ;

35

TASKING VX-toolset for TriCore User Guide

Generated assembly code:

main:
; __my mul code is inlined here
Id.w di5,a
Id.w doO,b

mul di5, di5, doO
st.w result,d15

As you can see, the generated assembly code for the function __my_mul is inlined rather than called.
1.9.5.1. Minimum and Maximum of (Short) Integers

The next table provides an overview of the intrinsic functions that return the minimum or maximum of a
signed integer, unsigned integer or short integer.

Intrinsic Function Description
int_min(int, int) Return minimum of two integers
short __mins(short, short) Return minimum of two short integers

unsigned int __minu(unsigned int, unsigned int) |Return minimum of two unsigned integers

int __max(int, int) Return maximum of two integers

short __maxs(short, short) Return maximum of two short integers

unsigned int __maxu(unsigned int, unsigned int) |Return maximum of two unsigned integers

1.9.5.2. Fractional Arithmetic Support

The next table provides an overview of intrinsic functions to convert fractional values. Note that the
TASKING VX-toolset C compiler for TriCore fully supports the fractional type so normally you should not
need these intrinsic functions (except for __mulfractlong). For compatibility reasons the TASKING C
compiler does support these functions.

Conversion of fractional values

Intrinsic Function Description

long __mulfractlong(__fract,long) Integer part of the multiplication of a __fract and
a long

__sfract __round16(__fract) Convert __fractto__ sfract

__fract __getfract(_accum) Convert __accumto__ fract

short __clssf(__sfract) Count the consecutive number of bits that have the
same value as bit 15 of an __sfract

__sfract __shasfracts(__sfract, int) Left/right shift of an __sfract

_ fract __shafracts(__fract, int) Left/right shift of an __ fract

__laccum __shaaccum(__laccum, int) Left/right shift of an __laccum

__sfract __mac_sf(__sfracta, __sfract b, __sfract|Multiply-add __sfract. Returns (a+b*c)
c)

36

C Language

Intrinsic Function

Description

__sfract __mac_r_sf(_sfract, __sfract, __sfract)

Multiply-add with rounding. Returns the rounded
resultof (a+b*c)

__sfract __ul6_to_sfract(unsigned short integer)

Convert unsigned shortto __sfract

__sfract __s16_to_sfract(signed short integer)

Convert signed shortto__sfract

unsigned short int __sfract_to_ul6(__sfract)

Convert __sfractto unsigned short

signed short int __sfract_to_s16(__sfract)

Convert __sfractto signed short

1.9.5.3. Packed Data Type Support

The next table provides an overview of the intrinsic functions for initialization of packed data type.

Initialize packed data types

Intrinsic Function

Description

__packb __initpackbl(long)

Initialize ___packb with a long integer

__packb __initpackb(int, int, int, int)

Initialize ___packb with four integers

unsigned)

unsigned __packb __initupackb(unsigned, unsigned, unsigned,

Idem, but unsigned

__packhw __initpackhwl(long)

Initialize ___packhw with a long integer

__packhw __initpackhw(short, short)

Initialize ___packhw with two integers

short)

unsigned ___packhw __initupackhw(unsigned short, unsigned

Idem, but unsigned

Extract values from packed data types

The next table provides an overview of the intrinsic functions to extract a single byte or halfword from a

__packb or __packhw data type.

Intrinsic Function

Description

char __extractbytel(_ packb)

Extract first byte from a ___packb

unsigned char __extractubytel(__unsigned packb)

Idem, but unsigned

char __extractbyte2(_ packb)

Extract second byte from a __packb

unsigned char __extractubyte2(__unsigned packb)

Idem, but unsigned

char __extractbyte3(__packb)

Extract third byte from a ___packb

unsigned char __extractubyte3(__unsigned packb)

Idem, but unsigned

char __extractbyte4(__packb)

Extract fourth byte from a __packb

unsigned char __extractubyte4(__unsigned packb)

Idem, but unsigned

short __extracthw1(__packhw)

Extract first short from a ___packhw

unsigned short __extractuhwl(unsigned __packhw)

Idem, but unsigned

short __extracthw2(__packhw)

Extract second short from a ___packhw

37

TASKING VX-toolset for TriCore User Guide

Intrinsic Function

Description

unsigned short __extractuhw2(unsigned __packhw)

Idem, but unsigned

char __getbytel(__packb *)

Extract first byte from a __packb

unsigned char __getubytel(__unsigned packb *)

Idem, but unsigned

char __getbyte2(__packb *)

Extract second byte from a __packb

unsigned char __getubyte2(__unsigned packb *)

Idem, but unsigned

char __getbyte3(__packb *)

Extract third byte from a ___packb

unsigned char __getubyte3(__unsigned packb *)

Idem, but unsigned

char __getbyte4(__packb *)

Extract fourth byte from a __packb

unsigned char __getubyte4(__unsigned packb *)

Idem, but unsigned

short __gethwl(_ packhw *)

Extract first short from a ___packhw

unsigned short __getuhwl(unsigned __packhw *)

Idem, but unsigned

short __gethw2(__packhw *)

Extract second short from a ___packhw

unsigned short __getuhw2(unsigned __packhw *)

Idem, but unsigned

Insert values into packed data types

The next table provides an overview of the intrinsic functions to insert a single byte or halfword into a

__packb or __packhw data type.

Intrinsic Function

Description

__packb __insertbytel(__packb, char)

Insert char into first byte of a ___packb

unsigned __packb __insertubytel(unsigned __packb,
unsigned char)

Idem, but unsigned

__packb __insertbyte2(__packb, char)

Insert char into second byte of a __packb

unsigned __packb __insertubyte2(unsigned __packb,
unsigned char)

Idem, but unsigned

__packb __insertbyte3(__packb, char)

Insert char into third byte of a __packb

unsigned __packb __insertubyte3(unsigned __packb,
unsigned char)

Idem, but unsigned

__packb __insertbyte4(__packb, char)

Insert char into fourth byte of a __packb

unsigned __packb __insertubyte4(unsigned __packb,
unsigned char)

Idem, but unsigned

__packhw __inserthwl(__packhw, short)

Insert short into first halfword ofa __packhw

unsigned __packhw __insertuhwl(unsigned __packhw,
unsigned short)

Idem, but unsigned

__packhw __inserthw2(__packhw, short)

Insert short into second halfword of a

___packhw

unsigned __packhw __insertuhw?2(unsigned __packhw,
unsigned short)

Idem, but unsigned

38

C Language

Intrinsic Function

Description

void __setbytel(__packb *, char)

Insert char into first byte of a __packb

void __setubytel(unsigned __packb *, unsigned char)

Idem, but unsigned

void __setbyte2(__ packb *, char)

Insert char into second byte of a ___packb

void __setubyte2(unsigned __packb *, unsigned char)

Idem, but unsigned

void __setbyte3(__packb *, char)

Insert char into third byte of a ___packb

void __setubyte3(unsigned __packb *, unsigned char)

Idem, but unsigned

void __setbyte4(__packb *, char)

Insert char into fourth byte of a __packb

void __setubyte4(unsigned __packb *, unsigned char)

Idem, but unsigned

void __sethwl(__packhw *, short)

Insert short into first halfword of a___packhw

void __setuhw1(unsigned __packhw *, unsigned short)

Idem, but unsigned

void __sethw2(__packhw *, short)

___packhw

Insert short into second halfword of a

void __setuhw?2(unsigned __packhw *, unsigned short)

Idem, but unsigned

Combine packed data types into a packed word

The next table provides an overview of the intrinsic functions to combine the value of packed data types
into a packed word. The packed word (64-bit) is represented by the data type long long.You can
combine two __packb (2 x 4 bytes) into a long long or two ___packhw (2 x 2 halfwords) into a long

long.

Calculate absolute values of packed data type values

The next table provides an overview of the intrinsic functions to calculate the absolute value of packed

data type values.

Intrinsic Function

Description

__packb __absb(__packb)

Absolute value of __packb

__packhw __absh(__packhw)

Absolute value of __packhw

__sat__packhw __abssh(_sat __packhw)

Absolute value of __packhw using saturation

Calculate minimum packed data type values

The next table provides an overview of the intrinsic functions to calculate the minimum from two packed

data type values.

Intrinsic Function

Description

__packb __minb(__packb, _packb)

Minimum of two ___packb values

unsigned __packb __minbu(unsigned __packb, unsigned
__packb)

Minimum of two unsigned ___packb values

__packhw __minh(__packhw,__packhw)

Minimum of two ___packhw values

39

TASKING VX-toolset for TriCore User Guide

Intrinsic Function Description

unsigned __packhw __minhu(unsigned __packhw, Minimum of two unsigned ___packhw values
unsigned __packhw)

1.9.5.4. Interrupt Handling

The next table provides an overview of the intrinsic functions to read or set interrupt handling.

Intrinsic Function Description

void __enable (void) [Enable interrupts immediately at function entry

void __disable (void) | Disable interrupts. Only supported for TriCorel.

void __ bisr (int) Set CPU priority number [0..512] and enable interrupts immediately at function
entry

void __syscall (int) |[Call a system call function number

1.9.5.5. Insert Single Assembly Instruction

The next table provides an overview of the intrinsic functions that you can use to insert a single assembly
instruction. You can also use inline assembly but these intrinsics provide a shorthand for frequently used
assembly instructions.

See Section 1.4, Using Assembly in the C Source: __asm().

Intrinsic Function Description

void __debug(void) Insert DEBUG instruction
void __dsync(void) Insert DSYNC instruction
void __isync(void) Insert ISYNC instruction
void __svlcx(void) Insert SVLCX instruction
void __ rslcx(void) Insert RSLCX instruction
void __nop(void) Insert NOP instruction
void volatile __ldmst(unsigned __align32 int *address, unsigned int mask, |Insert LDMST instruction
unsigned int value)

unsigned int volatile __swap(unsigned __align32 int *place, unsigned int Insert SWAP instruction
value)

1.9.5.6. Register Handling
Access control registers

The next table provides an overview of the intrinsic functions that you can use to access control registers.

Intrinsic Function |Description

int __mfer(int) Move contents of the addressed core SFR into a data register

void __mtcr (int,int) [Move contents of a data register (second int) to the addressed core SFR (first int)

40

C Language

Perform register value operations

The next table provides an overview of the intrinsic functions that operate on a register and return a value

in another register.

Intrinsic Function

Description

int__clz (int)

Count leading zeros in int

int__clo (int)

Count leading ones in int

int__cls (int)

Count number of redundant sign bits (all consecutive bits with the same value as
bit 31

int_satb (int)

Return saturated byte

int__satbu (int)

Return saturated unsigned byte

int__sath (int)

Return saturated halfword

int_sathu (int)

Return saturated unsigned halfword

int__abs (int)

Return absolute value

int__abss (int)

Return absolute value with saturation

int __ parity (int)

Return parity

1.9.5.7. Insert / Extract Bit-fields and Bits

Insert / extract bit-fields

The next table provides an overview of the intrinsic functions to insert or extract a bit-field.

Intrinsic Function

Description

int __extr (int value, int pos, int width)

Extract a bit-field (bit pos to bit pos+width) from value

)

unsigned int __extru (int value, int pos, int width

Same as ___extr () but return bit-field as unsigned
integer

int __insert (int trg,

int src, int pos, int width) Extract bit-field (bit pos to bit pos+width) from src and

insert it in trg.

int __ins(int trg, int trgbit, int src, int srcbit)

Return trg but replace trgbit by srcbit in src.

int __insn(int trg, int trgbit, int src, int srcbit)

Return trg but replace trgbit by inverse of srchit in src.

Atomic load-modify-store

With the next intrinsic function you can perform atomic Load-Modify-Store of a bit-field from an integer
value. This function uses the IMASK and LDMST instruction. The intrinsic writes the number of bits of an
integer value at a certain address location in memory with a bitoffset. The number of bits must be a

constant value.

Intrinsic Function

Description

void __imaskldmst(__ align32 int* address, int value, int bitoffset, int bits)

Atomic load-modify-store

41

TASKING VX-toolset for TriCore User Guide

Store a single bit

With the intrinsic macro ___putbit() you can store a single bit atomicly in memory at a specified bit
offset. The bit at offset 0 in value is stored at an address location in memory with a bitoffset.

This intrinsic is implemented as a macro definition which uses the ___imaskldmst() intrinsic:

#define _ putbit (value, address, bitoffset) _ imaskldmst
(address, value, bitoffset, 1)

Intrinsic Function Description

void __putbit(int value, int* address, int bitoffset) | Store a single bit

Load a single bit

With the intrinsic macro __getbit() you can load a single bit from memory at a specified bit offset. A
bit value is loaded from an address location in memory with a bitoffset and returned as an unsigned integer
value.

This intrinsic is implemented as a macro definition which uses the __extru() intrinsic:

#define _ getbit(address, bitoffset) _ extru(*(address), bitoffset, 1)

Intrinsic Function Description
unsigned int __getbit(int* address, int bitoffset) |Load a single bit

1.9.5.8. Miscellaneous Intrinsic Functions

Multiply and scale back

Intrinsic Function Description

int __mulsc(int a, int b, int offset | Multiply two 32-bit numbers to an intermediate 64-bit result, and scale

) back the result to 32 bits. To scale back the result, 32 bits are extracted
from the intermediate 64-bit result: bit 63-offset to bit 31-offset.

Initialize circular pointer

Intrinsic Function Description

__circvoid *_initcirc(void * buf, unsigned short|Initialize a circular pointer with a dynamically allocated
bufsize, unsigned short byteindex) buffer at run-time. See also Section 1.3.2, Circular
Buffers: __circ.

Rotate left/right

Intrinsic Function Description

__rol(unsigned int operand, unsigned in |Rotate operand left count times. The bits that are shifted out
count) are inserted at the right side (bit 31 is shifted to bit 0).

42

C Language

Intrinsic Function

Description

__rol(unsigned int operand, unsigned in

count)

Rotate operand right count times. The bits that are shifted out
are inserted at the left side (bit O is shifted to bit 31).

Intrinsics used by compiler/libraries

Intrinsic Function

Description

void * volatile __alloc(__size_t size

);

Allocate memory on the stack. Returns a pointer to memory of size
bytes length. Returns NULL if there is not enough space left.

char * __dotdotdot__(void);

list.

Variable argument '..." operator. Used in library function
va_start(). Returns the stack offset to the variable argument

void volatile __ free(void *p);

Deallocates the memory pointed to by p. p must point to memory
earlier allocated by a callto __alloc().

__codeptr __get_return_address(

void);

Used by the compiler for profiling when you compile with the option
--profile. Returns the return address of a function.

1.10. Compiler Generated Sections

The compiler generates code and data in several types of sections. The compiler uses the following
section naming convention:

section_type_prefix.nodul e_nanme.synbol _nane

The prefix depends on the type of the section and determines if the section is initialized, constant or
uninitialized and which addressing mode is used. The symbol_name is either the name of an object or
the name of a function.

The following table lists the section types and name prefixes.

Section type

Name prefix

Description

code text program code

neardata .zdata initialized __near data

fardata .data initialized __far data

nearrom .zrodata constant __near data

farrom .rodata constant __far data

nearbss .zbss uninitialized __near data (cleared)
farbss .bss uninitialized __far data (cleared)
nearnoclear |.zbss uninitialized __near data
farnoclear .bss uninitialized __far data

aldata .sdata initialized __a0 data

albss .Shss uninitialized __a0 data (cleared)
alrom Idata constant __al data

43

TASKING VX-toolset for TriCore User Guide

Section type |Name prefix |Description

a8data .data_a8 initialized __a8 data

a8rom .rodata_a8 |constant a8 data

a8bss .bss_a8 uninitialized __a8 data (cleared)
a9data .data_a9 initialized __a9 data

agrom .rodata_a9 |[constant a9 data

a9bss .bss_a9 uninitialized __a9 data (cleared)

1.10.1. Rename Sections

You can change the default section names with one of the following pragmas:

#pragma section type "name"

All sections of the specified type will be named "prefix.name". For example,

#pragma section neardata "where"

all sections of type neardata have the name ".zdata.where".

#pragma section type will restore the default section naming for sections of this type.

#pragma section type restore will restore the previous setting of #pragma section type.
#pragma section all "name"

All sections will be named "prefix.name", unless you use a type specific renaming pragma. For example,
#pragma section all "here"

all sections have the syntax "prefix. here". For example, sections of type neardata have the name
"_zdata.here"

#pragma section all will restore the default section naming (not for sections that have a type specific
renaming pragma).

#pragma section all restore will restore the previous setting of #pragma section all.
On the command line you can use the C compiler option --rename-sections[=name].

#pragma section_name_with_module

All section renaming pragmas will use a renaming scheme like:

section_type_prefix.nmodul e_nane.pragnma_val ue

#pragma section_name_with_symbol

All section renaming pragmas will use a renaming scheme like:

44

C Language

section_type_prefix.synbol _nane.pragnma_val ue
See also C compiler option --section-name-with-symbol.
Examples
#pragma section all "rename_1"

// _text_rename_1

// _data.rename_1
#pragma section code "rename_2"

// _text._rename_2
// _data.rename_1

1.10.2. Influence Section Definition

The following pragmas also influence the section definition:

#pragma section code_init

Code sections are copied from ROM to RAM at program startup.

#pragma section const_init

Sections with constant data are copied from ROM to RAM at program startup.

#pragma section vector_init

Sections with interrupts and trap vectors are copied from ROM to RAM at program startup.
#pragma section data_overlay

The nearnoclear and farnoclear sections can be overlaid by other sections with the same name.
Since by default section naming never leads to sections with the same name, you must force the same
name by using one of the section renaming pragmas. To get noclear sections instead of BSS sections
you must also use #pragma noclear.

#pragma section_per_data_object

All data objects get their own section, using a haming scheme like:

section_type_prefix.nmodul e_nane._.synbol _nane

See also C compiler option --section-per-data-object.

1.10.3. Change Section Alignment

By default the compiler generates a 4-byte alignment for sections, this is done because the default
initialization code does not know where code ends up and hardware could require a word aligned

read/access to the memory. With the C compiler option --no-default-section-alignment sections are no
longer forced to a 4-byte alignment.

45

TASKING VX-toolset for TriCore User Guide

Please note that this means that you will have to use your own initialization code! Furthermore you will
have to remove the copy_unit = 4 part of the copytable declaration within the LSL file.

46

Chapter 2. C++ Language

The TASKING C++ compiler (cptc) offers a new approach to high-level language programming for the
TriCore family. The C++ compiler accepts the C++ language as defined by the ISO/IEC 14882:1998
standard and modified by TC1 for that standard. It also accepts the language extensions of the C compiler
(see Chapter 1, C Language).

This chapter describes the C++ language implementation and some specific features.

Note that the C++ language itself is not described in this document. For more information on the C++
language, see

» The C++ Programming Language (second edition) by Bjarne Straustrup (1991, Addison Wesley)

» ISO/IEC 14882:1998 C++ standard [ANSI] More information on the standards can be found at
http://www.ansi.org/

2.1. C++ Language Extension Keywords

The C++ compiler supports the same language extension keywords as the C compiler. When option
--strict is used, the extensions will be disabled.

Additionally the following language extensions are supported:
attributes

Attributes, introduced by the keyword __attribute__, can be used on declarations of variables,
functions, types, and fields. The al ias, aligned, cdecl, const, constructor, deprecated,
destructor, format, format_arg, init_priority, malloc, mode, naked,
no_check_memory_usage, no_instrument_function, nocommon, noreturn, packed, pure,
section, sentinel, stdcall, transparent_union, unused, used, visibility, volatile, and
weak attributes are supported.

pragmas
The C++ compiler supports the same pragmas as the C compiler and some extra pragmas as explained

in Section 2.8, Pragmas to Control the C++ Compiler. Pragmas give directions to the code generator of
the compiler.

2.2. C++ Dialect Accepted

The C++ compiler accepts the C++ language as defined by the ISO/IEC 14882:1998 standard and modified
by TC1 for that standard.

Command line options are also available to enable and disable anachronisms and strict
standard-conformance checking.

47

http://www.ansi.org/

TASKING VX-toolset for TriCore User Guide

2.2.1. Standard Language Features Accepted

The following features not in traditional C++ (the C++ language of "The Annotated C++ Reference Manual”
by Ellis and Stroustrup (ARM)) but in the standard are implemented:

The dependent statement of an if, while, do-while, or for is considered to be a scope, and the
restriction on having such a dependent statement be a declaration is removed.

The expression tested in an if, while, do-while, or for, as the first operand of a "?" operator, or
as an operand of the "&&", ":", or "1"operators may have a pointer-to-member type or a class type that
can be converted to a pointer-to-member type in addition to the scalar cases permitted by the ARM.

Qualified names are allowed in elaborated type specifiers.
A global-scope qualifier is allowed in member references of the form x. - Az :B and p->::A: :B.
The precedence of the third operand of the "?" operator is changed.

If control reaches the end of the main() routine, and main() has an integral return type, it is treated
as if a return 0O; statement were executed.

Pointers to arrays with unknown bounds as parameter types are diagnosed as errors.

A functional-notation cast of the form A() can be used even if A is a class without a (nontrivial)
constructor. The temporary created gets the same default initialization to zero as a static object of the
class type.

A cast can be used to select one out of a set of overloaded functions when taking the address of a
function.

Template friend declarations and definitions are permitted in class definitions and class template
definitions.

Type template parameters are permitted to have default arguments.

Function templates may have nontype template parameters.

A reference to const volatile cannot be bound to an rvalue.

Quialification conversions, such as conversion from T**to T const * const * are allowed.
Digraphs are recognized.

Operator keywords (e.g., hot, and, bitand, etc.) are recognized.

Static data member declarations can be used to declare member constants.

When option --wchar_t-keyword is set, wchar_t is recognized as a keyword and a distinct type.
bool is recognized.

RTTI (run-time type identification), including dynamic_cast and the typeid operator, is implemented.

48

C++ Language

Declarations in tested conditions (in if, switch, for, and whi le statements) are supported.
Array new and delete are implemented.

New-style casts (static_cast, reinterpret_cast, and const_cast) are implemented.
Definition of a nested class outside its enclosing class is allowed.

mutable is accepted on non-static data member declarations.

Namespaces are implemented, including using declarations and directives. Access declarations are
broadened to match the corresponding using declarations.

Explicit instantiation of templates is implemented.
The typename keyword is recognized.
explicitis accepted to declare non-converting constructors.

The scope of a variable declared in the for-init-statement of a for loop is the scope of the loop
(not the surrounding scope).

Member templates are implemented.
The new specialization syntax (using "template <>") is implemented.
Cv-qualifiers are retained on rvalues (in particular, on function return values).

The distinction between trivial and nontrivial constructors has been implemented, as has the distinction
between PODs and non-PODs with trivial constructors.

The linkage specification is treated as part of the function type (affecting function overloading and
implicit conversions).

extern inline functions are supported, and the default linkage for inl ine functions is external.
A typedef name may be used in an explicit destructor call.

Placement delete is implemented.

An array allocated via a placement new can be deallocated via delete.

Covariant return types on overriding virtual functions are supported.

enum types are considered to be non-integral types.

Partial specialization of class templates is implemented.

Partial ordering of function templates is implemented.

Function declarations that match a function template are regarded as independent functions, not as
"guiding declarations" that are instances of the template.

It is possible to overload operators using functions that take enum types and no class types.

49

TASKING VX-toolset for TriCore User Guide

Explicit specification of function template arguments is supported.

Unnamed template parameters are supported.

The new lookup rules for member references of the form x_A: :B and p->A: :B are supported.
The notation :: template (and ->template, etc.) is supported.

In a reference of the form F()->g(), with g a static member function, () is evaluated. The ARM
specifies that the left operand is not evaluated in such cases.

enum types can contain values larger than can be contained in an int.

Default arguments of function templates and member functions of class templates are instantiated only
when the default argument is used in a call.

String literals and wide string literals have const type.
Class name injection is implemented.
Argument-dependent (Koenig) lookup of function names is implemented.

Class and function names declared only in unqualified friend declarations are not visible except for
functions found by argument-dependent lookup.

A void expression can be specified on a return statement in a void function.

Function-try-blocks, i.e., try-blocks that are the top-level statements of functions, constructors, or
destructors, are implemented.

Universal character set escapes (e.g., \uabcd) are implemented.

On a call in which the expression to the left of the opening parenthesis has class type, overload resolution
looks for conversion functions that can convert the class object to pointer-to-function types, and each
such pointed-to "surrogate function" type is evaluated alongside any other candidate functions.

Dependent name lookup in templates is implemented. Nondependent names are looked up only in the
context of the template definition. Dependent names are also looked up in the instantiation context, via
argument-dependent lookup.

Value-initialization is implemented. This form of initialization is indicated by an initializer of "()" and
causes zeroing of certain POD-typed members, where the usual default-initialization would leave them
uninitialized.

A partial specialization of a class member template cannot be added outside of the class definition.
Qualification conversions may be performed as part of the template argument deduction process.

The export keyword for templates is implemented.

50

C++ Language

2.2.2. C++0x Language Features Accepted

The following features added in the working paper for the next C++ standard (expected to be completed
in 2009 or later) are enabled in C++0x mode (with option --c++0x). Several of these features are also
enabled in default (honstrict) C++ mode.

» A"right shift token" (>>) can be treated as two closing angle brackets. For example:

template<typename T> struct S {};
S<S<int>> s; // OK. No whitespace needed
// between closing angle brackets.

» The friend class syntax is extended to allow nonclass types as well as class types expressed through
a typedef or without an elaborated type name. For example:

typedef struct S ST;

class C {
friend S; // OK (requires S to be in scope).
friend ST; // OK (same as "friend S;").
friend int; // OK (no effect).

friend S const; // Error: cv-qualifiers cannot
// appear directly.

» Mixed string literal concatenations are accepted (a feature carried over from C99):

wchar_t *str = "a" L"b"; // OK, same as L"ab".

 Variadic macros and empty macro arguments are accepted, as in C99.

» A trailing comma in the definition of an enumeration type is silently accepted (a feature carried over
from C99):

enum E { e, };
« Ifthe command line option --long-long is specified, the type long long is accepted. Unsuffixed integer
literals that cannot be represented by type long, but could potentially be represented by type unsigned

long, have type long long instead (this matches C99, but not the treatment of the long long
extension in C89 or default C++ mode).

» The keyword typename followed by a qualified-id can appear outside a template declaration.

struct S { struct N {}; };
typename S::N *p; // Silently accepted
// in C++0x mode

51

TASKING VX-toolset for TriCore User Guide

2.2.3. Anachronisms Accepted

The following anachronisms are accepted when anachronisms are enabled (with --anachronisms):

overload is allowed in function declarations. It is accepted and ignored.

Definitions are not required for static data members that can be initialized using default initialization.
The anachronism does not apply to static data members of template classes; they must always be
defined.

The number of elements in an array may be specified in an array de lete operation. The value is
ignored.

A single operator++() and operator--() function can be used to overload both prefix and postfix
operations.

The base class name may be omitted in a base class initializer if there is only one immediate base
class.

Assignment to this in constructors and destructors is allowed. This is allowed only if anachronisms
are enabled and the "assignment to this" configuration parameter is enabled.

A bound function pointer (a pointer to a member function for a given object) can be cast to a pointer to
a function.

A nested class name may be used as a non-nested class name provided no other class of that name
has been declared. The anachronism is not applied to template classes.

A reference to a non-const type may be initialized from a value of a different type. A temporary is
created, it is initialized from the (converted) initial value, and the reference is set to the temporary.

A reference to a non-const class type may be initialized from an rvalue of the class type or a derived
class thereof. No (additional) temporary is used.

A function with old-style parameter declarations is allowed and may participate in function overloading
as though it were prototyped. Default argument promotion is not applied to parameter types of such
functions when the check for compatibility is done, so that the following declares the overloading of
two functions named f:

int f(int);
int F(x) char x; { return x; }

Note that in C this code is legal but has a different meaning: a tentative declaration of ¥ is followed by
its definition.

When option --nonconst-ref-anachronism is set, a reference to a non-const class can be bound to a
class rvalue of the same type or a derived type thereof.

struct A {
AC(int);
A operator=(A&);
A operator+(const A&);

52

C++ Language

};
main O {

A b(1);

b = A(1) + A(2); // Allowed as anachronism
}

2.2.4. Extensions Accepted in Normal C++ Mode

The following extensions are accepted in all modes (except when strict ANSI/ISO violations are diagnosed
as errors or were explicitly noted):

A friend declaration for a class may omit the class keyword:

class A {
friend B; // Should be "friend class B"

¥

Constants of scalar type may be defined within classes:

class A {
const int size = 10;
int a[size];

In the declaration of a class member, a qualified name may be used:

struct A {
int Az:f(); // Should be int fQ;
};

The restrict keyword is allowed.

A const qualified object with file scope or namespace scope and the __at() attribute will have external
linkage, unless explicitly declared static. Examples:

const int i = 5; // internal linkage
const int j _ at(0x1234) = 10; // external linkage
static const int k __at(0x1236) = 15; // internal linkage

Note that no warning is generated when 'j' is not used.

Implicit type conversion between a pointer to an extern "'C" function and a pointer to an extern
""C++" function is permitted. Here's an example:

extern "C" void Ff(); // f"s type has extern "C" linkage
void (*pF)() // pf points to an extern "C++" function
= &f; // error unless implicit conversion is
// allowed

53

TASKING VX-toolset for TriCore User Guide

This extension is allowed in environments where C and C++ functions share the same calling
conventions. It is enabled by default.

» A"?" operator whose second and third operands are string literals or wide string literals can be implicitly
converted to "char *"or "wchar_t *". (Recall that in C++ string literals are const. There is a
deprecated implicit conversion that allows conversion of a string literal to "char *", dropping the const.
That conversion, however, applies only to simple string literals. Allowing it for the result of a "?" operation
is an extension.)

char *p = x ? "abc™ : "def";
» Default arguments may be specified for function parameters other than those of a top-level function

declaration (e.g., they are accepted on typedeTf declarations and on pointer-to-function and
pointer-to-member-function declarations).

» Non-static local variables of an enclosing function can be referenced in a non-evaluated expression
(e.g., a sizeoT expression) inside a local class. A warning is issued.

 In default C++ mode, the friend class syntax is extended to allow nonclass types as well as class types
expressed through a typedef or without an elaborated type name. For example:

typedef struct S ST;

class C {
friend S; // OK (requires S to be in scope).
friend ST; // OK (same as "friend S;").
friend int; // 0K (nho effect).

friend S const; // Error: cv-qualifiers cannot
// appear directly.

}:

* In default C++ mode, mixed string literal concatenations are accepted. (This is a feature carried over
from C99 and also available in GNU modes).
wchar_t *str = "a" L"b"; // OK, same as L"ab".

* In default C++ mode, variadic macros are accepted. (This is a feature carried over from C99 and also
available in GNU modes.)

* In default C++ mode, empty macro arguments are accepted (a feature carried over from C99).

» A trailing comma in the definition of an enumeration type is silently accepted (a feature carried over
from C99):

enum E { e, };

54

C++ Language

2.3. GNU Extensions

The C++ compiler can be configured to support the GNU C++ mode (command line option --g++). In this
mode, many extensions provided by the GNU C++ compiler are accepted. The following extensions are
provided in GNU C++ mode.

» Extended designators are accepted
« Compound literals are accepted.
» Non-standard anonymous unions are accepted

» The typeof operator is supported. This operator can take an expression or a type (like the sizeof
operator, but parentheses are always required) and expands to the type of the given entity. It can be
used wherever a typedef name is allowed

typeof(2*2.3) d; // Declares a "double"
typeof(int) i; // Declares an "int"

This can be useful in macro and template definitions.

» The __extension__ keyword is accepted preceding declarations and certain expressions. It has no
effect on the meaning of a program.

__extension__ __inline__ int f(int a) {
return a > 0 ? a/2 : f(__extension__ 1-a);

}

* In all GNU C modes and in GNU C++ modes with gnu_version < 30400, the type modifiers signed,
unsigned, long and short can be used with typedef types if the specifier is valid with the underlying
type of the typedef in ANSI C. E.g.:

typedef int 1I;
unsigned | *pui; // OK in GNU C++ mode;
// same as "'unsigned int *pui”

« Ifthe command line option --long-long is specified, the extensions for the long long and unsigned
long long types are enabled.
» Zero-length array types (specified by [0]) are supported. These are complete types of size zero.

» C99-style flexible array members are accepted. In addition, the last field of a class type have a class
type whose last field is a flexible array member. In GNU C++ mode, flexible array members are treated
exactly like zero-length arrays, and can therefore appear anywhere in the class type.

» The C99 _Pragma operator is supported.

» The gcc built-in <stdarg.h> and <varargs.h> facilities (__builtin_va_list, __builtin_va_arg, ...) are
accepted.

* The sizeof operator is applicable to void and to function types and evaluates to the value one.

55

TASKING VX-toolset for TriCore User Guide

Variables can be redeclared with different top-level cv-qualifiers (the new qualification is merged into
existing qualifiers). For example:

extern int volatile Xx;
int const x = 32; // x 1s now const volatile
The "assembler name" of variables and routines can be specified. For example:

int counter __asm__(“'‘counter_v1™) = 0;

Register variables can be mapped on specific registers using the asm keyword.
register int i asm(eax");

// Map "i" onto register eax.

The keyword inl ine is ignored (with a warning) on variable declarations and on block-extern function
declarations.

Excess aggregate initializers are ignored with a warning.

struct S { Iint a, b; };
struct S al = {1, 2, 3 };

// 3" ignored with a warning; no error
int a2[2] = { 7, 8, 9 };

// 9" ignored with a warning; no error

Expressions of types void*, void const*, void volatile* and void const volatile* can
be dereferenced; the result is an Ivalue.

The __restrict__ keyword is accepted. It is identical to the C99 restrict keyword, except for its
spelling.

Out-of-range floating-point values are accepted without a diagnostic. When IEEE floating-point is being
used, the "infinity" value is used.

Extended variadic macros are supported.
Dollar signs ($) are allowed in identifiers.
Hexadecimal floating point constants are recognized.

The __asm__ keyword is recognized and equivalent to the asm token. Extended syntax is supported
to indicate how assembly operands map to C/C++ variables.

asmC*Fsinx %1,%0" : "=F'(x) : "F(Q));

// Map the output operand on "x",
// and the input operand on "a".

The \e escape sequence is recognized and stands for the ASCII "ESC" character.

56

C++ Language
The address of a statement label can be taken by use of the prefix "&&" operator, e.g., void *a =
&&L. A transfer to the address of a label can be done by the "goto *" statement, e.g., goto *a.
Multi-line strings are supported, e.g.,
char *p = "abc
def"';
ASCII "NULL" characters are accepted in source files.
A source file can end with a backslash ("\") character.
Case ranges (e.g., "case 'a’' ... 'z":") are supported.
A number of macros are predefined in GNU mode. See Section 2.9, Predefined Macros.
A predefined macro can be undefined.

A large number of special functions of the form __builtin_xyz (e.g., __builtin_alloca) are
predeclared.

Some expressions are considered to be constant-expressions even though they are not so considered
in standard C and C++. Examples include "((char *)&((struct S *)0)->c[0]) - (char
*)0" and "(int)""Hello" & 0"

The macro ___GNUC___is predefined to the major version number of the emulated GNU compiler.
Similarly, the macros __ GNUC_MINOR___and __ GNUC_PATCHLEVEL___ are predefined to the
corresponding minor version number and patch level. Finally, _ VERSION___is predefined to a string
describing the compiler version.

The __thread specifier can be used to indicate that a variable should be placed in thread-local storage
(requires gnu_version >= 30400).

An extern inline function that is referenced but not defined is permitted (with a warning).
Trigraphs are ignored (with a warning).

Non-standard casts are allowed in null pointer constants, e.g., (int) (int *)0 is considered a null
pointer constant in spite of the pointer cast in the middle.

Statement expressions, e.g., ({int j; J = f(; Jj:;)} are accepted. Branches into a statement
expression are not allowed. In C++ mode, branches out are also not allowed. Variable-length arrays,
destructible entities, try, catch, local non-POD class definitions, and dynamically-initialized local static
variables are not allowed inside a statement expression.

Labels can be declared to be local in statement expressions by introducing them with a ___label ___
declaration.

{ _label__ lab; int i = 4; lab: i = 2*i-1; if (1(i%17)) goto lab; i; })

Not-evaluated parts of constant expressions can contain non-constant terms:

57

TASKING VX-toolset for TriCore User Guide

int i;
int a[1 || 1]; // Accepted in g++ mode

» Casts on an Ivalue that don't fall under the usual "Ivalue cast" interpretation (e.g., because they cast
to a type having a different size) are ignored, and the operand remains an Ivalue. A warning is issued.

int i;
(short)i = 0; // Accepted,cast is ignored; entire int is set

 Variable length arrays (VLAs) are supported. GNU C also allows VLA types for fields of local structures,
which can lead to run-time dependent sizes and offsets. The C++ compiler does not implement this,
but instead treats such arrays as having length zero (with a warning); this enables some popular
programming idioms involving fields with VLA types.

void f(int n) {
struct {
int a[n]; // Warning: n ignored and
// replaced by zero
}:

» Complex type extensions are supported (these are the same as the C99 complex type features, with
the elimination of _Imaginary and the addition of __complex, __real, __imag, the use of "~" to
denote complex conjugation, and complex literals such as "1.21").

« If an explicit instantiation directive is preceded by the keyword extern, no (explicit or implicit)
instantiation is for the indicated specialization.

» An explicit instantiation directive that names a class may omit the class keyword, and may refer to a
typedef.

» An explicit instantiation or extern template directive that names a class is accepted in an invalid
namespace.

» std: :type_info does not need to be introduced with a special pragma.

» A special keyword __nul I expands to the same constant as the literal "0", but is expected to be used
as a null pointer constant.

« When gnu_version < 30400, names from dependent base classes are ignored only if another name
would be found by the lookup.

const int n = O;
template <class T> struct B {
static const int m = 1; static const int n = 2;
}:
template <class T> struct D : B<T> {
int fOQ { return m + n; }
// B::m + ::n in g++ mode

}:

58

C++ Language

» A non-static data member from a dependent base class, which would usually be ignored as described
above, is found if the lookup would have otherwise found a nonstatic data member of an enclosing
class (when gnu_version is < 30400).

template <class T> struct C {
struct A { Iint i; };
struct B: public A {
void fQ {

i =0; // g++ uses A::zi not C::1i

}

nt 1;

* A new operation in a template is always treated as dependent (when gnu_version >= 30400).

template <class T > struct A {
void fQ {
void *p = 0;
new (&p) int(0); // calls operator new
// declared below
}
};

void* operator new(size_t, void* p);

» When doing name lookup in a base class, the injected class name of a template class is ignored.

namespace N {
template <class T> struct A {};

}

struct A {
int i;

}:

struct B : N:i:A<int> {
BO { Ax; x.i =1; } // g++ uses ::A, not N::A
}:

* The injected class name is found in certain contexts in which the constructor should be found instead.

struct A {
ACint) {};

};

A::A a(l);

« In a constructor definition, what should be treated as a template argument list of the constructor is
instead treated as the template argument list of the enclosing class.

59

TASKING VX-toolset for TriCore User Guide

template <int ul> struct A { };
template <> struct A<1> {

template<class T> A(T i, iInt j);
}:

template <> A<1>::A<1>(int i, int j) { }
// accepted in g++ mode
» A difference in calling convention is ignored when redeclaring a typedef.

typedef void FQ);

extern "C" {
typedef void F(Q); // Accepted in GNU C++ mode
// (error otherwise)

* The macro ___GNUG___is defined identically to __ GNUC___ (i.e., the major version number of the GNU
compiler version that is being emulated).

» The macro _GNU_SOURCE is defined as "1".

» Guiding declarations (a feature present in early drafts of the standard, but not in the final standard) are
disabled.

* Namespace std is predeclared.

» No connection is made between declarations of identical names in different scopes even when these
names are declared extern "'C".E.g.,

extern "C" { void f(int); }
namespace N {
extern "C" {
void fQ {} // Warning (not error) in g++ mode
}

nt main(Q) { f(1); }

This example is accepted by the C++ compiler, but it will emit two conflicting declarations for the function
f.

¥
1

* When a using-directive lookup encounters more than one extern ''C' declaration (created when
more than one namespace declares an extern ''C' function of a given name, as described above),
only the first declaration encountered is considered for the lookup.

extern "C" int f(void);

extern "C" int g(void);

namespace N {
extern "C" int f(void); // same type
extern "C" void g(void); // different type

60

C++ Language

};

using namespace N;
int i = fQ; // calls
int j =gQ; // calls

The definition of a member of a class template that appears outside of the class definition may declare
a nontype template parameter with a type that is different than the type used in the definition of the
class template. A warning is issued (GNU version 30300 and below).

template <int I> struct A { void fQ; }:
template <unsigned int 1> void A<I>::FQOQ{}

A class template may be redeclared with a nontype template parameter that has a type that is different
than the type used in the earlier declaration. A warning is issued.

template <int I> class A;
template <unsigned int 1> class A {};

A friend declaration may refer to a member typedef.

class A {
class B {};
typedef B my_b;
friend class my_b;

When a friend class is declared with an unqualified name, the lookup of that name is not restricted to
the nearest enclosing namespace scope.

struct S;
namespace N {
class C {
friend struct S; // ::S in g++ mode,
// N::S in default mode

A friend class declaration can refer to names made visible by using-directives.

namespace N { struct A { }; }
using namespace N;
struct B {
void fQ) { A a; }
friend struct A; // in g++ mode N::A,
}; // not a new declaration of ::A

An inherited type name can be used in a class definition and later redeclared as a typedef.

61

TASKING VX-toolset for TriCore User Guide

struct A { typedef int 1; };
struct B : A {

typedef I J; // Refers to A::l
typedef double I; // Accepted in g++ mode
}; // (introduces B::I)

» In a catch clause, an entity may be declared with the same name as the handler parameter.

try { }

catch(int e) {
char e;

}

» The diagnostic issued for an exception specification mismatch is reduced to a warning if the previous
declaration was found in a system header.

» The exception specification for an explicit template specialization (for a function or member function)
does not have to match the exception specification of the corresponding primary template.

» Atemplate argument list may appear following a constructor name in constructor definition that appears
outside of the class definition:

template <class T> struct A {

AQ;
}:

template <class T> A<T>::A<T>Q{}

» When gnu_version < 30400, an incomplete type can be used as the type of a nonstatic data member
of a class template.

class B;

template <class T> struct A {
B b;

}:

» A constructor need not provide an initializer for every nonstatic const data member (but a warning is
still issued if such an initializer is missing).

struct S {
int const ic;
SO {3 7/ Warning only in GNU C++ mode
// (error otherwise).

};

» Exception specifications are ignored on function definitions when support for exception handling is
disabled (normally, they are only ignored on function declarations that aren't definitions).

» Afriend declaration in a class template may refer to an undeclared template.

62

C++ Language

template <class T> struct A {
friend void f<>(A<T>);

3

When gnu_version is < 30400, the semantic analysis of a friend function defined in a class template is
performed only if the function is actually used and is done at the end of the translation unit (instead of
at the point of first use).

A function template default argument may be redeclared. A warning is issued and the default from the
initial declaration is used.

template<class T> void f(int
template<class T> void f(int
int mainQ) {

f<void>();
}

= 1) ;
{3+

A definition of a member function of a class template that appears outside of the class may specify a
default argument.

template <class T> struct A { void f(T); };
template <class T> void A<T>::f(T value = TQ) { }
Function declarations (that are not definitions) can have duplicate parameter names.

void f(int i, int i); // Accepted in GNU C++ mode

Default arguments are retained as part of deduced function types.
A namespace member may be redeclared outside of its namespace.
A template may be redeclared outside of its class or namespace.

namespace N {
template< typename T > struct S {};

}
template< typename T > struct N::S;

The injected class name of a class template can be used as a template argument.

template <template <class> class T> struct A {};
template <class T> struct B {
A a;

¥

A partial specialization may be declared after an instantiation has been done that would have used the
partial specialization if it had been declared earlier. A warning is issued.

63

TASKING VX-toolset for TriCore User Guide

template <class T> class X {};
X<int*> xi;
template <class T> class X<T*> {};

» The "." or "->" operator may be used in an integral constant expression if the result is an integral or
enumeration constant:

struct A { enum { el = 1 }; };
int main Q {

A a;
int x[a.el]; // Accepted in GNU C++ mode
return O;

» Strong using-directives are supported.

using namespace debug __ attribute__((strong));

« Partial specializations that are unusable because of nondeducible template parameters are accepted
and ignored.

template<class T> struct A {class C { }:};
template<class T> struct B {enum {e = 1}; };
template <class T> struct B<typename A<T>::C> {enum {e = 2}; };
int main(int argc, char **argv) {
printf(""%d\n", B<int>::e);
printf("%d\n", B<A<int>::C>::e);

» Template parameters that are not used in the signature of a function template are not ignored for partial
ordering purposes (i.e., the resolution of core language issue 214 is not implemented) when gnu_version
is < 40100.

template <class S, class T> void (T t);
template <class T> void (T t);
int main() {
f<int>(3); // not ambiguous when gnu_version
// is < 40100

» Prototype instantiations of functions are deferred until the first actual instantiation of the function to
allow the compilation of programs that contain definitions of unusable function templates (gnu_version
30400 and above). The example below is accepted when prototype instantiations are deferred.

class A {};
template <class T> struct B {
B O {}: 7/ error: no initializer for
// reference member "B<T>::a"

64

C++ Language

A& a;

* When doing nonclass prototype instantiations (e.g., gnu_version 30400 and above), the severity of the
diagnostic issued if a const template static data member is defined without an initializer is reduced to
a warning.

template <class T> struct A {
static const Int i;
}:

template <class T> const int A<T>::i;

* When doing nonclass prototype instantiations (e.g., gnu_version 30400 and above), a template static
data member with an invalid aggregate initializer is accepted (the error is diagnosed if the static data
member is instantiated).

struct A {
A(double val);

};

template <class T> struct B {
static const A I[1];

};

template <class T> const A B<T>::I1[1]= {
{1.,0.,0.,0.}

};

The following GNU extensions are not currently supported:

» The forward declaration of function parameters (so they can participate in variable-length array
parameters).

» GNU-style complex integral types (complex floating-point types are supported)

* Nested functions

2.4. Namespace Support

Namespaces are enabled by default. You can use the command line option --no-namespaces to disable
the features.

When doing name lookup in a template instantiation, some names must be found in the context of the
template definition while others may also be found in the context of the template instantiation. The C++
compiler implements two different instantiation lookup algorithms: the one mandated by the standard
(referred to as "dependent name lookup"), and the one that existed before dependent name lookup was
implemented.

Dependent name lookup is done in strict mode (unless explicitly disabled by another command line option)
or when dependent name processing is enabled by either a configuration flag or command line option.

65

TASKING VX-toolset for TriCore User Guide

Dependent Name Processing

When doing dependent name lookup, the C++ compiler implements the instantiation name lookup rules
specified in the standard. This processing requires that non-class prototype instantiations be done. This
in turn requires that the code be written using the typename and template keywords as required by
the standard.

Lookup Using the Referencing Context

When not using dependent name lookup, the C++ compiler uses a name lookup algorithm that
approximates the two-phase lookup rule of the standard, but does so in such a way that is more compatible
with existing code and existing compilers.

When a name is looked up as part of a template instantiation but is not found in the local context of the
instantiation, it is looked up in a synthesized instantiation context that includes both names from the
context of the template definition and names from the context of the instantiation. Here's an example:

namespace N {
int g(int);
int x = 0;
template <class T> struct A {
T (T t) { return g(t); }
T fQ { return x; }

}:
¥
namespace M {
int x = 99;
double g(double);
N::A<int> ai;
int i = ai.f(0); // N::A<int>::f(int) calls
// N::g(int)
int i2 = ai.fQ; // N::A<int>::f() returns
// 0 (= Nz:x)
N: :A<double> ad;
double d = ad.f(0); // N::A<double>::f(double)
// calls M::g(double)
double d2 = ad.f(); // N::A<double>::f() also
// returns 0 (= N:z:x)
3

The lookup of names in template instantiations does not conform to the rules in the standard in the
following respects:

« Although only names from the template definition context are considered for names that are not functions,
the lookup is not limited to those names visible at the point at which the template was defined.

» Functions from the context in which the template was referenced are considered for all function calls
in the template. Functions from the referencing context should only be visible for "dependent” function
calls.

66

C++ Language

Argument Dependent Lookup

When argument-dependent lookup is enabled (this is the default), functions made visible using
argument-dependent lookup overload with those made visible by normal lookup. The standard requires
that this overloading occurs even when the name found by normal lookup is a block extern declaration.
The C++ compiler does this overloading, but in default mode, argument-dependent lookup is suppressed
when the normal lookup finds a block extern.

This means a program can have different behavior, depending on whether it is compiled with or without
argument-dependent lookup --no-arg-dep-lookup, even if the program makes no use of namespaces.
For example:

struct A { };
A operator+(A, double);
void fQ {
A al;
A operator+(A, int);
al + 1.0; // calls operator+(A, double)
// with arg-dependent lookup enabled but
// otherwise calls operator+(A, int);

}
2.5. Template Instantiation

The C++ language includes the concept of templates. A template is a description of a class or function
that is a model for a family of related classes or functions.® For example, one can write a template for a
Stack class, and then use a stack of integers, a stack of floats, and a stack of some user-defined type.
In the source, these might be written Stack<int>, Stack<float>, and Stack<X>. From a single
source description of the template for a stack, the compiler can create instantiations of the template for
each of the types required.

The instantiation of a class template is always done as soon as it is needed in a compilation. However,
the instantiations of template functions, member functions of template classes, and static data members
of template classes (hereafter referred to as template entities) are not necessarily done immediately, for
several reasons:

» One would like to end up with only one copy of each instantiated entity across all the object files that
make up a program. (This of course applies to entities with external linkage.)

» The language allows one to write a specialization of a template entity, i.e., a specific version to be used
in place of a version generated from the template for a specific data type. (One could, for example,
write a version of Stack<int>, or of just Stack<int>: : push, that replaces the template-generated
version; often, such a specialization provides a more efficient representation for a particular data type.)
Since the compiler cannot know, when compiling a reference to a template entity, if a specialization for
that entity will be provided in another compilation, it cannot do the instantiation automatically in any
source file that references it.

!Since templates are descriptions of entities (typically, classes) that are parameterizable according to the types they operate upon,
they are sometimes called parameterized types.

67

TASKING VX-toolset for TriCore User Guide

» C++templates can be exported (i.e., declared with the keyword export). Such templates can be used
in a translation unit that does not contain the definition of the template to instantiate. The instantiation
of such a template must be delayed until the template definition has been found.

» The language also dictates that template functions that are not referenced should not be compiled,
that, in fact, such functions might contain semantic errors that would prevent them from being compiled.
Therefore, a reference to a template class should not automatically instantiate all the member functions
of that class.

(It should be noted that certain template entities are always instantiated when used, e.g., inline functions.)

From these requirements, one can see that if the compiler is responsible for doing all the instantiations
automatically, it can only do so on a program-wide basis. That is, the compiler cannot make decisions
about instantiation of template entities until it has seen all the source files that make up a complete
program.

This C++ compiler provides an instantiation mechanism that does automatic instantiation at link time. For
cases where you want more explicit control over instantiation, the C++ compiler also provides instantiation
modes and instantiation pragmas, which can be used to exert fine-grained control over the instantiation
process.

2.5.1. Automatic Instantiation

The goal of an automatic instantiation mode is to provide painless instantiation. You should be able to
compile source files to object code, then link them and run the resulting program, and never have to worry
about how the necessary instantiations get done.

In practice, this is hard for a compiler to do, and different compilers use different automatic instantiation
schemes with different strengths and weaknesses:

» AT&T/USL/Novell's cfront product saves information about each file it compiles in a special directory
called ptrepository. It instantiates nothing during normal compilations. At link time, it looks for
entities that are referenced but not defined, and whose mangled names indicate that they are template
entities. For each such entity, it consults the ptrepository information to find the file containing the
source for the entity, and it does a compilation of the source to generate an object file containing object
code for that entity. This object code for instantiated objects is then combined with the "normal” object
code in the link step.

If you are using cfront you must follow a particular coding convention: all templates must be declared
in _h files, and for each such file there must be a corresponding - cc file containing the associated
definitions. The compiler is never told about the . cc files explicitly; one does not, for example, compile
them in the normal way. The link step looks for them when and if it needs them, and does so by taking
the .h filename and replacing its suffix.?

This scheme has the disadvantage that it does a separate compilation for each instantiated function

(or, at best, one compilation for all the member functions of one class). Even though the function itself
is often quite small, it must be compiled along with the declarations for the types on which the instantiation
is based, and those declarations can easily run into many thousands of lines. For large systems, these
compilations can take a very long time. The link step tries to be smart about recompiling instantiations
only when necessary, but because it keeps no fine-grained dependency information, it is often forced

>The actual implementation allows for several different suffixes and provides a command line option to change the suffixes sought.

68

C++ Language

to "recompile the world" for a minor change in a . h file. In addition, cfront has no way of ensuring that
preprocessing symbols are set correctly when it does these instantiation compilations, if preprocessing
symbols are set other than on the command line.

Borland's C++ compiler instantiates everything referenced in a compilation, then uses a special linker
to remove duplicate definitions of instantiated functions.

If you are using Borland's compiler you must make sure that every compilation sees all the source code
it needs to instantiate all the template entities referenced in that compilation. That is, one cannot refer
to a template entity in a source file if a definition for that entity is not included by that source file. In
practice, this means that either all the definition code is put directly in the _h files, or that each _h file
includes an associated . cc (actually, .cpp) file.

Our approach is a little different. It requires that, for each instantiation of a non-exported template, there
is some (normal, top-level, explicitly-compiled) source file that contains the definition of the template
entity, a reference that causes the instantiation, and the declarations of any types required for the
instantiation. This requirement can be met in various ways:

The Borland convention: each . h file that declares a template entity also contains either the definition
of the entity or includes another file containing the definition.

Implicit inclusion: when the compiler sees a template declaration in a - h file and discovers a need to
instantiate that entity, it is given permission to go off looking for an associated definition file having the
same base name and a different suffix, and it implicitly includes that file at the end of the compilation.
This method allows most programs written using the cfront convention to be compiled with our approach.
See Section 2.5.4, Implicit Inclusion.

The ad hoc approach: you make sure that the files that define template entities also have the definitions
of all the available types, and add code or pragmas in those files to request instantiation of the entities
there.

Exported templates are also supported by our automatic instantiation method, but they require additional
mechanisms explained further on.

The automatic instantiation mode is enabled by default. It can be turned off by the command line option
--no-auto-instantiation. If automatic instantiation is turned off, the extra information about template
entities that could be instantiated in a file is not put into the object file.

2.5.2. Instantiation Modes

Normally, when a file is compiled, template entities are instantiated everywhere where they are used.
The overall instantiation mode can, however, be changed by a command line option:

--instantiate=used

Instantiate those template entities that were used in the compilation. This will include all static data
members for which there are template definitions. This is the default.

3Isn't this always the case? No. Suppose that file A contains a definition of class X and a reference to Stack<X>: :push, and that
file B contains the definition for the member function push. There would be no file containing both the definition of push and the
definition of X.

69

TASKING VX-toolset for TriCore User Guide

--instantiate=all

Instantiate all template entities declared or referenced in the compilation unit. For each fully instantiated
template class, all of its member functions and static data members will be instantiated whether or not
they were used. Non-member template functions will be instantiated even if the only reference was a
declaration.

--instantiate=local

Similar to --instantiate=used except that the functions are given internal linkage. This is intended to
provide a very simple mechanism for those getting started with templates. The compiler will instantiate
the functions that are used in each compilation unit as local functions, and the program will link and run
correctly (barring problems due to multiple copies of local static variables.) However, one may end up
with many copies of the instantiated functions, so this is not suitable for production use. --instantiate=local
cannot be used in conjunction with automatic template instantiation. If automatic instantiation is enabled
by default, it will be disabled by the --instantiate=local option.

In the case where the cctc command is given a single file to compile and link, e.g.,
cctc test.cc

the compiler knows that all instantiations will have to be done in the single source file. Therefore, it uses
the --instantiate=used mode and suppresses automatic instantiation.

2.5.3. Instantiation #pragma Directives

Instantiation pragmas can be used to control the instantiation of specific template entities or sets of
template entities. There are three instantiation pragmas:

» The instantiate pragma causes a specified entity to be instantiated.

» The do_not_instantiate pragma suppresses the instantiation of a specified entity. It is typically used
to suppress the instantiation of an entity for which a specific definition will be supplied.

» The can_instantiate pragma indicates that a specified entity can be instantiated in the current
compilation, but need not be; it is used in conjunction with automatic instantiation, to indicate potential
sites for instantiation if the template entity turns out to be required.

The argument to the instantiation pragma may be:

» atemplate class name A<int>

» atemplate class declaration class A<int>

» a member function name A<int>::f

* a static data member name A<int>::i

+ a static data declaration int A<int>::i

» a member function declaration void A<int>::f(int,char)

» atemplate function declaration char* f(int, float)

70

C++ Language

A pragma in which the argument is a template class name (e.g., A<int>or class A<int>)is equivalent
to repeating the pragma for each member function and static data member declared in the class. When

instantiating an entire class a given member function or static data member may be excluded using the

do_not_instantiate pragma. For example,

#pragma instantiate A<int>
#pragma do_not_instantiate A<int>::f

The template definition of a template entity must be present in the compilation for an instantiation to occur.
If an instantiation is explicitly requested by use of the instantiate pragma and no template definition is
available or a specific definition is provided, an error is issued.

template <class T> void f1(T); // No body provided
template <class T> void gl1(T); // No body provided

void F1(int) {} // Specific definition
void main(Q)
{ - -
int i;
double d;
f1(1);
f1(d);
g1(i);
g1(d);
3

#pragma instantiate void f1(int) // error - specific
// definition

#pragma instantiate void gl(int) // error - no body
// provided

fl(double) and g1 (double) will not be instantiated (because no bodies were supplied) but no errors
will be produced during the compilation (if no bodies are supplied at link time, a linker error will be
produced).

A member function name (e.g., A<int>: :f) can only be used as a pragma argument if it refers to a
single user defined member function (i.e., not an overloaded function). Compiler-generated functions are
not considered, so a name may refer to a user defined constructor even if a compiler-generated copy
constructor of the same name exists. Overloaded member functions can be instantiated by providing the
complete member function declaration, as in

#pragma instantiate char* A<int>::f(int, char*)

The argument to an instantiation pragma may not be a compiler-generated function, an inline function,
or a pure virtual function.

2.5.4. Implicit Inclusion

When implicit inclusion is enabled, the C++ compiler is given permission to assume that if it needs a
definition to instantiate a template entity declared in a . h file it can implicitly include the corresponding
.cc file to get the source code for the definition. For example, if a template entity ABC: : ¥ is declared in
file xyz . h, and an instantiation of ABC: : Fis required in a compilation but no definition of ABC: : ¥ appears

71

TASKING VX-toolset for TriCore User Guide

in the source code processed by the compilation, the compiler will look to see if a file xyz . cc exists, and
if so it will process it as if it were included at the end of the main source file.

To find the template definition file for a given template entity the C++ compiler needs to know the path
name specified in the original include of the file in which the template was declared and whether the file
was included using the system include syntax (e.g., #include <file.h>).This information is not
available for preprocessed source containing #1 ine directives. Consequently, the C++ compiler will not
attempt implicit inclusion for source code containing #1 ine directives.

The file to be implicitly included is found by replacing the file suffix with each of the suffixes specified in
the instantiation file suffix list. The normal include search path mechanism is then used to look for the file
to be implicitly included.

By default, the list of definition-file suffixes tried is .c, .cc, .cpp, and .cxx.

Implicit inclusion works well alongside automatic instantiation, but the two are independent. They can be
enabled or disabled independently, and implicit inclusion is still useful when automatic instantiation is not
done.

The implicit inclusion mode can be turned on by the command line option --implicit-include. If this option
is turned on, you cannot use exported templates.

Implicit inclusions are only performed during the normal compilation of a file, (i.e., not when doing only
preprocessing). A common means of investigating certain kinds of problems is to produce a preprocessed
source file that can be inspected. When using implicit inclusion it is sometimes desirable for the
preprocessed source file to include any implicitly included files. This may be done using the command
line option --no-preprocessing-only. This causes the preprocessed output to be generated as part of a
normal compilation. When implicit inclusion is being used, the implicitly included files will appear as part
of the preprocessed output in the precise location at which they were included in the compilation.

2.5.5. Exported Templates

Exported templates are templates declared with the keyword export. Exporting a class template is
equivalent to exporting each of its static data members and each of its non-inline member functions. An
exported template is special because its definition does not need to be present in a translation unit that
uses that template. In other words, the definition of an exported (non-class) template does not need to
be explicitly or implicitly included in a translation unit that instantiates that template. For example, the
following is a valid C++ program consisting of two separate translation units:

// File 1:
#include <stdio.h>
static void trace() { printf("File 1\n"); }

export template<class T> T const& min(T const&, T const&);
int mainQ)
{

trace();

return min(2, 3);

72

C++ Language

// File 2:
#include <stdio.h>
static void trace() { printf("File 2\n"); }

export template<class T> T const& min(T const &a, T const &b)
{

trace();

return a<b? a: b;

}

Note that these two files are separate translation units: one is not included in the other. That allows the
two functions trace() to coexist (with internal linkage).

Support for exported templates is enabled by default, but you can turn it off with command line option
--no-export.

You cannot use exported templates together with the command line option --implicit-include.
2.5.5.1. Finding the Exported Template Definition

The automatic instantiation of exported templates is somewhat similar (from a user's perspective) to that
of regular (included) templates. However, an instantiation of an exported template involves at least two
translation units: one which requires the instantiation, and one which contains the template definition.

When a file containing definitions of exported templates is compiled, a file with a _et suffix is created
and some extra information is included in the associated . ti file. The . et files are used later by the C++
compiler to find the translation unit that defines a given exported template.

When a file that potentially makes use of exported templates is compiled, the compiler must be told where
to look for . et files for exported templates used by a given translation unit. By default, the compiler looks
in the current directory. Other directories may be specified with the command line option
--template-directory. Strictly speaking, the . et files are only really needed when it comes time to generate
an instantiation. This means that code using exported templates can be compiled without having the
definitions of those templates available. Those definitions must be available when explicit instantiation is
done.

The .et files only inform the C++ compiler about the location of exported template definitions; they do
not actually contain those definitions. The sources containing the exported template definitions must
therefore be made available at the time of instantiation. In particular, the export facility is not a mechanism
for avoiding the publication of template definitions in source form.

2.5.5.2. Secondary Translation Units

An instantiation of an exported template can be triggered by an explicit instantiation directive, or by the
command line option --instantiate=used. In each case, the translation unit that contains the initial point
of instantiation will be processed as the primary translation unit. Based on information it finds in the .et
files, the C++ compiler will then load and parse the translation unit containing the definition of the template
to instantiate. This is a secondary translation unit. The simultaneous processing of the primary and
secondary translation units enables the C++ compiler to create instantiations of the exported templates
(which can include entities from both translation units). This process may reveal the need for additional

73

TASKING VX-toolset for TriCore User Guide

instantif\tions of exported templates, which in turn can cause additional secondary translation units to be
loaded™.

When secondary translation units are processed, the declarations they contain are checked for consistency.
This process may report errors that would otherwise not be caught. Many these errors are so-called "ODR
violations" (ODR stands for "one-definition rule"). For example:

// File 1:
struct X {
int x;

¥

int mainQ) {
return min(2, 3);

}
// File 2:
struct X {
unsigned x; // Error: X::x declared differently
// in File 1
}:

export template<class T> T const& min(T const &a, T const &b)

{
}

If there are no errors, the instantiations are generated in the output associated with the primary translation
unit. This may also require that entities with internal linkage in secondary translation units be "externalized"
so they can be accessed from the instantiations in the primary translation unit.

return a<b? a: b;

2.5.5.3. Libraries with Exported Templates

Typically a (non-export) library consists of an include directory and a 1ib directory. The include
directory contains the header files required by users of the library and the 1ib directory contains the
object code libraries that client programs must use when linking programs.

With exported templates, users of the library must also have access to the source code of the exported
templates and the information contained in the associated . et files. This information should be placed

in a directory that is distributed along with the include and 1 b directories: This is the export directory.
It must be specified using the command line option --template-directory when compiling client programs.

The recommended procedure to build the export directory is as follows:
1. For each . et file in the original source directory, copy the associated source file to the export directory.

2. Concatenate all of the . et files into a single . et file (e.g., mylib.et) in the export directory. The
individual . et files could be copied to the export directory, but having all of the . et information in one
file will make use of the library more efficient.

‘Asa consequence, using exported templates may require considerably more memory that similar uses of regular (included)
templates.

74

C++ Language

3. Create an export_info file in the export directory. The export_info file specifies the include
search paths to be used when recompiling files in the export directory. If no export_info file is
provided, the include search path used when compiling the client program that uses the library will
also be used to recompile the library exported template files.

The export_info file consists of a series of lines of the form
include=x

or

sys_include=x

where X is a path name to be placed on the include search path. The directories are searched in the order
in which they are encountered in the export_info file. The file can also contain comments, which begin
with a "#", and blank lines. Spaces are ignored but tabs are not currently permitted. For example:

The include directories to be used for the xyz library

include = /diskl/xyz/include
sys_include = /disk2/abc/include
include=/disk3/jkl/include

The include search path specified for a client program is ignored by the C++ compiler when it processes
the source in the export library, except when no export_info file is provided. Command line macro
definitions specified for a client program are also ignored by the C++ compiler when processing a source
file from the export library; the command line macros specified when the corresponding - et file was
produced do apply. All other compilation options (other than the include search path and command line
macro definitions) used when recompiling the exported templates will be used to compile the client
program.

When a library is installed on a new system, it is likely that the export_info file will need to be adapted
to reflect the location of the required headers on that system.

2.6. Inlining Functions

The C++ compiler supports a minimal form of function inlining. When the C++ compiler encounters a call
of a function declared inl ine it can replace the call with the body of the function with the parameters
replaced by the corresponding arguments. When a function call occurs as a statement, the statements
of the function body are inserted in place of the call. When the function call occurs within an expression,
the body of the function is rewritten as one large expression and that expression is inserted in the proper
place in the containing expression. It is not always possible to do this sort of inlining: there are certain
constructs (e.g. loops and inline assembly) that cannot be rendered in expression form. Even when inlining
is done at the statement level, there are certain constructs that are not practical to inline. Calls that cannot
be inlined are left in their original call form, and an out-of-line copy of the function is used. When enabled,
a remark is issued.

A function is disqualified for inlining immediately if any of the following are true:
» The function has local static variables.

* The function has local constants.

75

TASKING VX-toolset for TriCore User Guide

The function has local types.

» The function has block scopes.

The function includes pragmas.

» The function has a variable argument list.

2.7. Extern Inline Functions

Depending on the way in which the C++ compiler is configured, out-of-line copies of extern inline
functions are either implemented using static functions, or are instantiated using a mechanism like the
template instantiation mechanism. Note that out-of-line copies of inline functions are only required in
cases where the function cannot be inlined, or when the address of the function is taken (whether explicitly
by the user, by implicitly generated functions, or by compiler-generated data structures such as virtual
function tables or exception handling tables).

When static functions are used, local static variables of the functions are promoted to global variables
with specially encoded names, so that even though there may be multiple copies of the code, there is
only one copy of such global variables. This mechanism does not strictly conform to the standard because
the address of an extern inline function is not constant across translation units.

When the instantiation mechanism is used, the address of an extern inline function is constant across
translation units, but at the cost of requiring the use of one of the template instantiation mechanisms,
even for programs that don't use templates. Definitions of extern inline functions can be provided either
through use of the automatic instantiation mechanism or by use of the --instantiate=used or
--instantiate=all instantiation modes. There is no mechanism to manually control the definition of extern
inline function bodies.

2.8. Pragmas to Control the C++ Compiler

Pragmas are keywords in the C++ source that control the behavior of the compiler. Pragmas overrule
compiler options.

The syntax is:
#pragma pragnme- spec

The C++ compiler supports the following pragmas and all C compiler pragmas that are described in
Section 1.6, Pragmas to Control the Compiler

instantiate / do_not_instantiate / can_instantiate

These are template instantiation pragmas. They are described in detail in Section 2.5.3, Instantiation
#pragma Directives.

hdrstop / no_pch

These are precompiled header pragmas. They are described in detail in Section 2.10, Precompiled
Headers.

76

once

C++ Language

When placed at the beginning of a header file, indicates that the file is written in such a way that including
it several times has the same effect as including it once. Thus, if the C++ compiler sees #pragma once
at the start of a header file, it will skip over it if the file is #included again.

A typical idiom is to place an #ifndef guard around the body of the file, with a #define of the guard variable

after the #ifndef:

#pragma once // optional
#ifndef FILE_H

#define FILE_H

-.. body of the header file ...
#endif

The #pragma once is marked as optional in this example, because the C++ compiler recognizes the
#ifndef idiom and does the optimization even in its absence. #pragma once is accepted for compatibility
with other compilers and to allow the programmer to use other guard-code idioms.

ident

This pragma is given in the form:
#pragma ident "'string"
or

#ident "string”

2.9. Predefined Macros

The C++ compiler defines a number of preprocessing macros. Many of them are only defined under
certain circumstances. This section describes the macros that are provided and the circumstances under

which they are defined.

Macro

Description

__ABI_COMPATIBILITY_VERSION

Defines the ABI compatibility version being
used. This macro is set to 9999, which means
the latest version. This macro is used when
building the C++ library.

__ABI_CHANGES_FOR_RTTI

This macro is set to TRUE, meaning that the
ABI changes for RTTI are implemented. This
macro is used when building the C++ library.

__ABI_CHANGES_FOR_ARRAY_NEW_AND_DELETE

This macro is set to TRUE, meaning that the
ABI changes for array new and delete are
implemented. This macro is used when
building the C++ library.

77

TASKING VX-toolset for TriCore User Guide

Macro

Description

__ABI_CHANGES_FOR_PLACEMENT_DELETE

This macro is set to TRUE, meaning that the
ABI changes for placement delete are
implemented. This macro is used when
building the C++ library.

__ARRAY_OPERATORS

Defined when array new and delete are
enabled. This is the default.

__BASE_FILE__ Similarto __FILE__ but indicates the primary
source file rather than the current one (i.e.,
when the current file is an included file).

_BOOL Defined when bool is a keyword. This is the
default.

__BUILD__ Identifies the build number of the C++

compiler, composed of decimal digits for the
build number, three digits for the major branch
number and three digits for the minor branch
number. For example, if you use build 1.22.1
of the compiler, __ BUILD__ expands to
1022001. If there is no branch number, the
branch digits expand to zero. For example,
build 127 results in 127000000.

__CHAR_MIN/__CHAR_MAX

Used in Iimits.h to define the
minimum/maximum value of a plain char
respectively.

__ CPTC__

Identifies the C++ compiler. You can use this
symbol to flag parts of the source which must
be recognized by the cptc C++ compiler only.
It expands to 1.

__cplusplus

Always defined.

CPU

Expands to a string with the CPU supplied with
the option --cpu. When no --cpu is supplied,
this symbol is not defined.

_ DATE_

Defined to the date of the compilation in the
form "Mmm dd yyyy".

__DELTA_TYPE

Defines the type of the offset field in the virtual
function table. This macro is used when
building the C++ library.

_ DOUBLE_FP__

Expands to 1 if you did not use option
--no-double (Treat ‘double’ as ‘float’),
otherwise unrecognized as macro.

__embedded_cplusplus

Defined as 1 in Embedded C++ mode.

__EXCEPTIONS Defined when exception handling is enabled
(--exceptions).
__FILE__ Expands to the current source file name.

78

C++ Language

Macro Description

__FUNCTION__ Defined to the name of the current function.
An error is issued if it is used outside of a
function.

__func__ Same as __FUNCTION__ in GNU mode.

__IMPLICIT_USING_STD

Defined when the standard header files should
implicitly do a using-directive on the std
namespace (--using-std).

__JMP_BUF_ELEMENT_TYPE

Specifies the type of an element of the setjmp
buffer. This macro is used when building the
C++ library.

__JMP_BUF_NUM_ELEMENTS

Defines the number of elements in the setjmp
buffer. This macro is used when building the
C++ library.

__LINE__ Expands to the line number of the line where
this macro is called.
__NAMESPACES Defined when namespaces are supported (this

is the default, you can disable support for
namespaces with --no-namespaces).

__NO_LONG_LONG

Defined when the long long type is not
supported. This is the default.

__NULL_EH_REGION_NUMBER

Defines the value used as the null region
number value in the exception handling tables.
This macro is used when building the C++
library.

_ PLACEMENT_DELETE

Defined when placement delete is enabled.

__PRETTY_FUNCTION__

Defined to the name of the current function.
This includes the return type and parameter
types of the function. An error is issued if it is
used outside of a function.

__PTRDIFF_MIN/__PTRDIFF_MAX

Used in stdint.h to define the
minimum/maximum value of a ptrdiff_t
type respectively.

__REGION_NUMBER_TYPE

Defines the type of a region number field in
the exception handling tables. This macro is
used when building the C++ library.

__REVISION__

Expands to the revision number of the C++
compiler. Digits are represented as they are;
characters (for prototypes, alphas, betas) are
represented by -1. Examples: v1.0rl -> 1,
v1.0rb ->-1

__RTTI

Defined when RTTI is enabled (--rtti).

__ RUNTIME_USES_NAMESPACES

Defined when the run-time uses namespaces.

79

TASKING VX-toolset for TriCore User Guide

Macro

Description

__SFRFILE__(cpu)

This macro expands to the filename of the
used SFR file, including the pathname and the
< >.The cpu is the argument of the macro.
For example, if --cpu=tc1165 is specified, the
macro__ SFRFILE__ (__CPU__) expandsto
__ SFRFILE__ (tc1165), which expands to
<sfr/regtcl165.sfr>.

__SIGNED_CHARS__

Defined when plain char is signed.

__SINGLE_FP__

Expands to 1 if you used option --no-double
(Treat ‘double’ as ‘float’), otherwise
unrecognized as macro.

__SIZE_MIN/ _SIZE_MAX

Used in stdint.h to define the
minimum/maximum value of a size_t type
respectively.

_ STDC__

Always defined, but the value may be
redefined.

__STDC_VERSION__

Identifies the ISO-C version number. Expands
to 199901L for ISO C99, but the value may be
redefined.

_STLP_NO_IOSTREAMS

Defined when option --io-streams is not used.
This disables I/O stream functions in the
STLport C++ library.

__TASKING__ Always defined for the TASKING C++
compiler.
__TIME__ Expands to the compilation time: “hh:mm:ss”

__TYPE_TRAITS_ENABLED

Defined when type traits pseudo-functions (to
ease the implementation of ISO/IEC TR
19768; e.g., __is_union) are enabled. This
is the default in C++ mode.

__VAR_HANDLE_TYPE

Defines the type of the variable-handle field
in the exception handling tables. This macro
is used when building the C++ library.

__VERSION__

Identifies the version number of the C++
compiler. For example, if you use version 2.1r1
of the compiler, _ VERSION___ expands to
2001 (dot and revision number are omitted,
minor version nhumber in 3 digits).

__VIRTUAL_FUNCTION_INDEX_TYPE

Defines the type of the virtual function index
field of the virtual function table. This macro
is used when building the C++ library.

__VIRTUAL_FUNCTION_TYPE

Defines the type of the virtual function field of
the virtual function table. This macro is used
when building the C++ library.

80

C++ Language

Macro Description

_ WCHAR_MIN/__WCHAR_MAX Used in stdint.h to define the
minimum/maximum value of a wchar_t type
respectively.

_WCHAR_T Defined when wchar_t is a keyword.

2.10. Precompiled Headers

It is often desirable to avoid recompiling a set of header files, especially when they introduce many lines
of code and the primary source files that #include them are relatively small. The C++ compiler provides
a mechanism for, in effect, taking a snapshot of the state of the compilation at a particular point and writing
it to a disk file before completing the compilation; then, when recompiling the same source file or compiling
another file with the same set of header files, it can recognize the "snapshot point", verify that the
corresponding precompiled header (PCH) file is reusable, and read it back in. Under the right
circumstances, this can produce a dramatic improvement in compilation time; the trade-off is that PCH
files can take a lot of disk space.

2.10.1. Automatic Precompiled Header Processing

When --pch appears on the command line, automatic precompiled header processing is enabled. This
means the C++ compiler will automatically look for a qualifying precompiled header file to read in and/or
will create one for use on a subsequent compilation.

The PCH file will contain a snapshot of all the code preceding the "header stop” point. The header stop
point is typically the first token in the primary source file that does not belong to a preprocessing directive,
but it can also be specified directly by #pragma hdrstop (see below) if that comes first. For example:

#include ""xxx.h"
#include "yyy.h"
int i;

The header stop point is Int (the first non-preprocessor token) and the PCH file will contain a snapshot
reflecting the inclusion of xxx . h and yyy . h. If the first non-preprocessor token or the #pragma hdrstop
appears within a #iF block, the header stop point is the outermost enclosing #i . To illustrate, heres a
more complicated example:

#include "xxx.h"

#ifndef YYY_H

#define YYY_H 1

#include "yyy.h"

#endif

#if TEST

int i;

#endif

Here, the first token that does not belong to a preprocessing directive is again int, but the header stop
point is the start of the #if block containing it. The PCH file will reflect the inclusion of xxx.h and

conditionally the definition of YYY_H and inclusion of yyy . h; it will not contain the state produced by #if
TEST.

81

TASKING VX-toolset for TriCore User Guide

A PCH file will be produced only if the header stop point and the code preceding it (mainly, the header
files themselves) meet certain requirements:

» The header stop point must appear at file scope -- it may not be within an unclosed scope established
by a header file. For example, a PCH file will not be created in this case:

// xxx.h
class A {

// xxx.C
#include "'xxx.h"
int i; };

» The header stop point may not be inside a declaration started within a header file, nor (in C++) may it
be part of a declaration list of a linkage specification. For example, in the following case the header
stop point is int, but since it is not the start of a new declaration, no PCH file will be created:

// yyy.h
static

/7 yyy.C
#include "yyy.h"

int i;

Similarly, the header stop point may not be inside a #1 T block or a #deFfine started within a header
file.

» The processing preceding the header stop must not have produced any errors. (Note: warnings and
other diagnostics will not be reproduced when the PCH file is reused.)

» No references to predefined macros __DATE__ or ___TIME___ may have appeared.

No use of the #l ine preprocessing directive may have appeared.
» #pragma no_pch (see below) must not have appeared.

» The code preceding the header stop point must have introduced a sufficient number of declarations to
justify the overhead associated with precompiled headers. The minimum number of declarations required
is 1.

When the host system does not support memory mapping, so that everything to be saved in the
precompiled header file is assigned to preallocated memory (MS-Windows), two additional restrictions

apply:

» The total memory needed at the header stop point cannot exceed the size of the block of preallocated
memory.

* No single program entity saved can exceed 16384, the preallocation unit.

82

C++ Language

When a precompiled header file is produced, it contains, in addition to the snapshot of the compiler state,
some information that can be checked to determine under what circumstances it can be reused. This
includes:

» The compiler version, including the date and time the compiler was built.
» The current directory (i.e., the directory in which the compilation is occurring).
» The command line options.

» The initial sequence of preprocessing directives from the primary source file, including #include
directives.

» The date and time of the header files specified in #include directives.

This information comprises the PCH prefix. The prefix information of a given source file can be compared
to the prefix information of a PCH file to determine whether the latter is applicable to the current compilation.

As an illustration, consider two source files:

// a.cc
#include ""xxx.h"
I // Start of code
// b.cc
#include ""xxx.h"
I // Start of code

When a. cc is compiled with --pch, a precompiled header file named a . pch is created. Then, when b.cc
is compiled (or when a.cc is recompiled), the prefix section of a.pch is read in for comparison with the
current source file. If the command line options are identical, if xxx . h has not been modified, and so
forth, then, instead of opening xxx . h and processing it line by line, the C++ compiler reads in the rest of
a.pch and thereby establishes the state for the rest of the compilation.

It may be that more than one PCH file is applicable to a given compilation. If so, the largest (i.e., the one
representing the most preprocessing directives from the primary source file) is used. For instance, consider
a primary source file that begins with

#include ""xxx.h"
#include "yyy.h"
#include "zzz.h"

If there is one PCH file for xxx . h and a second for xxx . h and yyy . h, the latter will be selected (assuming
both are applicable to the current compilation). Moreover, after the PCH file for the first two headers is
read in and the third is compiled, a new PCH file for all three headers may be created.

When a precompiled header file is created, it takes the name of the primary source file, with the suffix
replaced by an implementation-specified suffix (pch by default). Unless --pch-dir is specified (see below),
it is created in the directory of the primary source file.

When a precompiled header file is created or used, a message such as

"test.cc": creating precompiled header file "test.pch”

83

TASKING VX-toolset for TriCore User Guide

is issued. The user may suppress the message by using the command line option --no-pch-messages.

When the option --pch-verbose is used the C++ compiler will display a message for each precompiled
header file that is considered that cannot be used giving the reason that it cannot be used.

In automatic mode (i.e., when --pch is used) the C++ compiler will deem a precompiled header file obsolete
and delete it under the following circumstances:

« if the precompiled header file is based on at least one out-of-date header file but is otherwise applicable
for the current compilation; or

« ifthe precompiled header file has the same base name as the source file being compiled (e.g., xxx.pch
and xxx . cc) but is not applicable for the current compilation (e.g., because of different command line
options).

This handles some common cases; other PCH file clean-up must be dealt with by other means (e.g., by
the user).

Support for precompiled header processing is not available when multiple source files are specified in a
single compilation: an error will be issued and the compilation aborted if the command line includes a
request for precompiled header processing and specifies more than one primary source file.

2.10.2. Manual Precompiled Header Processing

Command line option --create-pch=file-name specifies that a precompiled header file of the specified
name should be created.

Command line option --use-pch=file-name specifies that the indicated precompiled header file should
be used for this compilation; if it is invalid (i.e., if its prefix does not match the prefix for the current primary
source file), a warning will be issued and the PCH file will not be used.

When either of these options is used in conjunction with --pch-dir, the indicated file name (which may
be a path name) is tacked on to the directory name, unless the file name is an absolute path name.

The options --create-pch, --use-pch, and --pch may not be used together. If more than one of these
options is specified, only the last one will apply. Nevertheless, most of the description of automatic PCH
processing applies to one or the other of these modes -- header stop points are determined the same
way, PCH file applicability is determined the same way, and so forth.

2.10.3. Other Ways to Control Precompiled Headers

There are several ways in which the user can control and/or tune how precompiled headers are created
and used.

» #pragma hdrstop may be inserted in the primary source file at a point prior to the first token that does
not belong to a preprocessing directive. It enables you to specify where the set of header files subject
to precompilation ends. For example,

#include ""xxx.h"
#include "yyy.h"
#pragma hdrstop
#include ""zzz.h"

84

C++ Language

Here, the precompiled header file will include processing state for xxx.h and yyy . h but not zzz _h.
(This is useful if the user decides that the information added by what follows the #pragma hdrstop
does not justify the creation of another PCH file.)

» #pragma no_pch may be used to suppress precompiled header processing for a given source file.

» Command line option --pch-dir=directory-name is used to specify the directory in which to search for
and/or create a PCH file.

Moreover, when the host system does not support memory mapping and preallocated memory is used
instead, then one of the command line options --pch, --create-pch, or --use-pch, if it appears at all, must
be the first option on the command line.

2.10.4. Performance Issues

The relative overhead incurred in writing out and reading back in a precompiled header file is quite small
for reasonably large header files.

In general, it does not cost much to write a precompiled header file out even if it does not end up being
used, and if it is used it almost always produces a significant speedup in compilation. The problem is that
the precompiled header files can be quite large (from a minimum of about 250K bytes to several megabytes
or more), and so one probably does not want many of them sitting around.

Thus, despite the faster recompilations, precompiled header processing is not likely to be justified for an
arbitrary set of files with nonuniform initial sequences of preprocessing directives. Rather, the greatest
benefit occurs when a number of source files can share the same PCH file. The more sharing, the less
disk space is consumed. With sharing, the disadvantage of large precompiled header files can be
minimized, without giving up the advantage of a significant speedup in compilation times.

Consequently, to take full advantage of header file precompilation, users should expect to reorder the
#include sections of their source files and/or to group #include directives within a commonly used
header file.

Below is an example of how this can be done. A common idiom is this:

#include "comnfile.h"
#pragma hdrstop
#include ...

where comnfile.h pulls in, directly and indirectly, a few dozen header files; the #pragma hdrstop is
inserted to get better sharing with fewer PCH files. The PCH file produced for comnfile_h can be a bit
over a megabyte in size. Another idiom, used by the source files involved in declaration processing, is
this:

#include "comnfile.h"
#include "decl_hdrs.h"
#pragma hdrstop
#include ...

decl_hdrs.h pulls in another dozen header files, and a second, somewhat larger, PCH file is created.
In all, the source files of a particular program can share just a few precompiled header files. If disk space

85

TASKING VX-toolset for TriCore User Guide

were at a premium, you could decide to make comnfile.h pull in all the header files used -- then, a
single PCH file could be used in building the program.

Different environments and different projects will have different needs, but in general, users should be

aware that making the best use of the precompiled header support will require some experimentation
and probably some minor changes to source code.

86

Chapter 3. Assembly Language

This chapter describes the most important aspects of the TASKING assembly language for TriCore. For
a complete overview of the architecture you are using, refer to the target's core Architecture Manual.

3.1. Assembly Syntax

An assembly program consists of statements. A statement may optionally be followed by a comment.
Any source statement can be extended to more lines by including the line continuation character (\) as
the last character on the line. The length of a source statement (first line and continuation lines) is only
limited by the amount of available memory.

Mnemonics, directives and other keywords are case insensitive. Labels, symbols, directive arguments,
and literal strings are case sensitive.

The syntax of an assembly statement is:

[l abel [:]] [instruction | directive | macro_call] [;coment]

label A label is a special symbol which is assigned the value and type of the current
program location counter. A label can consist of letters, digits and underscore
characters (). The first character cannot be a digit. The label can also be a
number. A label which is prefixed by whitespace (spaces or tabs) has to be
followed by a colon (:). The size of an identifier is only limited by the amount of
available memory.

number is a number ranging from 1 to 255. This type of label is called a numeric
label or local label. To refer to a numeric label, you must put an n (next) or p
(previous) immediately after the label. This is required because the same label
number may be used repeatedly.

Examples:
LAB1: ; This label is followed by a colon and

; can be prefixed by whitespace

LAB1 ; This label has to start at the beginning
; of a line

1: b 1p ; This is an endless loop
; using numeric labels

instruction An instruction consists of a mnemonic and zero, one or more operands. It must

not start in the first column.
Operands are described in Section 3.3, Operands of an Assembly Instruction.
The instructions are described in the target's core Architecture Manual.

directive With directives you can control the assembler from within the assembly source.
Except for preprocessing directives, these must not start in the first column.
Directives are described in Section 3.9, Assembler Directives and Controls.

87

TASKING VX-toolset for TriCore User Guide

macro_call A call to a previously defined macro. It must not start in the first column. See
Section 3.10, Macro Operations.

comment Comment, preceded by a ; (semicolon).

You can use empty lines or lines with only comments.

Apart from the assembly statements as described above, you can put a so-called ‘control line' in your
assembly source file. These lines start with a $ in the first column and alter the default behavior of the
assembler.

$cont r ol

For more information on controls see Section 3.9, Assembler Directives and Controls.

3.2. Assembler Significant Characters

You can use all ASCII characters in the assembly source both in strings and in comments. Also the
extended characters from the 1SO 8859-1 (Latin-1) set are allowed.

Some characters have a special meaning to the assembler. Special characters associated with expression
evaluation are described in Section 3.6.3, Expression Operators. Other special assembler characters
are:

Character [Description

Start of a comment

\ Line continuation character or macro operator: argument concatenation
? Macro operator: return decimal value of a symbol

% Macro operator: return hex value of a symbol

n Macro operator: override local label

" Macro string delimiter or quoted string - DEFINE expansion character

' String constants delimiter

@ Start of a built-in assembly function
* Location counter substitution

Constant number

++ String concatenation operator

[] Substring delimiter

3.3. Operands of an Assembly Instruction

In an instruction, the mnemonic is followed by zero, one or more operands. An operand has one of the
following types:

88

Assembly Language

Operand Description

symbol A symbolic name as described in Section 3.4, Symbol Names. Symbols can also occur
in expressions.

register Any valid register as listed in Section 3.5, Registers.

expression Any valid expression as described in Section 3.6, Assembly Expressions.

address A combination of expression, register and symbol.

Addressing modes

The TriCore assembly language has several addressing modes. These are described in detail in the
target's core Architecture Manual.

3.4. Symbol Names

User-defined symbols

A user-defined symbol can consist of letters, digits and underscore characters (). The first character
cannot be a digit. The size of an identifier is only limited by the amount of available memory. The case
of these characters is significant. You can define a symbol by means of a label declaration or an equate
or set directive.

Predefined preprocessor symbols

These symbols start and end with two underscore characters, __symbol__, and you can use them in your
assembly source to create conditional assembly. See Section 3.4.1, Predefined Preprocessor Symbols.

Labels

Symbols used for memory locations are referred to as labels. It is allowed to use reserved symbols as
labels as long as the label is followed by a colon.

Reserved symbols

Symbol names and other identifiers beginning with a period (.) are reserved for the system (for example
for directives or section names). Instructions and registers are also reserved. The case of these built-in
symbols is insignificant.

Examples

Valid symbol names:
loop_1

ENTRY

aBc

_aBC

Invalid symbol names:

89

TASKING VX-toolset for TriCore User Guide

1 loop ; starts with a number
dis ; reserved register name
-DEFINE ; reserved directive name

3.4.1. Predefined Preprocessor Symbols

The TASKING assembler knows the predefined symbols as defined in the table below. The symbols are
useful to create conditional assembly.

Symbol Description

__ASTC__ Identifies the assembler. You can use this symbol to flag parts of the source
which must be recognized by the astc assembler only. It expands to 1.

__BUILD__ Identifies the build number of the compiler, composed of decimal digits for
the build number, three digits for the major branch number and three digits
for the minor branch number. For example, if you use build 1.22.1 of the
assembler, _ BUILD___ expands to 1022001. If there is no branch number,
the branch digits expand to zero. For example, build 127 results in
127000000.

_ CPU_TCnum__ The corresponding symbol is defined if the CPU functional problem

_ DMU_TCnum__ cpu-tcnum, dmu-tcnum, pmi-tcnum or pmu-tcnum, is specified with the option

__PMIL_TCnum___ --silicon-bug.

__PMU_TCnum__

__FPU__ Expands to 1 if you used option --fpu-present (Use hardware floating-point
instructions), otherwise unrecognized as macro.

__ MMU__ Expands to 1 if you used option --mmu-present (allow use of MMU
instructions), otherwise unrecognized as macro.

_ REVISION__ Expands to the revision number of the compiler. Digits are represented as
they are; characters (for prototypes, alphas, betas) are represented by -1.
Examples: v1.0r1 -> 1, v1.0rb -> -1

__TASKING__ Identifies the assembler as a TASKING assembler. Expands to 1 if a
TASKING assembler is used.

__TC131__ Expands to 1 if the TriCore 1.3.1 architecture is selected (option
--core=tc1.3.1).

_ UM_KERNEL__ Expands to 1 if the TriCore runs in kernel/supervisor mode (option
--user-mode=kernel).

__UM_USER_1__ Expands to 1 if the TriCore runs in User-1 mode (option
--user-mode=user-1).

__VERSION__ Identifies the version number of the assembler. For example, if you use
version 2.1r1 of the assembler, _ VERSION__ expands to 2001 (dot and
revision number are omitted, minor version number in 3 digits).

Example

.if @defined("_ASTC__ ")
; this part is only for the astc assembler

90

Assembly Language

_endif
3.5. Registers

The following register names, either upper or lower case, should not be used for user-defined symbol
names in an assembly language source file:

DO .. D15 (data registers)
EO .. E14 (data register pairs, only the even numbers)
A0 .. Al15 (address registers)

3.5.1. Special Function Registers

It is easy to access Special Function Registers (SFRs) that relate to peripherals from assembly. The
SFRs are defined in a special function register definition file (*.def) as symbol names for use assembler.
The assembler reads the SFR definition file as defined by the selected derivative with the command line
option --cpu (-C). SFRs are defined with .EQU directives.

For example (from regtc1165._def):
PSW .equ OxFEO4
Example use in assembly:

mfcr do,#PSW

andn d0,dO,#0Ox7f
insert dO0,dO,#1,#7,#1
insert d0,dO,#1,#8,#1
mtcr #PSW, dO

isync

reset counter
enable
set GW bit

Without an SFR file the assembler only knows the general purpose registers D0-D15 and A0-A15.

3.6. Assembly Expressions

An expression is a combination of symbols, constants, operators, and parentheses which represent a
value that is used as an operand of an assembler instruction (or directive).

Expressions can contain user-defined labels (and their associated integer or floating-point values), and
any combination of integers, floating-point numbers, or ASCII literal strings.

Expressions follow the conventional rules of algebra and boolean arithmetic.

Expressions that can be evaluated at assembly time are called absolute expressions. Expressions where
the result is unknown until all sections have been combined and located, are called relocatable or relative
expressions.

When any operand of an expression is relocatable, the entire expression is relocatable. Relocatable
expressions are emitted in the object file and evaluated by the linker. Relocatable expressions can only

91

TASKING VX-toolset for TriCore User Guide

contain integral functions; floating-point functions and numbers are not supported by the ELF/DWARF
object format.

The assembler evaluates expressions with 64-bit precision in two's complement.
The syntax of an expression can be any of the following:

* numeric constant

* string

* symbol

» expression binary_operator expression

* unary_operator expression

 (expression)

» function call

All types of expressions are explained in separate sections.

3.6.1. Numeric Constants

Numeric constants can be used in expressions. If there is no prefix, by default the assembler assumes
the number is a decimal number. Prefixes can be used in either lower or upper case.

Base Description Example
Binary A Ob or OB prefix followed by binary digits (0,1). 0B1101

0b11001010
Hexadecimal A Ox or 0X prefix followed by hexadecimal digits (0-9, A-F, a-f). |OX12FF

0x45

Oxfal0
Decimal integer Decimal digits (0-9). 12

1245
Decimal Decimal digits (0-9), includes a decimal point, or an 'E' or 'e' 6E10
floating-point followed by the exponent. -6

3.14

2.7el0
3.6.2. Strings

ASCII characters, enclosed in single (') or double (") quotes constitute an ASCII string. Strings between
double quotes allow symbol substitution by a . DEFINE directive, whereas strings between single quotes
are always literal strings. Both types of strings can contain escape characters.

92

Assembly Language

Strings constants in expressions are evaluated to a number (each character is replaced by its ASCII
value). Strings in expressions can have a size of up to 4 characters or less depending on the operand of
an instruction or directive; any subsequent characters in the string are ignored. In this case the assembler
issues a warning. An exception to this rule is when a string is used in a .BYTE assembler directive; in
that case all characters result in a constant value of the specified size. Null strings have a value of 0.

Square brackets ([]) delimit a substring operation in the form:
[string,of fset,l ength]

offset is the start position within string. length is the length of the desired substring. Both values may not
exceed the size of string.

Examples

"ABCD" (0x41424344)

aach to enclose a quote double it
"A\"BC" or to enclose a quote escape it
"AB"+1 (0x4143) string used In expression

null string

(0x64636261) “ef" are ignored
warning: string value truncated
you can concatenate

two strings with the "++" operator.
This results in "abcde-

results in the substring "TASK®

.word "abcdef”

"abc"++"de”

[*TASKING",0,4]
3.6.3. Expression Operators

The next table shows the assembler operators. They are ordered according to their precedence. Operators
of the same precedence are evaluated left to right. Parenthetical expressions have the highest priority
(innermost first).

Valid operands include numeric constants, literal ASCII strings and symbols.

Most assembler operators can be used with both integer and floating-point values. If one operand has
an integer value and the other operand has a floating-point value, the integer is converted to a floating-point
value before the operator is applied. The result is a floating-point value.

Type Operator Name Description
() parenthesis Expressions enclosed by parenthesis are evaluated
first.
Unary + plus Returns the value of its operand.
- minus Returns the negative of its operand.

~ one's complement Integer only. Returns the one’s complement of its
operand. It cannot be used with a floating-point
operand.

93

TASKING VX-toolset for TriCore User Guide

Type Operator Name Description

! logical negate Returns 1 if the operands' value is O; otherwise 0.
For example, if buf is 0 then 'buf is 1. If buf has
a value of 1000 then Ybufis 0.

Arithmetic * multiplication Yields the product of its operands.

/ division Yields the quotient of the division of the first operand
by the second. For integer operands, the divide
operation produces a truncated integer result.

% modulo Integer only. This operator yields the remainder from
the division of the first operand by the second.

+ addition Yields the sum of its operands.

- subtraction Yields the difference of its operands.

Shift << shift left Integer only. Causes the left operand to be shifted
to the left (and zero-filled) by the number of bits
specified by the right operand.

>> shift right Integer only. Causes the left operand to be shifted
to the right by the number of bits specified by the
right operand. The sign bit will be extended.

Relational < less than Returns an integer 1 if the indicated condition is

- less than or equal TRUE or an integer 0 if the indicated condition is
FALSE.

> greater than

o= greater than or equal For example, if D has a value of 3 qnd E ha; avalue
of 5, then the result of the expression D<E is 1, and

== equal the result of the expression D>E is 0.

I= not equal o)]]

Use tests for equality involving floating-point values
with caution, since rounding errors could cause
unexpected results.

Bit and bit position Specify bit position (right operand) in a data register

Bitwise (left operand) for use in bit operations (instructions
that have the .T data type modifier).

& AND Integer only. Yields the bitwise AND function of its
operand.

| OR Integer only. Yields the bitwise OR function of its
operand.

A exclusive OR Integer only. Yields the bitwise exclusive OR function
of its operands.

Logical && logical AND Returns an integer 1 if both operands are non-zero;
otherwise, it returns an integer 0.

Il logical OR Returns an integer 1 if either of the operands is

non-zero; otherwise, it returns an integer 1

94

Assembly Language

The relational operators and logical operators are intended primarily for use with the conditional assembly
- if directive, but can be used in any expression.

3.7.Working with Sections

Sections are absolute or relocatable blocks of contiguous memory that can contain code or data. Some
sections contain code or data that your program declared and uses directly, while other sections are
created by the compiler or linker and contain debug information or code or data to initialize your application.
These sections can be named in such a way that different modules can implement different parts of these
sections. These sections are located in memory by the linker (using the linker script language, LSL) so
that concerns about memory placement are postponed until after the assembly process.

All instructions and directives which generate data or code must be within an active section. The assembler
emits a warning if code or data starts without a section definition and activation. The compiler automatically
generates sections. If you program in assembly you have to define sections yourself.

For more information about locating sections see Section 8.7.8, The Section Layout Definition: Locating
Sections.

Section definition

Sections are defined with the . SDECL directive and have a name. A section may have attributes to instruct
the linker to place it on a predefined starting address, or that it may be overlaid with another section.

.SDECL "nane', type [, attribute]... [AT address]
See the description of the . SDECL directive for a complete description of all possible attributes.
Section activation
Sections are defined once and are activated with the . SECT directive.

-SECT "nane"

The linker will check between different modules and emits an error message if the section attributes do
not match. The linker will also concatenate all matching section definitions into one section. So, all "code"
sections generated by the compiler will be linked into one big "code" chunk which will be located in one
piece. A _SECT directive referring to an earlier defined section is called a continuation. Only the name
can be specified.

Examples

.SDECL ".text.hello.main",CODE
.SECT "_text.hello.main"

Defines and activates a relocatable section in CODE memory. Other parts of this section, with the same
name, may be defined in the same module or any other module. Other modules should use the same
-SDECL statement. When necessary, it is possible to give the section an absolute starting address.

-SDECL " _CONST"™, CODE AT 0x1000
-SECT " _CONST"

95

TASKING VX-toolset for TriCore User Guide

Defines and activates an absolute section named .CONST starting at address 0x1000.

.SDECL " .fardata', DATA, CLEAR
.SECT " _fardata"

Defines a relocatable named section in DATA memory. The CLEAR attribute instructs the linker to clear
the memory located to this section. When this section is used in another module it must be defined
identically. Continuations of this section in the same module are as follows:

.SECT " _fardata"

3.8. Built-in Assembly Functions

The TASKING assembler has several built-in functions to support data conversion, string comparison,
and math computations. You can use functions as terms in any expression.

Syntax of an assembly function

@f uncti on_nanme([argunent [,argunment]...])

Functions start with the '@' character and have zero or more arguments, and are always followed by
opening and closing parentheses. White space (a blank or tab) is not allowed between the function name

and the opening parenthesis and between the (comma-separated) arguments.

The names of assembly functions are case insensitive.

Overview of mathematical functions

Function Description
@ABS (expr) Absolute value
@ACS(expr) Arc cosine
@ASN(expr) Arc sine
@AT2(exprl,expr2) Arc tangent of exprl / expr2
@ATN(expr) Arc tangent

@CEL (expr) Ceiling function
@COH(expr) Hyperbolic cosine
@COS(expr) Cosine
@FLR(expr) Floor function
@L10(expr) Log base 10
@LOG(expr) Natural logarithm
@MAX(exprl[, - - - ,exprN]) Maximum value
@MIN(exprli[, - - - ,exprN]) Minimum value
@POW(exprl,expr2) Raise to a power
@RNDQO) Random value

96

Assembly Language

Function Description

@SGN(expr) Returns the sign of an expression as -1, 0 or 1
@SIN(expr) Sine

@SNH(expr) Hyperbolic sine

@SQT (expr) Square root

@TAN(expr) Tangent

@TNH(expr) Hyperbolic tangent

@XPN(expr) Exponential function (raise e to a power)

Overview of conversion functions

Function Description

@CVF(expr) Convert integer to floating-point
@cCVvi(expr) Convert floating-point to integer
@FLD(base, value ,width[, start]) Shift and mask operation

@FRACT (expr) Convert floating-point to 32-bit fractional
@SFRACT (expr) Convert floating-point to 16-bit fractional
@LNG(exprl,expr2) Concatenate to double word
@LUN(expr) Convert long fractional to floating-point
@RVB(expr[,exprN]) Reverse order of bits in field

@UNF (expr) Convert fractional to floating-point

Overview of string functions

Function Description
@CAT(str1,str2) Concatenate strl and str2
@LEN(string) Length of string
@POS(str1, str2[, start]) Position of str2 in strl
@SCP(strl,str2) Compare strl with str2
@SUB(str, exprl,expr2) Return substring

Overview of macro functions

Function Description

@ARG("symbol* | expr) Test if macro argument is present
@CNTQO Return number of macro arguments
@MAC(symbol) Test if macro is defined

amMxrPQO Test if macro expansion is active

97

TASKING VX-toolset for TriCore User Guide

Overview of address calculation functions

Function Description

@H1 (expr) Returns upper 16 bits of expression value

@H1S(expr) Returns upper 16 bits of expression value, adjusted for signed
addition

@LO(expr) Returns lower 16 bits of expression value

@LOS (expr) Returns lower 16 bits of expression value, adjusted for signed
addition

@LSB(expr) Least significant byte of the expression

@MSB(expr) Most significant byte of the expression

Overview of assembler mode functions

Function Description

@ASTCQO Returns the name of the assembler executable
@CPU("cpu™) Test if CPU type is selected

@DEF("symbol*® | symbol) Returns 1 if symbol has been defined

@EXP (expr) Expression check

@INT (expr) Integer check

@LSTO LIST control flag value

Detailed Description of Built-in Assembly Functions

@ABS(expression)

Returns the absolute value of the expression as an integer value.
Example:

AVAL .SET @ABS(-2.1) ; AVAL = 2
@ACS(expression)

Returns the arc cosine of expression as a floating-point value in the range zero to pi. The result of
expression must be between -1 and 1.

Example:

ACOS .SET @ACS(-1.0) ;ACOS = 3.1415926535897931
@ARG('symbol’ | expression)

Returns integer 1 if the macro argument represented by symbol or expression is present, 0 otherwise.

98

Assembly Language

You can specify the argument with a symbol name (the name of a macro argument enclosed in single
quotes) or with expression (the ordinal number of the argument in the macro formal argument list). If you
use this function when macro expansion is not active, the assembler issues a warning.

Example:

- IF @QARG("TWIDDLE") ;is argument twiddle present?
-1F @ARG(1) ;is First argument present?

@ASN(expression)

Returns the arc sine of expression as a floating-point value in the range -pi/2 to pi/2. The result of
expression must be between -1 and 1.

Example:

ARCSINE _SET @ASN(-1.0) ;ARCSINE = -1.570796

@ASTC()

Returns the name of the assembler executable. This is 'astc' for the TriCore assembler.
Example:

ANAME: _byte @ASTCQ ;ANAME = "astc”

@AT2(expressionl,expression?2)

Returns the arc tangent of expressionl/expression2 as a floating-point value in the range -pi to pi.
expressionl and expression2 must be separated by a comma.

Example:

ATAN2 _EQU @AT2(-1.0,1.0) ;ATAN2 = -0.7853982

@ATN(expression)

Returns the arc tangent of expression as a floating-point value in the range -pi/2 to pi/2.

Example:

ATAN _.SET @ATN(1.0) ;ATAN = 0.78539816339744828

@CAT(stringl,string2)

Concatenates the two strings into one string. The two strings must be enclosed in single or double quotes.
Example:

.DEFINE ID "@CAT("TASK","ING")" ;ID = "TASKING™

99

TASKING VX-toolset for TriCore User Guide

@CEL(expression)
Returns a floating-point value which represents the smallest integer greater than or equal to expression.
Example:

CEIL _.SET @CEL(-1.05) ;CEIL = -1.0

@CNT()

Returns the number of macro arguments of the current macro expansion as an integer. If you use this
function when macro expansion is not active, the assembler issues a warning.

Example:

ARGCOUNT _SET @CNT() ; reserve argument count
@COH(expression)

Returns the hyperbolic cosine of expression as a floating-point value.
Example:

HYCOS _EQU @COH(VAL) ;compute hyperbolic cosine
@COS(expression)

Returns the cosine of expression as a floating-point value.

Example:

_WORD -@COS(@CVF(COUNT)*FREQ) ;compute cosine value
@CPU(string)

Returns integer 1 if string corresponds to the selected CPU type; 0 otherwise. See also assembler option
--cpu (Select CPU).

Example:

_IF @CPU("tc1.3.1™) ;TriCore 1.3.1 specific part
@CVF(expression)

Converts the result of expression to a floating-point value.

Example:

FLOAT .SET @CVF(5) ;FLOAT = 5.0

100

Assembly Language

@CVI(expression)

Converts the result of expression to an integer value. This function should be used with caution since the
conversions can be inexact (e.g., floating-point values are truncated).

Example:
INT _SET @CVI(-1.05) JINT = -1
@DEF('symbol’ | symbol)

Returns 1 if symbol has been defined, 0 otherwise. symbol can be any symbol or label not associated
with a .MACRO or . SDECL directive. If symbol is quoted, it is looked up as a - DEFINE symbol; if it is not
quoted, it is looked up as an ordinary symbol or label.

Example:
-1F @DEFINED("ANGLE™) ;is symbol ANGLE defined?
- 1F @DEFINED(ANGLE) ;does label ANGLE exist?

@EXP(expression)

Returns 0 if the evaluation of expression would normally result in an error. Returns 1 if the expression
can be evaluated correctly. With the @EXP function, you prevent the assembler from generating an error
if the expression contains an error. No test is made by the assembler for warnings. The expression may
be relative or absolute.

Example:

-IF 1@EXP(3/0) ;Do the IF on error
;assembler generates no error

1IF 1(3/70) ;assembler generates an error

@FLD(base,value,width[,start])

Shift and mask value into base for width bits beginning at bit start. If start is omitted, zero (least significant
bit) is assumed. All arguments must be positive integers and none may be greater than the target word
size. Returns the shifted and masked value.

Example:

VAR1 _EQU @FLD(0,1,1) ;turn bit 0 on, VAR1=1

VAR2 _EQU @FLD(0,3,1) ;turn bit 0 on, VAR2=1

VAR3 .EQU @FLD(0,3,2) ;turn bits 0 and 1 on, VAR3=3

VAR4 _EQU @FLD(0,3,2,1) ;turn bits 1 and 2 on, VAR4=6
VAR5 _EQU @FLD(0,1,1,7) ;turn eighth bit on, VAR5=0x80

@FLR(expression)

Returns a floating-point value which represents the largest integer less than or equal to expression.

101

TASKING VX-toolset for TriCore User Guide

Example:

FLOOR .SET @FLR(2.5) ;FLOOR = 2.0

@FRACT(expression)

Returns the 32-bit fractional representation of the floating-point expression. The expression must be in
the range [-1,+1>.

Example:

.WORD @FRACT(0.1), @FRACT(1.0)
@HI(expression)

Returns the upper 16 bits of a value. @HI (expression) is equivalent to ((expression>>16) &
OXFFff).

Example:

mov.u d2,#@LO(COUNT)
addih d2,d2,#@H1(COUNT) ;upper 16 bits of COUNT

@HIS(expression)

Returns the upper 16 bits of a value, adjusted for a signed addition. @H1S(expression) is equivalent
to (((expression+0x800)>>16) & OxFFff).

Example:

movh.a a3,#@H1S(1abel)
lea a3, [a3]@Los(label)

@INT(expression)

Returns integer 1 if expression has an integer result; otherwise, it returns a 0. The expression may be
relative or absolute.

Example:

_IF @INT(TERM) ;Test if result is an integer
@L10(expression)

Returns the base 10 logarithm of expression as a floating-point value. expression must be greater than
zero.

Example:

LOG -EQU @L10(100.0) ;LOG = 2

102

Assembly Language

@LEN(string)

Returns the length of string as an integer.

Example:

SLEN .SET @LEN("string®) ;SLEN = 6
@LNG(expressionl,expression2)

Concatenates the 16-bit expressionl and expression2 into a 32-bit word value such that expressionl is
the high half and expression2 is the low half.

Example:

LWORD _WORD @LNG(HI,LO) ;build long word

@LO(expression)

Returns the lower 16 bits of a value. @LO(expression) is equivalent to (expression & OxFfFff).

Example:

mov.u d2,#@LO(COUNT) ;lower 16 bits of COUNT
addih d2,d2,#@H1 (COUNT)

@LOG(expression)

Returns the natural logarithm of expression as a floating-point value. expression must be greater than
zero.

Example:

LOG .EQU @LOG(100.0) ;LOG = 4.605170
@LOS(expression)

Returns the lower 16 bits of a value, adjusted for a signed addition. @LOS(expression) is equivalent
to (((expression+0x8000) & OxFFFF) - 0x8000).

Example:

movh.a a3,#@HIS(label)
lea a3, [a3]@Los(label)

@LSB(expression)

Returns the least significant byte of the result of the expression. The result of the expression is calculated
as 16 bit.

Example:

103

TASKING VX-toolset for TriCore User Guide

VAR1 -SET @LSB(0x34) ;VAR1 = 0x34
VAR2 -SET @LSB(0x1234) ;VAR2 = 0x34
VAR3 -SET @LSB(0x654321) ;VAR3 = 0x21
@LST()

Returns the value of the $L1ST ON/OFF control flag as an integer. Whenever a $LIST ON control is
encountered in the assembler source, the flag is incremented; when a $LIST OFF control is encountered,
the flag is decremented.

Example:
-DUP @ABS(ALSTQ) ;list unconditionally

@LUN(expression)

Converts the 32-bit expression to a floating-point value. expression should represent a binary fraction.

Example:

DBLFRC1 _EQU @LUN(0x40000000) ;DBLFRC1 = 0.5
DBLFRC2 _EQU @LUN(3928472) ;DBLFRC2 = 0.007354736
DBLFRC3 .EQU @LUN(OXEO000000) ;DBLFRC3 = -0.75

@MAC(symbol)

Returns integer 1 if symbol has been defined as a macro name, 0 otherwise.
Example:

IF @MAC(DOMUL) ;does macro DOMUL exist?
@MAX(expressionl[,expressionN],...)

Returns the maximum value of expressionl, ..., expressionN as a floating-point value.
Example:

MAX: -BYTE @MAX(1,-2.137,3.5) ;MAX = 3.5
@MIN(expressionl[,expressionN],...)

Returns the minimum value of expressionl, ..., expressionN as a floating-point value.
Example:

MIN: -BYTE @MIN(1,-2.137,3.5) ;MIN = -2.137
@MSB(expression)

Returns the most significant byte of the result of the expression. The result of the expression is calculated
as 16 bit.

104

Assembly Language

Example:

VAR1 -SET @MSB(0x34) ;VARL = 0x00

VAR2 -SET @MSB(0x1234) ;VAR2 = 0x12

VAR3 -SET @MSB(0x654321) ;VAR3 = 0x43

@MXP()

Returns integer 1 if the assembler is expanding a macro, O otherwise.
Example:

-IF @MXPQO ;macro expansion active?

@POS(stringl,string2|,start])

Returns the position of string2 in string1 as an integer. If string2 does not occur in stringl, the last string
position + 1 is returned.

With start you can specify the starting position of the search. If you do not specify start, the search is
started from the beginning of string1. Note that the first position in a string is position 0.

Example:

ID1 .EQU @POS("TASKING®","ASK") ; ID1
ID2 .EQU @POS("ABCDABCD®,"B",2) ; ID2
ID3 .EQU @POS("TASKING®","BUG") ; ID3

nouo
NG

@POW(expressionl,expression2)

Returns expressionl raised to the power expression2 as a floating-point value. expressionl and
expression2 must be separated by a comma.

Example:

BUF _EQU @CVI(@POW(2.0,3.0)) ;BUF = 8

@RND()

Returns a random value in the range 0.0 to 1.0.

Example:

SEED .EQU @RNDQO ;save initial SEED value

@RVB(expressionl,expression2)

Reverse the order of bits in expressionl delimited by the number of bits in expression2. If expression2
is omitted the field is bounded by the target word size. Both expressions must be 16-bit integer values.

Example:

105

TASKING VX-toolset for TriCore User Guide

VAR1 .SET @RVB(0x200) ;reverse all bits, VAR1=0x40
VAR2 _SET @RVB(0xB02) ;reverse all bits, VAR2=0x40D0
VAR3 .SET @RVB(O0xB02,2) ;reverse bits 0 and 1,

; VAR3=0xB01

@SCP(stringl,string2)

Returns integer 1 if the two strings compare, 0 otherwise. The two strings must be separated by a comma.
Example:

.IF @SCP(STR, "MAIN") ; does STR equal "MAIN"?

@SFRACT (expression)

This function returns the 16-bit fractional representation of the floating-point expression. The expression
must be in the range [-1,+1>.

Example:

.WORD @SFRACT(0.1), @SFRACT(1.0)
@SGN(expression)

Returns the sign of expression as an integer: -1 if the argument is negative, 0O if zero, 1 if positive. The
expression may be relative or absolute.

Example:

VAR1 .SET @SGN(-1.2e-92) ;VARL = -1
VAR2 _SET @SGN(O) ;VAR2 = O
VAR3 .SET @SGN(28.382) ;VAR3 = 1

@SIN(expression)

Returns the sine of expression as a floating-point value.

Example:

.WORD @SIN(@CVF(COUNT)*FREQ) ;compute sine value
@SNH(expression)

Returns the hyperbolic sine of expression as a floating-point value.
Example:

HSINE .EQU @SNH(VAL) ;hyperbolic sine
@SQT(expression)

Returns the square root of expression as a floating-point value. expression must be positive.

106

Assembly Language

Example:
SQRT1 _EQU @SQT(3.5) ;SQRT1 = 1.870829
SQRT2 _EQU @SQT(16) ;SQRT2 = 4

@SUB(string,expressionl,expression2)

Returns the substring from string as a string. expressionl is the starting position within string, and
expression?2 is the length of the desired string. The assembler issues an error if either expressionl or
expression2 exceeds the length of string. Note that the first position in a string is position 0.

Example:

-DEFINE 1D "@SUB("TASKING",3,4)" ;ID = "KING"

@TAN(expression)

Returns the tangent of expression as a floating-point value.

Example:

TANGENT .SET @TAN(1.0) ;TANGENT = 1.5574077

@TNH(expression)

Returns the hyperbolic tangent of expression as a floating-point value.

Example:

HTAN _SET @TNH(1) ;HTAN = 0.76159415595
@UNF(expression)

Converts expression to a floating-point value. expression should represent a 16-bit binary fraction.
Example:

FRC -EQU @UNF(0x4000) ;FRC = 0.5

@XPN(expression)

Returns the exponential function (base e raised to the power of expression) as a floating-point value.
Example:

EXP -EQU @XPN(1.0) JEXP = 2.718282

107

TASKING VX-toolset for TriCore User Guide

3.9. Assembler Directives and Controls

An assembler directive is simply a message to the assembler. Assembler directives are not translated
into machine instructions. There are three main groups of assembler directives.

» Assembler directives that tell the assembler how to go about translating instructions into machine code.
This is the most typical form of assembly directives. Typically they tell the assembler where to put a
program in memory, what space to allocate for variables, and allow you to initialize memory with data.
When the assembly source is assembled, a location counter in the assembler keeps track of where
the code and data is to go in memory.

The following directives fall under this group:

* Assembly control directives

« Symbol definition and section directives

« Data definition / Storage allocation directives
» High Level Language (HLL) directives

Directives that are interpreted by the macro preprocessor. These directives tell the macro preprocessor
how to manipulate your assembly code before it is actually being assembled. You can use these
directives to write macros and to write conditional source code. Parts of the code that do not match the
condition, will not be assembled at all.

Some directives act as assembler options and most of them indeed do have an equivalent assembler
(command line) option. The advantage of using a directive is that with such a directive you can overrule
the assembler option for a particular part of the code. Directives of this kind are called controls. A typical
example is to tell the assembler with an option to generate a list file while with the controls $LIST ON

and $LIST OFF you overrule this option for a part of the code that you do not want to appear in the
list file. Controls always appear on a separate line and start with a '$' sign in the first column.

The following controls are available:
* Assembly listing controls
* Miscellaneous controls

Each assembler directive or control has its own syntax. You can use assembler directives and controls
in the assembly code as pseudo instructions.

Some assembler directives can be preceded with a label. If you do not precede an assembiler directive
with a label, you must use white space instead (spaces or tabs). The assembler recognizes both upper
and lower case for directives.

108

3.9.1. Assembler Di

Assembly Language

rectives

Overview of assembly control directives

Directive Description

-COMMENT Start comment lines. You cannot use this directive in .IF/.ELSE/.ENDIF
constructs and .MACRO/.DUP definitions.

-END Indicates the end of an assembly module

-FAIL Programmer generated error message

- INCLUDE Include file

-MESSAGE Programmer generated message

-WARNING Programmer generated warning message

Overview of symbol definition and section directives

Directive Description

-ALIAS Create an alias for a symbol

-EQU Set permanent value to a symbol

-EXTERN Import global section symbol

-GLOBAL Declare global section symbol

-LOCAL Declare local section symbol

-NAME Specify name of original C source file

-ORG Initialize memory space and location counters to create a hnameless section
.SDECL Declare a section with name, type and attributes
-SECT Activate a declared section

.SET Set temporary value to a symbol

-SIZE Set size of symbol in the ELF symbol table
-TYPE Set symbol type in the ELF symbol table

-WEAK Mark a symbol as 'weak’

Overview of data defi

nition / storage allocation directives

Directive Description

-ACCUM Define 64-bit constant of 18 + 46 bits format
-ALIGN Align location counter

.ASCI1, _ASCIIZ Define ASCII string without / with ending NULL byte
-BYTE Define byte

-DOUBLE Define a 64-bit floating-point constant

-FLOAT Define a 32-bit floating-point constant

109

TASKING VX-toolset for TriCore User Guide

Directive Description

-FRACT Define a 32-bit constant fraction
-HALF Define half-word (16 bits)
-SFRACT Define a 16-bit constant fraction
.SPACE Define storage

-WORD Define word (32 bits)

Overview of macro preprocessor directives

-IF, _.ELIF, .ELSE
-ENDIF

-EXITM

-MACRO, .ENDM
-PMACRO

-UNDEF

Directive Description

-DEFINE Define substitution string

.DUP, .ENDM Duplicate sequence of source lines
-DUPA, _ENDM Duplicate sequence with arguments
-DUPC, .ENDM Duplicate sequence with characters
-DUPF, .ENDM Duplicate sequence in loop

Conditional assembly directive

End of conditional assembly directive
Exit macro

Define macro

Undefine (purge) macro

Undefine .DEFINE symbol

Overview of HLL directives

Directive Description
-CALLS Pass call tree information and/or stack usage information
-MISRAC Pass MISRA-C information

110

Assembly Language

ACCUM

Syntax

[1 abel :]. ACCUM expr essi on[, expression]...
Description

With the . ACCUM directive the assembler allocates and initializes two words of memory (64 bits) for each
argument. Use commas to separate multiple arguments.

An expression can be:

« afractional fixed point expression (range [-217, 2!

>)
* NULL (indicated by two adjacent commas: ,,)

Multiple arguments are stored in successive address locations in sets of two bytes. If an argument is
NULL its corresponding address location is filled with zeros.

If the evaluated expression is out of the range [-217, 217>, the assembler issues a warning and saturates
the fractional value.

Example

ACC: _ACCUM 0.1,0.2,0.3

Related Information

.FRACT, .SFRACT (Define 32-bit/16-bit constant fraction)

-SPACE (Define Storage)

111

TASKING VX-toolset for TriCore User Guide

ALIAS

Syntax

al i as-name . ALI AS functi on- nane
Description

With the _ALIAS directive you can create an alias of a symbol. The C compiler generates this directive
when you use the #pragma alias.

Example

exit _ALIAS _Exit

112

Assembly Language

ALIGN
Syntax

. ALI GN expressi on
Description

With the . ALIGN directive you instruct the assembler to align the location counter. By default the assembler
aligns on one byte.

When the assembler encounters the .ALIGN directive, it advances the location counter to an address
that is aligned as specified by expression and places the next instruction or directive on that address.
The alignment is in minimal addressable units (MAUs). The assembler fills the ‘gap’ with NOP instructions
for code sections or with zeros for data sections. If the location counter is already aligned on the specified
alignment, it remains unchanged. The location of absolute sections will not be changed.

The expression must be a power of two: 2, 4, 8, 16, ... If you specify another value, the assembler changes
the alignment to the next higher power of two and issues a warning.

The assembler aligns sections automatically to the largest alignment value occurring in that section.
A label is not allowed before this directive.
Example

.sdecl ".text.mod.csec",code
.sect ".text.mod.csec"
.ALIGN 16 ; the assembler aligns
instruction ; this instruction at 16 MAUs and
; Fills the "gap” with NOP instructions.

.sdecl ".text.mod.csec2",code

.sect ".text.mod.csec2"

.ALIGN 12 ; WRONG: not a power of two, the

instruction ; assembler aligns this instruction at
; 16 MAUs and issues a warning.

113

TASKING VX-toolset for TriCore User Guide

ASCII, .ASClIZ

Syntax

[label:] .ASCIl string[,string]---
[label :] .ASCI1Z string[,string]---
Description

With the _ASCI1 1 or _.ASCI1 1Z directive the assembler allocates and initializes memory for each string
argument.

The _ASCI 1 directive does not add a NULL byte to the end of the string. The .ASCI 1Z directive does
add a NULL byte to the end of the string. The "z" in . ASCI 1Z stands for "zero". Use commas to separate
multiple strings.

Example

STRING: _.ASCIl1 *Hello world"
STRINGZ: _.ASCI1Z "Hello world"

Note that with the _BYTE directive you can obtain exactly the same effect:

STRING: .BYTE "Hello world"
STRINGZ: .BYTE "Hello world",0

without a NULL byte
with a NULL byte

Related Information
-BYTE (Define a constant byte)

.SPACE (Define Storage)

114

Assembly Language

.BYTE

Syntax

[l abel :] . BYTE argunent [, argunent J. ..

Description

With the _.BYTE directive the assembler allocates and initializes a byte of memory for each argument.
An argument can be:

 asingle or multiple character string constant

* an integer expression

* NULL (indicated by two adjacent commas: ,,)

Multiple arguments are stored in successive byte locations. If an argument is NULL its corresponding
byte location is filled with zeros.

If you specify label, it gets the value of the location counter at the start of the directive processing.

Integer arguments are stored as is, but must be byte values (within the range 0-255); floating-point
numbers are not allowed. If the evaluated expression is out of the range [-256, +255] the assembler issues
an error. For negative values within that range, the assembler adds 256 to the specified value (for example,
-254 is stored as 2).

String constants

Single-character strings are stored in a byte whose lower seven bits represent the ASCII value of the
character, for example:

-BYTE "R*" ; = 0x52

Multiple-character strings are stored in consecutive byte addresses, as shown below. The standard C
language escape characters like ‘\n’ are permitted.

-BYTE "AB",,"C" ; = 0x41420043 (second argument is empty)
Example

TABLE .BYTE “two",0,"strings”,0
CHARS .BYTE *A*","B","C","D"

Related Information
-ASCI1, _ASCII1Z (Define ASCII string without/with ending NULL)
-WORD, .HALF (Define a word / halfword)

.SPACE (Define Storage)

115

TASKING VX-toolset for TriCore User Guide

.CALLS

Syntax

. CALLS °caller”, “call ee”

or

. CALLS ’caller”, ”7, stack_usage[,---1
Description

The first syntax creates a call graph reference between caller and callee. The linker needs this information
to build a call graph. caller and callee are names of functions.

The second syntax specifies stack information. When callee is an empty name, this means we define the
stack usage of the function itself. The value specified is the stack usage in bytes at the time of the call
including the return address. A function can use multiple stacks.

This information is used by the linker to compute the used stack within the application. The information
is found in the generated linker map file within the Memory Usage.

This directive is generated by the C compiler. Normally you will not use it in hand-coded assembly.
A label is not allowed before this directive.
Example
.CALLS "main®,"nfunc*
Indicates that the function main calls the function nfunc.
.CALLS "main®,"",8

The function main uses 8 bytes on the stack.

116

Assembly Language

.COMMENT
Syntax

. COMMVENT delimter

delinmter
Description

With the . COMMENT directive you can define one or more lines as comments. The first non-blank character
after the . COMMENT directive is the comment delimiter. The two delimiters are used to define the comment
text. The line containing the second comment delimiter will be considered the last line of the comment.
The comment text can include any printable characters and the comment text will be produced in the
source listing as it appears in the source file.

A label is not allowed before this directive.
Example

.COMMENT + This is a one line comment +

.COMMENT * This is a multiple line
comment. Any number of lines
can be placed between the two
delimiters.

117

TASKING VX-toolset for TriCore User Guide

.DEFINE
Syntax

. DEFI NE synbol string
Description

With the . DEFINE directive you define a substitution string that you can use on all following source lines.
The assembler searches all succeeding lines for an occurrence of symbol, and replaces it with string. If
the symbol occurs in a double quoted string it is also replaced. Strings between single quotes are not
expanded.

This directive is useful for providing better documentation in the source program. A symbol can consist
of letters, digits and underscore characters (_), and the first character cannot be a digit.

Macros represent a special case. . DEFINE directive translations will be applied to the macro definition
as it is encountered. When the macro is expanded, any active .DEFINE directive translations will again
be applied.

The assembler issues a warning if you redefine an existing symbol.

A label is not allowed before this directive.

Example

Suppose you defined the symbol LEN with the substitution string "32":
-DEFINE LEN "32"

Then you can use the symbol LEN for example as follows:

-SPACE LEN
-.MESSAGE "The length is: LEN"

The assembler preprocessor replaces LEN with "32" and assembles the following lines:

-SPACE 32
-MESSAGE "The length is: 32"

Related Information
-UNDEF (Undefine a .DEFINE symbol)

-MACRO, .ENDM (Define a macro)

118

Assembly Language

.DUP, .ENDM
Syntax

[l abel :] . DUP expression

. ENDM
Description

With the _.DUP/_ENDM directive you can duplicate a sequence of assembly source lines. With expression
you specify the number of duplications. If the expression evaluates to a number less than or equal to 0O,
the sequence of lines will not be included in the assembler output. The expression result must be an
absolute integer and cannot contain any forward references (symbols that have not already been defined).
The .DUP directive may be nested to any level.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example

In this example the loop is repeated three times. Effectively, the preprocessor repeats the source lines
(-BYTE 10) three times, then the assembler assembles the result:

.DUP 3
-BYTE 10 ; assembly source lines
-.ENDM

Related Information

.DUPA, _ENDM (Duplicate sequence with arguments)
.DUPC, .ENDM (Duplicate sequence with characters)
-DUPF, _ENDM (Duplicate sequence in loop)

-MACRO, .ENDM (Define a macro)

119

TASKING VX-toolset for TriCore User Guide

.DUPA, .ENDM

Syntax

[l abel :] . DUPA formal _arg, argunment [, argunent]...

. ENDM
Description

With the .DUPA/.ENDM directive you can repeat a block of source statements for each argument. For
each repetition, every occurrence of the formal_arg parameter within the block is replaced with each
succeeding argument string. If an argument includes an embedded blank or other assembler-significant
character, it must be enclosed with single quotes.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example
Consider the following source input statements,

.DUPA VALUE,12,,32,34
-.BYTE VALUE
-ENDM

This is expanded as follows:

.BYTE 12
_.BYTE VALUE ; results iIn a warning
.BYTE 32
.BYTE 34

The second statement results in a warning of the assembler that the local symbol VALUE is not defined
in this module and is made external.

Related Information

.DUP, .ENDM (Duplicate sequence of source lines)
.DUPC, .ENDM (Duplicate sequence with characters)
-DUPF, .ENDM (Duplicate sequence in loop)

-MACRO, .ENDM (Define a macro)

120

Assembly Language

.DUPC, .ENDM
Syntax

[l abel :] .DUPC formal _arg, string

. ENDM
Description

With the .DUPC/_.ENDM directive you can repeat a block of source statements for each character within
string. For each character in the string, the formal_arg parameter within the block is replaced with that
character. If the string is empty, then the block is skipped.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example
Consider the following source input statements,

-DUPC VALUE, "123*

-.BYTE VALUE

-ENDM

This is expanded as follows:

.BYTE 1
.BYTE 2
.BYTE 3

Related Information

-DUP, _ENDM (Duplicate sequence of source lines)
-DUPA, _ENDM (Duplicate sequence with arguments)
.DUPF, .ENDM (Duplicate sequence in loop)

.MACRO, .ENDM (Define a macro)

121

TASKING VX-toolset for TriCore User Guide

.DUPF, .ENDM
Syntax

[l abel :] . DUPF formal _arg, [start], end[, i ncrenent]

. ENDM
Description

With the . DUPF/_ENDM directive you can repeat a block of source statements (end - start) + 1/ increment
times. start is the starting value for the loop index; end represents the final value. increment is the increment
for the loop index; it defaults to 1 if omitted (as does the start value). The formal_arg parameter holds the
loop index value and may be used within the body of instructions.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example
Consider the following source input statements,

.DUPF NUM, 0,7

MOV D\NUM, #0

-ENDM

This is expanded as follows:

MOV DO,#0
MOV D1,#0
MOV D2,#0
MOV D3,#0
MOV D4,#0
MOV D5,#0
MOV D6,#0
MOV D7,#0

Related Information

-DUP, _ENDM (Duplicate sequence of source lines)
-DUPA, _ENDM (Duplicate sequence with arguments)
.DUPC, .ENDM (Duplicate sequence with characters)

.MACRO, .ENDM (Define a macro)

122

Assembly Language

.END
Syntax

. END
Description

With the optional . END directive you tell the assembler that the end of the module is reached. If the
assembler finds assembly source lines beyond the _END directive, it ignores those lines and issues a
warning.

You cannot use the .END directive in a macro expansion.
The assembler does not allow a label with this directive.
Example

; source lines
-.END ; End of assembly module

Related Information

123

TASKING VX-toolset for TriCore User Guide

.EQU

Syntax

synbol . EQU expression
Description

With the _EQU directive you assign the value of expression to symbol permanently. The expression can
be relocatable or absolute and forward references are allowed. Once defined, you cannot redefine the
symbol. With the .GLOBAL directive you can declare the symbol global.

Example

To assign the value 0x400 permanently to the symbol MYSYMBOL:
MYSYMBOL _EQU 0x4000

You cannot redefine the symbol MYSYMBOL after this.

Related Information

-SET (Set temporary value to a symbol)

124

Assembly Language

EXITM
Syntax

. EXITM
Description

With the .EX1TM directive the assembler will immediately terminate a macro expansion. It is useful when
you use it with the conditional assembly directive . IF to terminate macro expansion when, for example,
error conditions are detected.

A label is not allowed before this directive.
Example

CALC _MACRO XVAL,YVAL
-IF XVAL<O0
-FAIL "Macro parameter value out of range”
-EXITM ;Exit macro
-ENDIF

- EI;JDM
Related Information
-DUP, .ENDM (Duplicate sequence of source lines)
.DUPA, _ENDM (Duplicate sequence with arguments)
.DUPC, .ENDM (Duplicate sequence with characters)
-DUPF, _ENDM (Duplicate sequence in loop)

-MACRO, .ENDM (Define a macro)

125

TASKING VX-toolset for TriCore User Guide

.EXTERN
Syntax

. EXTERN synbol [,synbol ...
Description

With the . EXTERN directive you define an external symbol. It means that the specified symbol is referenced
in the current module, but is not defined within the current module. This symbol must either have been
defined outside of any module or declared as globally accessible within another module with the .GLOBAL
directive.

If you do not use the .EXTERN directive and the symbol is not defined within the current module, the
assembler issues a warning and inserts the _.EXTERN directive.

A label is not allowed with this directive.

Example
.EXTERN AA,CC,DD ;defined elsewhere
.sdecl "_.text.code", code
.sect ".text.code"

MOV DO, #AA ; AA is used here

Related Information
-GLOBAL (Declare global section symbol)

-LOCAL (Declare local section symbol)

126

Assembly Language

.FAIL
Syntax

.FAIL {str]exp}L[,{str |exp}]---
Description

With the . FAIL directive you tell the assembler to print an error message to stderr during the assembling
process.

An arbitrary number of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified to describe the nature of the generated error. If you use expressions, the
assembler outputs the result. The assembler outputs a space between each argument.

The total error count will be incremented as with any other error. The . FAIL directive is for example
useful in combination with conditional assembly for exceptional condition checking. The assembly process
proceeds normally after the error has been printed.

With this directive the assembler exits with exit code 1 (an error).
A label is not allowed with this directive.
Example
-FAIL “Parameter out of range"
This results in the error:
E143: ["filenane" |ine] Parameter out of range
Related Information
-MESSAGE (Programmer generated message)

-WARNING (Programmer generated warning)

127

TASKING VX-toolset for TriCore User Guide

.FLOAT, .DOUBLE

Syntax

[1 abel :]. FLOAT expression[, expression]...
[! abel :]. DOUBLE expressi on[, expression]--.
Description

With the . FLOAT or .DOUBLE directive the assembler allocates and initializes a floating-point number
(32 hits) or a double (64 bits) in memory for each argument.

An expression can be:
« afloating-point expression
* NULL (indicated by two adjacent commas: ,,)

You can represent a constant as a signed whole number with fraction or with the 'e' format as used in the
C language. For example, 12.457 and +0.27E-13 are legal floating-point constants.

If the evaluated argument is too large to be represented in a single word / double-word, the assembler
issues an error and truncates the value.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example

FLT: .FLOAT 12.457,+0.27E-13
DBL: .DOUBLE 12.457,+0.27E-13

Related Information

-SPACE (Define Storage)

128

Assembly Language

.FRACT, .SFRACT

Syntax

[1 abel :]. FRACT expression[, expression]...
[! abel :]. SFRACT expression[, expression]- ..
Description

With the . FRACT or .SFRACT directive the assembler allocates and initializes a 32-bit or 16-bit constant
fraction in memory for each argument. Use commas to separate multiple arguments.

An expression can be:
« afractional fixed point expression (range [-1, +1>)
* NULL (indicated by two adjacent commas: ,,)

Multiple arguments are stored in successive address locations in sets of two bytes. If an argument is
NULL its corresponding address location is filled with zeros.

If the evaluated expression is out of the range [-1, +1>, the assembler issues a warning and saturates
the fractional value.

Example
FRCT: -FRACT 0.1,0.2,0.3
SFRCT: .SFRACT 0.1,0.2,0.3

Related Information
-ACCUM (Define 64-bit constant fraction in 18+46 bits format)

-SPACE (Define Storage)

129

TASKING VX-toolset for TriCore User Guide

.GLOBAL
Syntax

. GLOBAL synbol [,synbol ...
Description

All symbols or labels defined in the current section or module are local to the module by default. You can
change this default behavior with assembler option --symbol-scope=global.

With the .GLOBAL directive you declare one of more symbols as global. It means that the specified
symbols are defined within the current section or module, and that those definitions should be accessible
by all modules.

To access a symbol, defined with .GLOBAL, from another module, use the .EXTERN directive.

Only program labels and symbols defined with .EQU can be made global.

If the symbols that appear in the operand field are not used in the module, the assembler gives a warning.
The assembler does not allow a label with this directive.

Example

LOOPA _EQU 1 ; definition of symbol LOOPA
.GLOBAL LOOPA ; LOOPA will be globally
; accessible by other modules

Related Information
-EXTERN (Import global section symbol)

-LOCAL (Declare local section symbol)

130

Assembly Language

IF, .ELIF, .ELSE, .ENDIF

Syntax

.1 F expression

[. ELIF expression] ; the .ELIF directive is optional

[. ELSE] ; the _ELSE directive is optional

. ENDI F
Description

With the . IF/_ENDIF directives you can create a part of conditional assembly code. The assembler
assembles only the code that matches a specified condition.

The expression must evaluate to an absolute integer and cannot contain forward references. If expression
evaluates to zero, the IF-condition is considered FALSE, any non-zero result of expression is considered
as TRUE.

If the optional .ELSE and/or -ELIF directives are not present, then the source statements following the
- IF directive and up to the next . ENDIF directive will be included as part of the source file being assembled
only if the expression had a non-zero result.

If the expression has a value of zero, the source file will be assembled as if those statements between
the . IF and the .ENDIF directives were never encountered.

If the .ELSE directive is present and expression has a nonzero result, then the statements between the
. IF and . ELSE directives will be assembled, and the statement between the .ELSE and .ENDIF directives
will be skipped. Alternatively, if expression has a value of zero, then the statements between the . IF and
-ELSE directives will be skipped, and the statements between the .ELSE and .ENDIF directives will be
assembled.

You can nest . IF directives to any level. The .ELSE and .ELIF directive always refer to the nearest
previous . IF directive.

A label is not allowed with this directive.
Example

Suppose you have an assemble source file with specific code for a test version, for a demo version and
for the final version. Within the assembly source you define this code conditionally as follows:

IF TEST

... ; code for the test version
-.ELIF DEMO

... ; code for the demo version
-ELSE

131

TASKING VX-toolset for TriCore User Guide
... ; code for the final version
-ENDIF

Before assembling the file you can set the values of the symbols TEST and DEMO in the assembly source
before the . IF directive is reached. For example, to assemble the demo version:

TEST .SET O
DEMO .SET 1

You can also define the symbols on the command line with the assembler option --define (-D):

astc --define=DEMO --define=TEST=0 test.src

132

Assembly Language

INCLUDE

Syntax

.INCLUDE "fil enane"™ | <filenane>
Description

With the . INCLUDE directive you include another file at the exact location where the . INCLUDE occurs.
This happens before the resulting file is assembled. The . INCLUDE directive works similarly to the

#include statement in C. The source from the include file is assembled as if it followed the point of the
- INCLUDE directive. When the end of the included file is reached, assembly of the original file continues.

The string specifies the filename of the file to be included. The filename must be compatible with the
operating system (forward/backward slashes) and can contain a directory specification.

If an absolute pathname is specified, the assembler searches for that file. If a relative path is specified
or just a filename, the order in which the assembler searches for include files is:

1. The current directory if you use the "filename" construction.
The current directory is not searched if you use the <filename> syntax.
2. The path that is specified with the assembler option --include-directory.
3. The path that is specified in the environment variable ASTCINC when the product was installed.
4. The default include directory in the installation directory.
The assembler does not allow a label with this directive.
Example

- INCLUDE *"storage\mem.asm*® ; include file
. INCLUDE <data.asm> ; Do not look in
; current directory

133

TASKING VX-toolset for TriCore User Guide

.LOCAL
Syntax

. LOCAL synbol [,synbol ...
Description

All symbols or labels defined in the current section or module are local to the module by default. You can
change this default behavior with assembler option --symbol-scope=global.

With the . LOCAL directive you declare one of more symbols as local. It means that the specified symbols
are explicitly local to the module in which you define them.

If the symbols that appear in the operand field are not used in the module, the assembler gives a warning.
The assembler does not allow a label with this directive.
Example

.SDECL " .data.io",DATA
.SECT ".data.io"
.LOCAL LOOPA ; LOOPA is local to this section

LOOPA .HALF 0x100 ; assigns the value 0x100 to LOOPA
Related Information
-EXTERN (Import global section symbol)

-GLOBAL (Declare global section symbol)

134

Assembly Language

.MACRO, .ENDM
Syntax
macr o_nanme . MACRO [argunent [,argunment]...]

macro_definition_statenments

. ENDM
Description

With the _.MACRO directive you define a macro. Macros provide a shorthand method for handling a repeated
pattern of code or group of instructions. You can define the pattern as a macro, and then call the macro
at the points in the program where the pattern would repeat.

The definition of a macro consists of three parts:

» Header, which assigns a name to the macro and defines the arguments (-MACRO directive).
» Body, which contains the code or instructions to be inserted when the macro is called.

» Terminator, which indicates the end of the macro definition (- ENDM directive).

The arguments are symbolic names that the macro processor replaces with the literal arguments when
the macro is expanded (called). Each formal argument must follow the same rules as symbol names: the
name can consist of letters, digits and underscore characters (_). The first character cannot be a digit.
Argument names cannot start with a percent sign (%).

Macro definitions can be nested but the nested macro will not be defined until the primary macro is
expanded.

You can use the following operators in macro definition statements:

Operator |[Name Description

\ Macro argument concatenation | Concatenates a macro argument with adjacent
alphanumeric characters.

? Return decimal value of symbol | Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

% Return hex value of symbol Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

“ Macro string delimiter Allows the use of macro arguments as literal strings.

A Macro local label override Prevents name mangling on labels in macros.

Example

The macro definition:

CONST.D .MACRO dx,v ;header
movh dx,#@his(v) ;body

135

TASKING VX-toolset for TriCore User Guide
addi dx,dx,#@los(v)
.ENDM

The macro call:

.SDECL . text",code
.SECT "L text”
CONST.D d4,0x12345678

The macro expands as follows:

movh d4,#0his(0x12345678)
addi d4,d4,#@10s(0x12345678)

Related Information

Section 3.10, Macro Operations

.DUP, _.ENDM (Duplicate sequence of source lines)
-DUPA, _ENDM (Duplicate sequence with arguments)
.DUPC, .ENDM (Duplicate sequence with characters)
.DUPF, .ENDM (Duplicate sequence in loop)
-PMACRO (Undefine macro)

-DEFINE (Define a substitution string)

136

;terminator

Assembly Language

.MESSAGE
Syntax

. MESSACE {str |exp}[,{str]exp}]---
Description

With the _.MESSAGE directive you tell the assembiler to print a message to stderr during the assembling
process.

An arbitrary number of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified to describe the nature of the generated message. If you use expressions,
the assembler outputs the result. The assembler outputs a space between each argument.

The error and warning counts will not be affected. The _MESSAGE directive is for example useful in
combination with conditional assembly to indicate which part is assembled. The assembling process
proceeds normally after the message has been printed.

This directive has no effect on the exit code of the assembiler.
A label is not allowed with this directive.
Example

-DEFINE LONG "'SHORT"
-MESSAGE "This is a LONG string-
-MESSAGE "This is a LONG string"

Within single quotes, the defined symbol LONG is not expanded. Within double quotes the symbol LONG
is expanded so the actual message is printed as:

This is a LONG string
This is a SHORT string

Related Information
-FAIL (Programmer generated error)

-WARNING (Programmer generated warning)

137

TASKING VX-toolset for TriCore User Guide

.MISRAC
Syntax

.M SRAC string
Description

The C compiler can generate the . MISRAC directive to pass the compiler's MISRA-C settings to the object
file. The linker performs checks on these settings and can generate a report. It is not recommended to
use this directive in hand-coded assembly.

Example

_.MISRAC "MISRA-C:2004,64,e2,0b,e,ell,27,6,ef83,el,
ef,66,cb75,afl,eff,e7,e7¥,8d,63,87FfF7,6FF3,4"

Related Information
Section 4.8, C Code Checking: MISRA-C

C compiler option --misrac

138

Assembly Language

.NAME
Syntax

. NAME string
Description

With the . NAME directive you specify the name of the original C source module. This directive is generated
by the C compiler. You do not need this directive in hand-written assembly.

Example

-NAME "main.c"

139

TASKING VX-toolset for TriCore User Guide

.ORG
Syntax

. ORG [abs-1oc][,sect_type][,attribute].-..
Description

With the .ORG directive you can specify an absolute location (abs_loc) in memory of a section. This is
the same as a . SDECL/ . SECT without a section name.

This directive uses the following arguments:

abs-loc Initial value to assign to the run-time location counter. abs-loc must be an absolute
expression. If abs_loc is not specified, then the value is zero.

sect_type |An optional section type: code or data

attribute An optional section attribute: init, noread, noclear, max, rom, group(string), cluster(string),
protect

For more information about the section types and attributes see the assembler directive . SDECL.
The section type and attributes are case insensitive. A label is not allowed with this directive.
Example

; define a section at location 100 decimal
.org 100

; define a relocatable nameless section
.org

; define a relocatable data section
.org ,data

; define a data section at 0x8000
.org 0x8000,data

Related Information
.SDECL (Declare section name and attributes)

-SECT (Activate a declared section)

140

Assembly Language

.PMACRO
Syntax

. PMACRO synbol [,synbol]-..
Description

With the .PMACRO directive you tell the assembler to undefine the specified macro, so that later uses of
the symbol will not be expanded.

The assembler does not allow a label with this directive.
Example
-PMACRO MAC1,MAC2
This statement causes the macros named MAC1 and MAC2 to be undefined.
Related Information

-MACRO, .ENDM (Define a macro)

141

TASKING VX-toolset for TriCore User Guide

.SDECL
Syntax

. SDECL "nane',type[,attribute]... [AT address]
Description

With the . SDECL directive you can define a section with a name, type and optional attributes. Before any
code or data can be placed in a section, you must use the .SECT directive to activate the section.

The name specifies the name of the section. The type operand specifies the section’s type and must be
one of:

Type |Description
CODE |Code section.
DATA |Data section.

The section type and attributes are case insensitive.

The defined attributes are:

Attribute Description Allowed on type
AT address Locate the section at the given address. CODE, DATA
CLEAR Sections are zeroed at startup. DATA

CLUSTER(‘name") | Cluster code sections with companion debug sections. Used by [CODE, DATA
the linker during removal of unreferenced sections. The name
must be unique for this module (not for the application).

INIT Defines that the section contains initialization data, which is CODE, DATA
copied from ROM to RAM at program startup.

LINKONCE ‘tag’ For internal use only.

MAX When data sections with the same name occur in different object | DATA
modules with the MAX attribute, the linker generates a section
of which the size is the maximum of the sizes in the individual
object modules.

NOCLEAR Sections are not zeroed at startup. This is a default attribute for | DATA
data sections. This attribute is only useful with BSS sections,
which are cleared at startup by default.

NOINIT Defines that the section contains no initialization data. CODE, DATA

NOREAD Defines that the section can be executed from but not read. CODE

PROTECT Tells the linker to exclude a section from unreferenced section |[CODE, DATA
removal and duplicate section removal.

ROM Section contains data to be placed in ROM. This ROM area is |CODE, DATA

not executable.

142

Section names

Assembly Language

The name of a section can have a special meaning for locating sections. The name of code sections
should always start with " text". With data sections, the prefix in the name is important. The prefix
determines if the section is initialized, constant or uninitialized and which addressing mode is used. See
the following table.

Name prefix | Type of section

text program code

.data initialized data

.zdata initialized data, abs 18 addressing

.sdata initialized data, a0 addressing

.data_a8 initialized data, a8 addressing

.data_a9 initialized data, a9 addressing

.rodata constant data

.zrodata constant data, abs 18 addressing

Idata constant data, al addressing (read only constants, literal data)

.rodata_a8 |constant data, a8 addressing

.rodata_a9 |constant data, a9 addressing

.bss uninitialized data

.zbss uninitialized data, abs 18 addressing

.sbss uninitialized data, a0 addressing

.bss a8 uninitialized data, a8 addressing

.bss_a9 uninitialized data, a9 addressing

Note that the compiler uses the following name convention:

prefix._modul e_nane.function_or_obj ect _nane

Example
.sdecl "_text.t.main", CODE ; declare code section
.sect "_text.t.main" ; activate section
.sdecl "_data.t.varl', DATA ; declare data section
.sect "_data.t.varl" ; activate section
.sdecl "_text.intvec.00a", CODE ; declare interrupt

; vector table entry for interrupt 10
.sect "_text.intvec.00a" ; activate section
.sdecl "_data.t.abssec",data at 0x100
; absolute section

.sect "'_data.t.abssec" ; activate section

143

TASKING VX-toolset for TriCore User Guide

Related Information
-SECT (Activate a declared section)

-ORG (Initialize a nameless section)

144

Assembly Language

SECT
Syntax

. SECT "name" [, RESET]
Description

With the . SECT directive you activate a previously declared section with the name name. Before you can
activate a section, you must define the section with the . SDECL directive. You can activate a section as
many times as you need.

With the attribute RESET you can reset counting storage allocation in data sections that have section
attribute MAX.

Example

declare data section
activate section

.sdecl ".zdata.t.var2", DATA
.sect "_zdata.t.var2"

Related Information
-SDECL (Declare section name and attributes)

-ORG (Initialize a nameless section)

145

TASKING VX-toolset for TriCore User Guide

SET

Syntax

synbol . SET expression

.SET synbol expression
Description

With the _SET directive you assign the value of expression to symbol temporarily. If a symbol was defined
with the _SET directive, you can redefine that symbol in another part of the assembly source, using the
- SET directive again. Symbols that you define with the . SET directive are always local: you cannot define
the symbol global with the .GLOBAL directive.

The _SET directive is useful in establishing temporary or reusable counters within macros. expression
must be absolute and forward references are allowed.

Example

COUNT _SET O Initialize count. Later on you can

assign other values to the symbol

Related Information

-EQU (Set permanent value to a symbol)

146

Assembly Language

SIZE
Syntax
. SI ZE synbol , expression
Description
With the . SIZE directive you set the size of the specified symbol to the value represented by expression.

The .SI1ZE directive may occur anywhere in the source file unless the specified symbol is a function. In
this case, the . SIZE directive must occur after the function has been defined.

Example

main: _.type func
. ; Function main

retl6
main_function_end:
.size main,main_function_end-main

Related Information

-TYPE (Set symbol type)

147

TASKING VX-toolset for TriCore User Guide

.SPACE

Syntax

[l abel :] . SPACE expression
Description

The _SPACE directive reserves a block in memory. The reserved block of memory is not initialized to any
value.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

The expression specifies the number of MAUs (Minimal Addressable Units) to be reserved, and how
much the location counter will advance. The expression must evaluate to an integer greater than zero
and cannot contain any forward references (symbols that have not yet been defined). For the TriCore the
MAU size is 8 (1 byte).

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example
To reserve 12 bytes (not initialized) of memory in a TriCore data section:

.sdecl ".zbss.tst.uninit",DATA
.sect ".zbss.tst.uninit"
uninit _SPACE 12 ; Sample buffer

Related Information

-BYTE (Define a constant byte)

148

Assembly Language

.TYPE

Syntax

synbol . TYPE typeid
Description

With the . TYPE directive you set a symbol's type to the specified value in the ELF symbol table. Valid
symbol types are:

FUNC The symbol is associated with a function or other executable code.
OBJECT The symbol is associated with an object such as a variable, an array, or a structure.
FILE The symbol name represents the filename of the compilation unit.

Labels in code sections have the default type FUNC. Labels in data sections have the default type OBJECT.
Example

Afunc: _.type func

Related Information

-SIZE (Set symbol size)

149

TASKING VX-toolset for TriCore User Guide

.UNDEF
Syntax

. UNDEF synbol
Description

With the .UNDEF directive you can undefine a substitution string that was previously defined with the
-DEFINE directive. The substitution string associated with symbol is released, and symbol will no longer
represent a valid . DEFINE substitution or macro.

The assembler issues a warning if you redefine an existing symbol.
The assembler does not allow a label with this directive.
Example

The following example undefines the LEN substitution string that was previously defined with the .DEFINE
directive:

.UNDEF LEN
Related Information

-DEFINE (Define a substitution string)

150

Assembly Language

WARNING
Syntax

. WARNI NG {str |exp}[,{str |exp}]---
Description

With the _.WARNING directive you tell the assembler to print a warning message to stderr during the
assembling process.

An arbitrary number of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified to describe the nature of the generated warning. If you use expressions,
the assembler outputs the result. The assembler outputs a space between each argument.

The total warning count will be incremented as with any other warning. The .WARNING directive is for
example useful in combination with conditional assembly to indicate which part is assembled. The
assembling process proceeds normally after the message has been printed.

This directive has no effect on the exit code of the assembler, unless you use the assembler option
--warnings-as-errors. In that case the assembler exits with exit code 1 (an error).

A label is not allowed with this directive.
Example
-WARNING “Parameter out of range®
This results in the warning:
W144: ["fil enane™ |ine] Parameter out of range
Related Information
-FAIL (Programmer generated error)

-MESSAGE (Programmer generated message)

151

TASKING VX-toolset for TriCore User Guide

WEAK

Syntax

. EAK synbol [,synbol ...

Description

With the _WEAK directive you mark one or more symbols as 'weak'. The symbol can be defined in the
same module with the .GLOBAL directive or the .EXTERN directive. If the symbol does not already exist,

it will be created.

A 'weak' external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to

resolve the reference.

You can overrule a weak definition with a . GLOBAL definition in another module. The linker will not
complain about the duplicate definition, and ignore the weak definition.

Only program labels and symbols defined with . EQU can be made weak.

Example

LOOPA _EQU 1 ;
-.GLOBAL LOOPA ;

-WEAK LOOPA ;

Related Information

definition of symbol LOOPA
LOOPA will be globally
accessible by other modules
mark symbol LOOPA as weak

-EXTERN (Import global section symbol)

-GLOBAL (Declare global section symbol)

152

Assembly Language

WORD, .HALF
Syntax

[l abel :] . WORD argunent [,argunent J. ..
[l abel :] . HALF argunent [,argunent]...

Description

With the _WORD or .HALF directive the assembler allocates and initializes one word (32 bits) or a halfword
(16 bits) of memory for each argument.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

An argument can be a single- or multiple-character string constant, an expression or empty.

Multiple arguments are stored in sets of four or two bytes. One or more arguments can be null (indicated
by two adjacent commas), in which case the corresponding byte location will be filled with zeros.

The value of the arguments must be in range with the size of the directive; floating-point numbers are not
allowed. If the evaluated argument is too large to be represented in a word / halfword, the assembler
issues a warning and truncates the value.

String constants

Single-character strings are stored in the most significant byte of a word / halfword, where the lower seven
bits in that byte represent the ASCII value of the character, for example:

-WORD "R*
-HALF "R*

0x52000000
0x5200

Multiple-character strings are stored in consecutive byte addresses, as shown below. The standard C
language escape characters like ‘\n’ are permitted.

-WORD “ABCD* ; = 0x44434241

Example

When a string is supplied as argument of a directive that initializes multiple bytes, each character in the
string is stored in consecutive bytes whose lower seven bits represent the ASCII value of the character.
For example:

HTBL: _HALF “ABC-,,"D"
WTBL: .WORD "ABC*

results in 0x424100004400 , the "C" is truncated
results in 0x43424100

Related Information
-BYTE (Define a constant byte)

-SPACE (Define Storage)

153

TASKING VX-toolset for TriCore User Guide

3.9.2. Assembler Controls

Controls start with a $ as the first character on the line. Unknown controls are ignored after a warning is
issued.

Overview of assembler listing controls

Control Description

$LIST ON/OFF Print / do not print source lines to list file

$LIST *flags" Exclude / include lines in assembly list file

$PAGE Generate form feed in list file

$PAGE settings Define page layout for assembly list file

$PRCTL Send control string to printer

$STITLE Set program subtitle in header of assembly list file
$TITLE Set program title in header of assembly list file

Overview of miscellaneous assembler controls

Control Description

$CASE ON/OFF Case sensitive user names ON/OFF

$defect_TCnum ON Enable/disable assembler check for specified functional problem, defect is
one of CPU, DMU, PMI or PMU

$DEBUG ON/OFF Generation of symbolic debug ON/OFF

$DEBUG *‘flags™ Select debug information

$FPU Allow single precision floating-point instructions

$HW_ONLY Prevent substitution of assembly instructions by smaller or faster instructions

$IDENT LOCAL/GLOBAL |Assembler treats labels by default as local or global

$MMU Allow memory management instructions

$OBJIECT Alternative name for the generated object file

$WARNING OFF [num] Suppress all or some warnings

154

Assembly Language

$CASE
Syntax

$CASE ON
$CASE OFF

Default
$CASE ON
Description

With the $CASE ON and $CASE OFF controls you specify wether the assembler operates in case sensitive
mode or not. By default the assembler operates in case sensitive mode. This means that all user-defined
symbols and labels are treated case sensitive, so LAB and Lab are distinct.

Note that the instruction mnemonics, register names, directives and controls are always treated case
insensitive.

Example

;begin of source
$CASE OFF ; assembler in case insensitive mode

Related Information

Assembler option --case-insensitive

155

TASKING VX-toolset for TriCore User Guide

$CPU_TCnum, $DMU_TCnum, $PMI_TCnum, $PMU_TCnum
Syntax

$CPU_TCnum ON
$CPU_TCnum OFF

$DMJ_TCnum ON
$DMJ_TCnum OFF

$PM _TCnum ON
$PM _TCnum OFF

$PMJ_TCnum ON
$PMJ_TCnum OFF

Description

With these controls you can enable or disable specific CPU functional problem checks.
When you use this control, the define __defect TCnhum___is setto 1.

Example

$CPU_TCO18 ON ; enable assembler check for CPU
; functional problem CPU_TC.018,
; __CPU_TCO18 _ is defined

Related Information
Assembler option --silicon-bug

Chapter 17, CPU Problem Bypasses and Checks

156

Assembly Language

$DEBUG
Syntax

$DEBUG ON
$DEBUG OFF
$DEBUG "fl ags"

Default
$DEBUG " AhLS"
Description

With the $DEBUG ON and $DEBUG OFF controls you turn the generation of debug information on or off.
($DEBUG ON is similar to the assembler option --debug-info=+local (-gl).

If you use the $DEBUG control with flags, you can set the following flags:

a/A Assembly source line information

h/H Pass high level language debug information (HLL)
L Assembler local symbols debug information

s/S Smart debug information

You cannot specify $DEBUG "ah'. Either the assembler generates assembly source line information, or
it passes HLL debug information.

Debug information that is generated by the C compiler, is always passed to the object file.

Example

;begin of source
$DEBUG ON ; generate local symbols debug information

Related Information

Assembler option --debug-info

157

TASKING VX-toolset for TriCore User Guide

$FPU
Syntax
$FPU
Description

With the $FPU control you instruct the assembler to accept and encode single precision floating-point
instructions in the assembly source file.

When you use this control, the define __ FPU___is set to 1. By default the define __FPU___issetto 0
which tells the assembler not to accept single precision floating-point instructions.

Example

;begin of source
$FPU ; the use of single precision FPU instructions
; In this source is allowed.

Related Information

Assembler option --fpu-present

158

Assembly Language

$HW_ONLY
Syntax

$HW ONLY
Description

Normally the assembler replaces instructions by other, smaller or faster instructions. For example, the
instruction jeq dO,#0, labell is replaced by jz dO, labell.

With the $HW_ONLY control you instruct the assembler to encode all instruction as they are. The assembler
does not substitute instructions with other, faster or smaller instructions.

Example

;begin of source

$HW_ONLY ; the assembler does not substitute
; instructions with other, smaller or
; Faster instructions.

Related Information

Assembler option --optimize=+generics

159

TASKING VX-toolset for TriCore User Guide

SIDENT
Syntax

$I DENT LOCAL
$I DENT GLOBAL

Default
$I DENT LOCAL
Description

With the controls $IDENT LOCAL and $I1DENT GLOBAL you tell the assembler how to treat symbols that
you have not specified explicitly as local or global with the assembler directives . LOCAL or .GLOBAL.

By default the assembler treats all symbols as local symbols unless you have defined them to be global
explicitly.

Example

;begin of source
$IDENT GLOBAL ; assembly labels are global by default

Related Information
Assembler directive .GLOBAL
Assembler directive .LOCAL

Assembler option --symbol-scope

160

Assembly Language

$LIST ON/OFF
Syntax

$LI ST ON
$LI ST OFF

Default
$LI ST ON
Description

If you generate a list file with the assembler option --list-file, you can use the $LIST ON and $LIST
OFF controls to specify which source lines the assembler must write to the list file. Without the assembler
option --list-file these controls have no effect. The controls take effect starting at the next line.

The SLIST ON control actually increments a counter that is checked for a positive value and is symmetrical
with respect to the $LIST OFF control. Note the following sequence:

; Counter value currently 1

$LIST ON ; Counter value = 2
$LIST ON ; Counter value = 3
$LIST OFF ; Counter value = 2
$LIST OFF ; Counter value = 1

The listing still would not be disabled until another $LIST OFF control was issued.
Example

... ; source line in list file
$LIST OFF

... ; source line not in list file
$LIST ON

... ; source line also in list file

Related Information
Assembler option --list-file
Assembler control $LIST "flags"

Assembler function @LST()

161

TASKING VX-toolset for TriCore User Guide

SLIST "flags"

Syntax

$LI ST "fl ags"

You can set the following flags:

d/D
elE
a/G
i/l
m/M
n/N
p/P
a/Q
r’R
vV
w/W
XIX
yIY
z/lZ

Default

List section directives (.SDECL, .SECT)
List symbol definition directives

List expansion of generic instructions
List generic instructions

List macro definitions

List empty source lines (newline)

List conditional assembly

List equate and set directives (-EQU, .SET)
List relocations characters 'r'

List equate and set values

Wrap source lines

List macro expansions

List cycle counts

List define expansions

$LI ST " dEG MhPgr Vinxy Z"

Description

If you generate a list file with the assembler option --list-file, you can use the $LIST control to specify
which type of source lines the assembler must exclude from the list file. Without the assembler option
--list-file this control has no effect.

To switch a flag 'on', use a lowercase letter. To switch a flag off, use an uppercase letter.

Example

The following example also includes macro definitions and equate and set values in the list file:

;begin of source

$LIST "mv"

Related Information

Assembler option --list-file

Assembler control $LIST ON/OFF

162

Assembly Language

Assembler option --list-format

163

TASKING VX-toolset for TriCore User Guide

$MMU
Syntax
$MVJ
Description

With the $MMU control you instruct the assembler to accept and encode memory management instructions
in the assembly source file.

When you use this control, the define __ MMU___is set to 1.
Example

;begin of source
$MMU ; the use of memory management instructions
; In this source is allowed.

Related Information

Assembler option --mmu-present

164

Assembly Language

$OBJECT
Syntax

$OBJECT "file"
$OBJECT OFF

Default
$OBJECT
Description

With the $OBJECT control you can specify an alternative name for the generated object file. With the
$0OBJECT OFF control, the assembler does not generate an object file at all.

Example

;Begin of source
$object ""x1.0" ; generate object file x1.0

Related Information

Assembler option --output

165

TASKING VX-toolset for TriCore User Guide

$PAGE

Syntax

$PAGE [pagewi dt h[,pagel engt h[,bl ankt op[,bl ankbt m[,bl ankl eft 1111

Default

$PACGE 132,72,0,0,0

Description

If you generate a list file with the assembler option --list-file, you can use the $PAGE control to format

the generated list file.

The arguments may be any positive absolute integer expression, and must be separated by commas.

pagewidth

Number of columns per line. The default is 132, the minimum is 40.

pagelength

Total number of lines per page. The default is 72, the minimum is 10.
As a special case, a page length of 0 turns off page breaks.

blanktop

Number of blank lines at the top of the page. The default is 0, the
minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) < (pagelength - 10).

blankbtm

Number of blank lines at the bottom of the page. The default is 0, the
minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) < (pagelength - 10).

blankleft

Number of blank columns at the left of the page. The default is 0, the
minimum is 0, and the maximum must maintain the relationship: blankleft
< pagewidth.

If you use the $PAGE control without arguments, it causes a 'formfeed': the next source line is printed on
the next page in the list file. The $PAGE control itself is not printed.

Example

$PAGE

$PAGE 96

$PAGE ,,3,3

Related Information

Assembler option --list-file

166

formfeed, the next source line is printed
on the next page in the list file.

set page width to 96. Note that you can
omit the last four arguments.

use 3 line top/bottom margins.

Assembly Language

$PRCTL

Syntax

$PRCTL exp]string[,exp]string]-..
Description

If you generate a list file with the assembler option --list-file, you can use the $PRCTL control to send
control strings to the printer.

The $PRCTL control simply concatenates its arguments and sends them to the listing file (the control line
itself is not printed unless there is an error).

You can specify the following arguments:

expr A byte expression which may be used to encode non-printing control characters, such as ESC.

string An assembler string, which may be of arbitrary length, up to the maximum assembler-defined
limits.

The $PRCTL control can appear anywhere in the source file; the assembler sends out the control string
at the corresponding place in the listing file.

If a $PRCTL control is the last line in the last input file to be processed, the assembler insures that all
error summaries, symbol tables, and cross-references have been printed before sending out the control
string. In this manner, you can use a $PRCTL control to restore a printer to a previous mode after printing
is done.

Similarly, if the $PRCTL control appears as the first line in the first input file, the assembler sends out the
control string before page headings or titles.

Example
$PRCTL $1B,"E" ; Reset HP LaserlJet printer
Related Information

Assembler option --list-file

167

TASKING VX-toolset for TriCore User Guide

$STITLE

Syntax

$STI TLE "string"
Default

$STI TLE ""
Description

If you generate a list file with the assembler option --list-file, you can use the $STITLE control to specify
the program subtitle which is printed at the top of all succeeding pages in the assembler list file below
the title.

The specified subtitle is valid until the assembler encounters a new $STITLE control. By default, the
subtitle is empty.

The $STITLE control itself will not be printed in the source listing.
If the page width is too small for the title to fit in the header, it will be truncated.
Example

$TITLE "This is the title"
$STITLE “"This is the subtitle”

Related Information
Assembler option --list-file

Assembler control $TITLE

168

Assembly Language

$TITLE

Syntax

$TI TLE "string"
Default

$TI TLE ""
Description

If you generate a list file with the assembler option --list-file, you can use the $TITLE control to specify
the program title which is printed at the top of each page in the assembler list file.

The specified title is valid until the assembler encounters a new $TI1TLE control. By default, the title is
empty.

The $TITLE control itself will not be printed in the source listing.

If the page width is too small for the title to fit in the header, it will be truncated.
Example

$TITLE “This is the title"

Related Information

Assembler option --list-file

Assembler control $STITLE

169

TASKING VX-toolset for TriCore User Guide

$SWARNING OFF
Syntax

$WARNI NG OFF [nunber]
Default

All warnings are reported.
Description

This control allows you to disable all or individual warnings. The number argument must be a valid warning
message number.

Example

$WARNING OFF ; all warning messages are suppressed
$WARNING OFF 135 ; suppress warning message 135
Related Information

Assembler option --no-warnings

170

Assembly Language

3.10. Macro Operations

Macros provide a shorthand method for inserting a repeated pattern of code or group of instructions. You
can define the pattern as a macro, and then call the macro at the points in the program where the pattern
would repeat.

Some patterns contain variable entries which change for each repetition of the pattern. Others are subject
to conditional assembly.

When a macro is called, the assembler executes the macro and replaces the call by the resulting in-line
source statements. 'In-line' means that all replacements act as if they are on the same line as the macro
call. The generated statements may contain substitutable arguments. The statements produced by a
macro can be any processor instruction, almost any assembler directive, or any previously-defined macro.
Source statements resulting from a macro call are subject to the same conditions and restrictions as any
other statements.

Macros can be nested. The assembler processes nested macros when the outer macro is expanded.

3.10.1. Defining a Macro

The first step in using a macro is to define it.

The definition of a macro consists of three parts:

» Header, which assigns a name to the macro and defines the arguments (.MACRO directive).
» Body, which contains the code or instructions to be inserted when the macro is called.

» Terminator, which indicates the end of the macro definition (- ENDM directive).

A macro definition takes the following form:

macr o_name . MACRO [argument [,argument]...]
macro_definition_statenents

. ENDM
For more information on the definition see the description of the .MACRO directive.

The .DUP, .DUPA, .DUPC, and .DUPF directives are specialized macro forms to repeat a block of source
statements. You can think of them as a simultaneous definition and call of an unnamed macro. The source
statements between the .DUP, .DUPA, .DUPC, and .DUPF directives and the .ENDM directive follow the
same rules as macro definitions.

3.10.2. Calling a Macro

To invoke a macro, construct a source statement with the following format:
[l abel 7 macro_nane [argunent [,argunent]...] [; comment]

where,

171

TASKING VX-toolset for TriCore User Guide

label An optional label that corresponds to the value of the location counter
at the start of the macro expansion.

macro_name The name of the macro. This may not start in the first column.

argument One or more optional, substitutable arguments. Multiple arguments
must be separated by commas.

comment An optional comment.

The following applies to macro arguments:

» Each argument must correspond one-to-one with the formal arguments of the macro definition. If the
macro call does not contain the same number of arguments as the macro definition, the assembler
issues a warning.

« If an argument has an embedded comma or space, you must surround the argument by single quotes

O

» You can declare a macro call argument as null in three ways:

enter delimiting commas in succession with no intervening spaces

macroname ARG1, ,ARG3 ; the second argument is a null argument

terminate the argument list with a comma, the arguments that normally would follow, are now
considered null

macroname ARG1, ; the second and all following arguments are null

declare the argument as a null string

* No character is substituted in the generated statements that reference a null argument.

3.10.3. Using Operators for Macro Arguments

The

assembler recognizes certain text operators within macro definitions which allow text substitution of

arguments during macro expansion. You can use these operators for text concatenation, numeric
conversion, and string handling.

Operator [Name Description

\

Macro argument concatenation | Concatenates a macro argument with adjacent
alphanumeric characters.

Return decimal value of symbol | Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

% Return hex value of symbol Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

“ Macro string delimiter Allows the use of macro arguments as literal strings.

A Macro local label override Prevents name mangling on labels in macros.

172

Assembly Language

Example: Argument Concatenation Operator -\

Consider the following macro definition:

SWAP_MEM _MACRO REG1,REG2 ;swap memory contents
LD.W DO, [A\ REG1] ;use DO as temp
LD.W D1, [A\REG2] ;use D1 as temp

ST.W [A\REG1],D1
ST.W [A\REG2],DO
.ENDM

The macro is called as follows:
SWAP_MEM 0,1
The macro expands as follows:

LD.W DO, [AO]
LD.W D1,[A1]
ST.W [A0],D1
ST.W [A1],DO

The macro preprocessor substitutes the character '0' for the argument REG1, and the character '1' for the
argument REG2. The concatenation operator (\) indicates to the macro preprocessor that the substitution
characters for the arguments are to be concatenated with the character 'A'.

Without the '\' operator the macro would expand as:

LD.W DO, [AREG1]
LD.W D1, [AREG2]
ST.W [AREG1],D1
ST.W [AREG2],DO

which results in an assembler error (invalid operand).
Example: Decimal Value Operator - ?

Instead of substituting the formal arguments with the actual macro call arguments, you can also use the
value of the macro call arguments.

Consider the following source code that calls the macro SWAP_SYM after the argument AREG has been
set to 0 and BREG has been set to 1.

AREG .SET 0
BREG .SET 1
SWAP_SYM AREG,BREG

If you want to replace the arguments with the value of AREG and BREG rather than with the literal strings
"AREG" and "BREG", you can use the ? operator and modify the macro as follows:

SWAP_SYM .MACRO REG1,REG2 ;Swap memory contents
LD.W DO, lab\?REG1 ;use DO as temp

173

TASKING VX-toolset for TriCore User Guide

LD.W D1, lab\?REG2 ;use D1 as temp
ST.W _lab\?REG1,D1

ST.W _l1ab\?REG2,D0

-ENDM

The macro first expands as follows:

LD.W DO, lab\?AREG
LD.W D1, lab\?BREG
ST.W _1ab\?AREG,D1
ST.W _1ab\?BREG,DO

Then ?AREG is replaced by '0' and ?BREG is replaced by "1

LD.W DO, lab\1l
LD.W D1, lab\2
ST.W _lab\1,D1
ST.W _lab\2,D0

Because of the concatenation operator '\' the strings are concatenated:

LD.W DO, labl
LD.W D1, lab2
ST.W _labl,D1
ST.W _lab2,D0

Example: Hex Value Operator - %

The percent sign (%) is similar to the standard decimal value operator (?) except that it returns the
hexadecimal value of a symbol.

Consider the following macro definition:

GEN_LAB -.MACRO LAB,VAL,STMT
LAB\WAL STMT
-ENDM

The macro is called after NUM has been set to 10:

NUM _SET 10
GEN_LAB HEX,NUM,NOP

The macro expands as follows:
HEXA NOP

The %VAL argument is replaced by the character 'A" which represents the hexadecimal value 10 of the
argument VAL.

174

Assembly Language

Example: Argument String Operator - "

To generate a literal string, enclosed by single quotes ('), you must use the argument string operator (*)
in the macro definition.

Consider the following macro definition:

STR_MAC -MACRO STRING
-BYTE " STRING"
-ENDM

The macro is called as follows:
STR_MAC ABCD

The macro expands as follows:
-BYTE “"ABCD"

Within double quotes . DEFINE directive definitions can be expanded. Take care when using constructions
with single quotes and double quotes to avoid inappropriate expansions. Since .DEFINE expansion
occurs before macro substitution, any . DEFINE symbols are replaced first within a macro argument string:

-DEFINE LONG “short*

STR_MAC -MACRO STRING
-MESSAGE "This is a LONG STRING"
-MESSAGE "This is a LONG STRING"
-ENDM

If the macro is called as follows:
STR_MAC sentence
it expands as:

-.MESSAGE "This is a LONG STRING*"
-MESSAGE "This is a short sentence”

Macro Local Label Override Operator -

If you use labels in macros, the assembler normally generates another unique name for the labels (such
as LAB__M_L000001).

The macro "-operator prevents name mangling on macro local labels.
Consider the following macro definition:

INIT .MACRO addr
LAB: LD.W DO,”addr
-ENDM

The macro is called as follows:

175

TASKING VX-toolset for TriCore User Guide

LAB:
INIT LAB

The macro expands as:
LAB__M_LO0O0001: LD.W DO,LAB

If you would have omitted the ~ operator, the macro preprocessor would choose another name for LAB
because the label already exists. The macro would expand like:

LAB__M_LOOOOO1: LD.W DO,LAB__M_LOO0O0OO1

176

Chapter 4. Using the C Compiler

This chapter describes the compilation process and explains how to call the C compiler.

The TASKING VX-toolset for TriCore under Eclipse can use the internal builder (default) or the TASKING
makefile generator (external builder) to build your entire embedded project, from C source till the final
ELF/DWARF object file which serves as input for the debugger.

Although in Eclipse you cannot run the C compiler separately from the other tools, this section discusses
the options that you can specify for the C compiler.

On the command line it is possible to call the C compiler separately from the other tools. However, it is
recommended to use the control program for command line invocations of the toolset (see Section 9.1,
Control Program). With the control program it is possible to call the entire toolset with only one command
line.

The C compiler takes the following files for input and output:

Csource file
.C
1 .
compiler
Ccompiler intermediate file
|] - .mil
assembly file

. 8IC

This chapter first describes the compilation process which consists of a frontend and a backend part.
Next it is described how to call the C compiler and how to use its options. An extensive list of all options
and their descriptions is included in Section 11.1, C Compiler Options. Finally, a few important basic tasks
are described, such as including the C startup code and performing various optimizations.

4.1. Compilation Process

During the compilation of a C program, the C compiler runs through a number of phases that are divided
into two parts: frontend and backend.

The backend part is not called for each C statement, but starts after a complete C module or set of modules
has been processed by the frontend (in memory). This allows better optimization.

The C compiler requires only one pass over the input file which results in relative fast compilation.
Frontend phases
1. The preprocessor phase:
The preprocessor includes files and substitutes macros by C source. It uses only string manipulations
on the C source. The syntax for the preprocessor is independent of the C syntax but is also described

in the ISO/IEC 9899:1999(E) standard.

2. The scanner phase:

177

TASKING VX-toolset for TriCore User Guide

The scanner converts the preprocessor output to a stream of tokens.
3. The parser phase:

The tokens are fed to a parser for the C grammar. The parser performs a syntactic and semantic
analysis of the program, and generates an intermediate representation of the program. This code is
called MIL (Medium level Intermediate Language).

4. The frontend optimization phase:

Target processor independent optimizations are performed by transforming the intermediate code.

Backend phases

1. Instruction selector phase:

This phase reads the MIL input and translates it into Low level Intermediate Language (LIL). The LIL
objects correspond to a processor instruction, with an opcode, operands and information used within
the C compiler.

2. Peephole optimizer/instruction scheduler/software pipelining phase:

This phase replaces instruction sequences by equivalent but faster and/or shorter sequences, rearranges
instructions and deletes unnecessary instructions.

3. Register allocator phase:
This phase chooses a physical register to use for each virtual register.
4. The backend optimization phase:

Performs target processor independent and dependent optimizations which operate on the Low level
Intermediate Language.

5. The code generation/formatter phase:

This phase reads through the LIL operations to generate assembly language output.

MIL linking

The frontend phase performs its optimizations on the MIL code. When all C modules and/or MIL modules
of an application are given to the C compiler in a single invocation, the C compiler will link MIL code of
the modules to a complete application automatically. Next, the frontend will run its optimizations again
with application scope. After this, the MIL code is passed on to the backend, which will generate a single
.src file for the whole application. Linking with the run-time library, floating-point library and C library is
still necessary. Linking with the C library is required because this library contains some hand-coded
assembly functions, that are not linked in at MIL level.

178

Using the C Compiler

Optional

....... + _._._._._._*

linker

MIL splitting

When you specify that the C compiler has to use MIL splitting (C compiler option --mil-split), the C
compiler will first link the application at MIL level as described above. However, after rerunning the
optimizations the MIL code is not passed on to the backend. Instead the frontend writes a .ms file for
each input module. A .ms file has the same format as a -mi I file. Only _ms files that really change are
updated. The advantage of this approach is that it is possible to use the make utility to translate only
those parts of the application to a . src file that really have changed. MIL splitting is therefore a more
efficient build process than MIL linking. The penalty for this is that the code compaction optimization in
the backend does not have application scope. As with MIL linking, it is still required to link with the normal
libraries to build an ELF file.

179

TASKING VX-toolset for TriCore User Guide

Cfile 1 Cfile 2 L Cfile N

:

MIL file 1 MIL file 2

MIL file &

MIL split MIL split

source 1 source 2

ssembler ssembler

To read more about how MIL linking influences the build process of your application, see Section 4.7,
Influencing the Build Time.

4.2. Calling the C Compiler

The TASKING VX-toolset for TriCore under Eclipse can use the internal builder (default) or the TASKING
makefile generator (external builder) to build your entire project. After you have built your project, the
output files are available in a subdirectory of your project directory, depending on the active configuration
you have set in the C/C++ Build » Settings page of the Project » Properties dialog.

Building a project under Eclipse

You have several ways of building your project:

Build Selected File(s) (). This compiles and assembles the selected file(s) without calling the linker.
1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

* Build Individual Project (1),

To build individual projects incrementally, select Project » Build Project.

* Rebuild Project (@-'1). This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...

180

Using the C Compiler

2. Enable the option Start a build immediately and click OK.

 Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you only need to set them
once. Based on the target processor, the compiler includes a special function register file. This is a regular
include file which enables you to use virtual registers that are located in memory.

1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Processor.
In the right pane the Processor page appears.
3. From the Processor Selection list, select a processor.
To access the C/C++ compiler options
1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler.
4. Select the sub-entries and set the options in the various pages.
Note that the C/C++ compiler options are used to create an object file from a C or C++ file. The

options you enter in the Assembler page are not only used for hand-coded assembly files, but
also for intermediate assembly files.

You can find a detailed description of all C compiler options in Section 11.1, C Compiler Options.
Invocation syntax on the command line (Windows Command Prompt):

ctc [[option]--. [file]l..-.]---

181

TASKING VX-toolset for TriCore User Guide

4.3.The C Startup Code

You need the run-time startup code to build an executable application. The startup code consists of the
following components:

« Initialization code. This code is executed when the program is initiated and before the function main()
is called. It initializes the processor's registers and the application C variables.

 Exit code. This controls the close down of the application after the program's main function terminates.

 Trap vector table. This contains default trap vectors. See also Section 1.9.4, Interrupt and Trap Functions.
To add the C startup code to your project
When you create a new project with the New C/C++ Project wizard (File » New » Other... » TASKING

C/C++ » TASKING VX-toolset for TriCore C/C++ Project), fill in the dialogs and enable the option Add
C startup code to the project in the following dialog (this is the default setting).

B NMew C/C++ Project |Z|[E| E|

TriCore Project Settings —

Setk options to create a TriCore project

Add C startup code to the project
Add Linker scrip file to the project

@ [Finish H Cancel]

This adds the files cstart.c and cstart.h to your project. These files are copies of
lib/src/cstart._c en include/cstart.h. If you do not add the startup code here, you can always
add it later with File » New » Other... » TASKING C/C++ » cstart.c/cstart.h Files.

To change the C Startup Code in Eclipse
1. Double-click on the file cstart.c.

The cstart.c file opens in the editor area with several tabs.

182

Using the C Compiler

CEEYER. =

S N T A A AT AT AT AL L T TAALALALALATLNLTTAXLTLXL A

&

*% FILE I CEtart.o

T

*% DESCRIPTICH :

= The system startup code initislizes the processor's registe
wh and the application € wvariables.

TE

#% Copyright 1996-2007 Altiwm BV

T

e e i e e e i i e e i i e e i e e i e e e e e e e e i i e e i i e e e e

#include "cstart.h™ /% include configur

#include <=stdlib.h>
#include <stdbool.h:>

#pragma weak exit
#pragma extern Exit

Sffpragwa optimize sboefglKlpoRsy f¥ preset optimizat
#pragma tradecff 4 /% preset tradeoff
#if _ USE_ARGC_ARGY v
£ >

cskart,c | Configuration | Register | cstart.h

2. You can edit the C startup code directly in the cstart. c tab or make changes to the other tabs
(Configuration, Register, cstart.h).

The file cstart.c is updated automatically according to the changes you make in the tabs. A * appears
in front of the name of the file to indicate that the file has changes.

3. click = or select File » Save to save the changes.

Configuration tab

On the Configuration tab, you can make changes to the C startup code configuration. You can disable
specific initializations and you can disable the trap vectors you do not want to be automatically defined
in the startup code.

Register tab
On the Register tab, you can specify the registers and their settings that must be known to the startup
code. Enable the option Initialize in startup code to add a register setting to the startup code. If you

made changes to the registers and you want to reset the registers to their original values, click on the
Set CPU defaults button.

4.4. How the Compiler Searches Include Files

When you use include files (with the #include statement), you can specify their location in several ways.
The compiler searches the specified locations in the following order:

183

TASKING VX-toolset for TriCore User Guide

1. If the #include statement contains an absolute pathname, the compiler looks for this file. If no path
or a relative path is specified, the compiler looks in the same directory as the source file. This is only

possible for include files that are enclosed in ™.

This first step is not done for include files enclosed in <>.

2. When the compiler did not find the include file, it looks in the directories that are specified in the C/C++
Compiler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the Project
Properties dialog (equivalent to the - command line option).

3. When the compiler did not find the include file (because it is not in the specified include directory or
because no directory is specified), it looks in the path(s) specified in the environment variable CTCINC.

4. When the compiler still did not find the include file, it finally tries the default include directory relative
to the installation directory (unless you specified option --no-stdinc).

Example

Suppose that the C source file test. c contains the following lines:

#include <stdio.h>
#include "myinc.h"

You can call the compiler as follows:
ctc -Imyinclude test.c

First the compiler looks for the file stdio.h in the directory myinclude relative to the current directory.
If it was not found, the compiler searches in the environment variable CTCINC and then in the default
include directory.

The compiler now looks for the file myinc.h, in the directory where test. c is located. If the file is not
there the compiler searches in the directory myinclude. If it was still not found, the compiler searches
in the environment variable CTCINC and then in the default include directory.

4.5. Compiling for Debugging

Compiling your files is the first step to get your application ready to run on a target. However, during
development of your application you first may want to debug your application.

To create an object file that can be used for debugging, you must instruct the compiler to include symbolic
debug information in the source file.

To include symbolic debug information
1. From the Project menu, select Properties
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.

184

Using the C Compiler

In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » Debugging.

4. Select Default in the Generate symbolic debug information box.
Debug and optimizations

Due to different compiler optimizations, it might be possible that certain debug information is optimized
away. Therefore, if you encounter strange behavior during debugging it might be necessary to reduce
the optimization level, so that the source code is still suitable for debugging. For more information on
optimization see Section 4.6, Compiler Optimizations.

Invocation syntax on the command line (Windows Command Prompt)
The invocation syntax on the command line is:

ctc -g file.c

4.6. Compiler Optimizations

The compiler has a number of optimizations which you can enable or disable.
1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » Optimization.
4. Select an optimization level in the Optimization level box.
or:

In the Optimization level box select Custom optimization and enable the optimizations you want
on the Custom optimization page.

Optimization levels

The TASKING C compiler offers four optimization levels and a custom level, at each level a specific set
of optimizations is enabled.

» Level 0 - No optimization: No optimizations are performed. The compiler tries to achieve a 1-to-1
resemblance between source code and produced code. Expressions are evaluated in the order written
in the source code, associative and commutative properties are not used.

» Level 1 - Optimize: Enables optimizations that do not affect the debug-ability of the source code. Use
this level when you encounter problems during debugging your source code with optimization level 2.

185

TASKING VX-toolset for TriCore User Guide
» Level 2 - Optimize more (default): Enables more optimizations to reduce the memory footprint and/or
execution time. This is the default optimization level.

* Level 3 - Optimize most: This is the highest optimization level. Use this level when your
program/hardware has become too slow to meet your real-time requirements.

» Custom optimization: you can enable/disable specific optimizations on the Custom optimization page.
Optimization pragmas
If you specify a certain optimization, all code in the module is subject to that optimization. Within the C

source file you can overrule the C compiler options for optimizations with #pragma optimize fl ag
and #pragma endoptimize. Nesting is allowed:

#pragma optimize e /* Enable expression
simplification */
... C source ...

#pragma optimize c /* Enable common expression
elimination. Expression

... C source ... simplification still enabled */

#pragma endoptimize /* Disable common expression

elimination */
#pragma endoptimize /* Disable expression
simplification */

The compiler optimizes the code between the pragma pair as specified.

You can enable or disable the optimizations described in the following subsection. The command line
option for each optimization is given in brackets.

4.6.1. Generic Optimizations (frontend)

Common subexpression elimination (CSE) (option -Oc/-OC)

The compiler detects repeated use of the same (sub-)expression. Such a "common" expression is replaced
by a variable that is initialized with the value of the expression to avoid recomputation. This method is
called common subexpression elimination (CSE).

Expression simplification (option -Oe/-OE)

Multiplication by 0 or 1 and additions or subtractions of 0 are removed. Such useless expressions may
be introduced by macros or by the compiler itself (for example, array subscripting).

Constant propagation (option -Op/-OP)

A variable with a known value is replaced by that value.

186

Using the C Compiler

Automatic function inlining (option -Oi/-Ol)

Small functions that are not too often called, are inlined. This reduces execution time at the cost of code
size.

Code compaction (reverse inlining) (option -Or/-OR)

Compaction is the opposite of inlining functions: large chunks of code that occur more than once, are
transformed into a function. This reduces code size at the cost of execution speed.

Control flow simplification (option -Of/-OF)

A number of techniques to simplify the flow of the program by removing unnecessary code and reducing
the number of jumps. For example:

» Switch optimization: A number of optimizations of a switch statement are performed, such as removing
redundant case labels or even removing an entire switch.

* Jump chaining: A (conditional) jump to a label which is immediately followed by an unconditional jump
may be replaced by a jump to the destination label of the second jump. This optimization speeds up
execution.

» Conditional jump reversal: A conditional jump over an unconditional jump is transformed into one
conditional jump with the jump condition reversed. This reduces both the code size and the execution
time.

» Dead code elimination: Code that is never reached, is removed. The compiler generates a warning
messages because this may indicate a coding error.

Subscript strength reduction (option -Os/-0S)

An array or pointer subscripted with a loop iterator variable (or a simple linear function of the iterator
variable), is replaced by the dereference of a pointer that is updated whenever the iterator is updated.

Loop transformations (option -Ol/-OL)

Transform a loop with the entry point at the bottom, to a loop with the entry point at the top. This enables
constant propagation in the initial loop test and code motion of loop invariant code by the CSE optimization.

Forward store (option -Oo/-00)

A temporary variable is used to cache multiple assignments (stores) to the same non-automatic variable.
4.6.2. Core Specific Optimizations (backend)

Coalescer (option -Oa/-OA)

The coalescer seeks for possibilities to reduce the number of moves (MOV instruction) by smart use of
registers. This optimizes both speed as code size.

187

TASKING VX-toolset for TriCore User Guide

Peephole optimizations (option -Oy/-QY)

The generated assembly code is improved by replacing instruction sequences by equivalent but faster
and/or shorter sequences, or by deleting unnecessary instructions.

Align loop bodies (option -On/-ON)

Loop bodies are aligned to lower the number of fetches required to retrieve the loop body.
Instruction Scheduler (option -Ok/-OK)

When two instructions need the same machine resource - like a bus, register or functional unit - at the
same time, they suffer a structural hazard, which stalls the pipeline. This optimization tries to rearrange
instructions to avoid structural hazards, for example by inserting another non-related instruction, or pairing
a L/S instruction with a data arithmetic instruction in order to fill both pipelines as much as possible.
Unroll small loops (option -Ou/-OU)

To reduce the number of branches, short loops are eliminated by replacing them with a number of copies.

IFconversion (option -Ov/-QV)

IF - ELSE constructions are transformed into predicated instructions. This avoids unnecessary jumps
while the predicated instructions are optimized by the pipeline scheduler and the predicate optimization.

Software pipelining (option -Ow/-OW)

A number of techniques to optimize loops. For example, within a loop the most efficient order of instructions
is chosen by the pipeline scheduler and it is examined what instructions can be executed parallel.

Use of SIMD instructions (option -Om/-OM)

The iteration counts of loops are reduced where possible by taking advantage of the TriCore SIMD
instructions. This optimizes speed, but may cause a slight increase in code size.

Generic assembly optimizations (option -Og/-OG)
A set of target independent optimizations that increase speed and decrease code size.
4.6.3. Optimize for Size or Speed

You can tell the compiler to focus on execution speed or code size during optimizations. You can do this
by specifying a size/speed trade-off level from O (speed) to 4 (size). This trade-off does not turn optimization
phases on or off. Instead, its level is a weight factor that is used in the different optimization phases to
influence the heuristics. The higher the level, the more the compiler focusses on code size optimization.
To choose a trade-off value read the description below about which optimizations are affected and the
impact of the different trade-off values.

Note that the trade-off settings are directions and there is no guarantee that these are followed. The
compiler may decide to generate different code if it assessed that this would improve the result.

188

Using the C Compiler

To specify the size/speed trade-off optimization level:
1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » Optimization.
4. Select a trade-off level in the Trade-off between speed and size box.
See also C compiler option --tradeoff (-t)
Instruction Selection
Trade-off levels 0, 1 and 2: the compiler selects the instructions with the smallest number of cycles.
Trade-off levels 3 and 4: the compiler selects the instructions with the smallest number of bytes.
Switch Jump Chain versus Jump Table
Instruction selection for the switch statements follows different trade-off rules. A switch statement can

result in a jump chain or a jump table. The compiler makes the decision between those by measuring
and weighing bytes and cycles. This weigh is controlled with the trade-off values:

Trade-off value Time Size
0 100% 0%

1 75% 25%
2 50% 50%
3 25% 75%
4 0% 100%

Loop Optimization

For a top-loop, the loop is entered at the top of the loop. A bottom-loop is entered at the bottom. Every
loop has a test and a jump at the bottom of the loop, otherwise it is not possible to create a loop. Some
top-loops also have a conditional jump before the loop. This is only necessary when the number of loop
iterations is unknown. The number of iterations might be zero, in this case the conditional jump jumps
over the loop.

Bottom loops always have an unconditional jump to the loop test at the bottom of the loop.

Trade-off value Try to rewrite top-loops to |Optimize loops for
bottom-loops size/speed

0 no speed
yes speed

189

TASKING VX-toolset for TriCore User Guide

Trade-off value

Try to rewrite top-loops to

Optimize loops for

bottom-loops size/speed
yes speed
yes size
yes size
Example:
int a;
void iC int 1, int m)

return;

}

Coded as a bottom loop (compiled with --tradeoff=4) is:

J
.L3:

Id.w di5,1
add16 di15,#1
st.w a,di5
add16 d5,#1

.L2:
jlt

;> unconditional jump to loop test at bottom

;> loop entry point

d5,d4, .L3

Coded as a top loop (compiled with --tradeoff=0) is:

Id.w
jlt
.L3:

addi16
addi16

jlt
.L2:
st.w

d5,d4,.L2

;; test for at least one loop iteration
;; can be omitted when number of iterations is known

;; loop entry point

d5,d4, .L3

Automatic Function Inlining

You can enable automatic function inlining with the option --optimize=+inline (-Oi) or by using #pragma

optimize +inline. This option is also part of the -O3 predefined option set.

When automatic inlining is enabled, you can use the options --inline-max-incr and --inline-max-size (or
their corresponding pragmas inline_max_incr 7/ inline_max_size) to control automatic inlining.

190

Using the C Compiler

By default their values are set to -1. This means that the compiler will select a value depending upon the
selected trade-off level. The defaults are:

Trade-off value inline-max-incr inline-max-size
0 100 50

1 50 25

2 20 20

3 10 10

4 0 0

For example with trade-off value 1, the compiler inlines all functions that are smaller or equal to 25 internal
compiler units. After that the compiler tries to inline even more functions as long as the function will not
grow more than 50%.

When these options/pragmas are set to a value >= 0, the specified value is used instead of the values
from the table above.

Static functions that are called only once, are always inlined, independent of the values chosen for
inline-max-incr and inline-max-size.

Code Compaction
Trade-off levels 0 and 1: code compaction is disabled.
Trade-off level 2: only code compaction of matches outside loops.

Trade-off level 3: code compaction of matches outside loops, and matches inside loops of patterns that
have an estimate execution frequency lower or equal to 10.

Trade-off level 4: code compaction of matches outside loops, and matches inside loops of patterns that
have an estimate execution frequency lower or equal to 100.

For loops where the iteration count is unknown an iteration count of 10 is assumed.
For the execution frequency the compiler also accounts nested loops.

See C compiler option --compact-max-size

4.7. Influencing the Build Time

In general many settings have influence on the build time of a project. Any change in the tool settings of
your project source will have more or less impact on the build time. The following sections describe several
issues that can have significant influence on the build time.

SFR File

SFR files can define such a large number of SFRs that compiling the SFR file alone already takes up a
significant part of the build time. To reduce the build time:

191

TASKING VX-toolset for TriCore User Guide

» Disable the automatic inclusion of the SFR file and include the SFR file only in the source modules
where the SFRs are used, with a #include directive. You can disable the automatic inclusion of the
SFR file with option --no-tasking-sfr of the tools. In Eclipse you can find this option on the "C/C++
Compiler » Preprocessing" and the "Assembler » Preprocessing" pages.

When you include the SFR file in the source, be aware that the SFR files are in the sfr subdirectory
of the include files, so you must use: #include <sfr/regtcl1165.sfr>

MIL Linking

With MIL linking it is possible to let the compiler apply optimizations application wide. This can yield
significant optimization improvements, but the build times can also be significantly longer. MIL linking
itself can require significant time, but also the changed build process implies longer build times. The MIL
linking settings in Eclipse are:

 Build for application wide optimizations (MIL-linking)

This enables MIL linking. The build process changes: the C files are translated to intermediate code
(MIL files) and the generated MIL files of the whole project are linked together by the C compiler. The
next step depends on the setting of the option below.

 Build for application wide code compaction

« When this option is enabled, the compiler runs the code generator immediately on the completely
linked MIL stream, which represents the entire application. This way the code generator can perform
the "code compaction" optimization at application scope. But this also requires significantly more
memory and requires more time to generate code. Besides that, it is no longer possible to do
incremental builds. With each build the full MIL linking phase and code generation has to be done,
even with the smallest change that would in a normal build (not MIL linking) require only a single
module to be translated.

* When this option is disabled, the compiler splits the MIL stream after MIL linking in separate modules.
This allows the code generation to be performed for the modified modules only, and will therefore
be faster than with the option enabled. Although the MIL stream is split in separate modules after
MIL linking, it still may happen that modifying a single C source file results in multiple MIL files to be
compiled. This is a natural result of global optimizations, where the code generated for multiple
modules was affected by the change.

In general, if you do not need code compaction, for example because you are optimizing fully for speed,
it is recommended to leave the Build for application wide code compaction disabled.

Optimization Options
In general any optimization may require more work to be done by the compiler. But this does not mean
that disabling all optimizations (level 0) gives the fastest compilation time. Disabling optimizations may

resultin more code being generated, resulting in more work for other parts of the compiler, like for example
the register allocator.

192

Using the C Compiler

Automatic Inlining

Automatic inlining is an optimization which can result in significant longer build time. The overall functions
will get bigger, often making it possible to do more optimizations. But also often resulting in more registers
to be in use in a function, giving the register allocation a tougher job.

Code Compaction

When you disable the code compaction optimization, the build times may be shorter. Certainly when MIL
linking is used where the full application is passed as a single MIL stream to the code generation. Code
compaction is however an optimization which can make a huge difference when optimizing for code size.
When size matters it makes no sense to disable this option. When you choose to optimize for speed
(--tradeoff=0) the code compaction is automatically disabled.

Header Files

Many applications include all header files in each module, often by including them all within a single
include file. Processing header files takes time. It is a good programming practice to only include the
header files that are really required in a module, because:

* itis clear what interfaces are used by a module
» an incremental build after modifying a header file results in less modules required to be rebuild

« it reduces compile time
Parallel Build

The make utility amk, which is used by Eclipse, has a feature to build jobs in parallel. This means that
multiple modules can be compiled in parallel. With today's multi-core processors this means that each
core can be fully utilized. In practice even on single core machines the compile time decreases when
using parallel jobs. On multi-core machines the build time even improves further when specifying more
parallel jobs than the number of cores.
In Eclipse you can control the parallel build behavior:
1. From the Project menu, select Properties

The Properties dialog appears.
2. Inthe left pane, select C/C++ Build.

In the right pane the C/C++ Build page appears.

3. On the Behaviour tab, select Use parallel build.

4. You can specify the number of parallel jobs, or you can use an optimal number of jobs. In the last
case, amk will fork as many jobs in parallel as cores are available.

193

TASKING VX-toolset for TriCore User Guide

Number of Sections

The linker speed depends on the number of sections in the object files. The more sections, the longer
the locating will take. You can decrease the link time by creating output sections in the LSL file. For
example:

section_layout

{
group (ordered)
{
section '"'code_outputl” (size = 64k, attributes = x, Fill=0xFF,
overflow = "code_output2'™)
{
select "*___cocofun*";
}
}
}

4.8. C Code Checking: MISRA-C

The C programming language is a standard for high level language programming in embedded systems,
yet it is considered somewhat unsuitable for programming safety-related applications. Through enhanced
code checking and strict enforcement of best practice programming rules, TASKING MISRA-C code
checking helps you to produce more robust code.

MISRA-C specifies a subset of the C programming language which is intended to be suitable for embedded
automotive systems. It consists of a set of rules, defined in MISRA-C:2004, Guidelines for the Use of the
C Language in Critical Systems (Motor Industry Research Association (MIRA), 2004).

The compiler also supports MISRA-C:1998, the first version of MISRA-C. You can select this version with
the following C compiler option:

--m srac-versi on=1998

For a complete overview of all MISRA-C rules, see Chapter 18, MISRA-C Rules.

Implementation issues

The MISRA-C implementation in the compiler supports nearly all rules. Only a few rules are not supported
because they address documentation, run-time behavior, or other issues that cannot be checked by static
source code inspection, or because they require an application-wide overview.

During compilation of the code, violations of the enabled MISRA-C rules are indicated with error messages
and the build process is halted.

MISRA-C rules are divided in required rules and advisory rules. If rules are violated, errors are generated
causing the compiler to stop. With the following options warnings, instead of errors, are generated for
either or both the required rules and the advisory rules:

--m srac-required-warni ngs
--m srac-advi sory-war ni ngs

194

Using the C Compiler

Note that not all MISRA-C violations will be reported when other errors are detected in the input
source. For instance, when there is a syntax error, all semantic checks will be skipped, including
some of the MISRA-C checks. Also note that some checks cannot be performed when the
optimizations are switched off.

Quality Assurance report

To ensure compliance to the MISRA-C rules throughout the entire project, the TASKING linker can
generate a MISRA-C Quality Assurance report. This report lists the various modules in the project with
the respective MISRA-C settings at the time of compilation. You can use this in your company's quality
assurance system to provide proof that company rules for best practice programming have been applied
in the particular project.

To apply MISRA-C code checking to your application
1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » MISRA-C.
4. Select the MISRA-C version (2004 or 1998).

5. In the MISRA-C checking box select a MISRA-C configuration. Select a predefined configuration
for conformance with the required rules in the MISRA-C guidelines.

6. (Optional) In the Custom 2004 or Custom 1998 entry, specify the individual rules.
On the command line you can use the option --misrac.

ctc --msrac={all | nunber [-nunber],...]

4.9. C Compiler Error Messages

The C compiler reports the following types of error messages in the Problems view of Eclipse.
F (Fatal errors)

After a fatal error the compiler immediately aborts compilation.

E (Errors)

Errors are reported, but the compiler continues compilation. No output files are produced unless you have
set the C compiler option --keep-output-files (the resulting output file may be incomplete).

195

TASKING VX-toolset for TriCore User Guide

W (Warnings)

Warning messages do not result into an erroneous assembly output file. They are meant to draw your
attention to assumptions of the compiler for a situation which may not be correct. You can control warnings
in the C/C++ Build » Settings » Tool Settings » C/C++ Compiler » Diagnostics page of the Project
» Properties menu (C compiler option --no-warnings).

| (Information)

Information messages are always preceded by an error message. Information messages give extra
information about the error.

S (System errors)

System errors occur when internal consistency checks fail and should never occur. When you still receive
the system error message

SO##: internal consistency check failed - please report

please report the error number and as many details as possible about the context in which the error
occurred.

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » General » Problems.
The Problems view is added to the current perspective.

2. Inthe Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

On the command line you can use the C compiler option --diag to see an explanation of a diagnostic
message:

ctc --diag=[format :J{all | nunber,...]

196

Chapter 5. Using the C++ Compiler

This chapter describes the compilation process and explains how to call the C++ compiler. You should
be familiar with the C++ language and with the ISO C language.

The C++ compiler can be seen as a preprocessor or front end which accepts C++ source files or sources
using C++ language features. The output generated by the TriCore C++ compiler (cptc) is intermediate
C, which can be translated with the TriCore C compiler (ctc).

The C++ compiler is part of a complete toolset, the TASKING VX-toolset for TriCore. For details about
the C compiler see Chapter 4, Using the C Compiler.

The C++ compiler takes the following files for input and output:

CHsource file
.CC
1

CH+ campiler

I
intermediate Cfile
Jic

Although in Eclipse you cannot run the C++ compiler separately from the other tools, this section discusses
the options that you can specify for the C++ compiler.

On the command line it is possible to call the C++ compiler separately from the other tools. However, it
is recommended to use the control program for command line invocations of the toolset (see Section 9.1,
Control Program). With the control program it is possible to call the entire toolset with only one command
line. Eclipse also uses the control program to call the C++ compiler. Files with the extensions .cc, .cpp
or .cxx are seen as C++ source files and passed to the C++ compiler.

The C++ compiler accepts the C++ language of the ISO/IEC 14882:1998 C++ standard, with some minor
exceptions documented in Chapter 2, C++ Language. It also accepts embedded C++ language extensions.

The C++ compiler does no optimization. Its goal is to produce quickly a complete and clean parsed form
of the source program, and to diagnose errors. It does complete error checking, produces clear error
messages (including the position of the error within the source line), and avoids cascading of errors. It
also tries to avoid seeming overly finicky to a knowledgeable C or C++ programmer.

5.1. Calling the C++ Compiler

Under Eclipse you cannot run the C++ compiler separately. However, you can set options specific for the
C++ compiler. After you have built your project, the output files are available in a subdirectory of your
project directory, depending on the active configuration you have set in the C/C++ Build » Settings page
of the Project » Properties dialog.

Building a project under Eclipse
You have several ways of building your project:

Build Selected File(s) (). This compiles and assembles the selected file(s) without calling the linker.

197

TASKING VX-toolset for TriCore User Guide

1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

* Build Individual Project (1),

To build individual projects incrementally, select Project » Build Project.

Rebuild Project (“2), This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click OK.

 Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you only need to set them
once. Based on the target processor, the compiler includes a special function register file. This is a regular
include file which enables you to use virtual registers that are located in memory.

1. From the Project menu, select Properties
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Processor.
In the right pane the Processor page appears.

3. From the Processor Selection list, select a processor.

To access the C/C++ compiler options

1. From the Project menu, select Properties
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select C/C++ Compiler.

4. Select the sub-entries and set the options in the various pages.

198

Using the C++ Compiler

Note that C++ compiler options are only enabled if you have added a C++ file to your project, a
file with the extension .cc, .cpp or . cxx.

Note that the options you enter in the Assembler page are also used for intermediate assembly
files.

You can find a detailed description of all C++ compiler options in Section 11.2, C++ Compiler Options.
Invocation syntax on the command line (Windows Command Prompt):
cptc [[option]... [file]-.-]--.

5.2. How the C++ Compiler Searches Include Files

When you use include files (with the #include statement), you can specify their location in several ways.
The C++ compiler searches the specified locations in the following order:

1. If the #include statement contains an absolute pathname, the C++ compiler looks for this file. If no
path or a relative path is specified, the C++ compiler looks in the same directory as the source file.

This is only possible for include files that are enclosed in "

This first step is not done for include files enclosed in <>.

2. When the C++ compiler did not find the include file, it looks in the directories that are specified in the
C/C++ Compiler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the
Project Properties dialog (equivalent to the --include-directory (-I) command line option).

3. When the C++ compiler did not find the include file (because it is not in the specified include directory
or because no directory is specified), it looks in the path(s) specified in the environment variable
CPTCINC.

4. When the C++ compiler still did not find the include file, it finally tries the default include.cpp and
include directory relative to the installation directory.

5. If the include file is still not found, the directories specified in the --sys-include option are searched.

If the include directory is specified as -, e.g., -I-, the option indicates the point in the list of -1 or
--include-directory options at which the search for file names enclosed in <. . .> should begin. That is,
the search for <. . .> names should only consider directories named in -l or --include-directory options
following the -I-, and the directories of items 3 and 4 above. -I- also removes the directory containing the
current input file (item 1 above) from the search path for file names enclosed in . . ."".

An include directory specified with the --sys-include option is considered a "system" include directory.
Warnings are suppressed when processing files found in system include directories.

If the filename has no suffix it will be searched for by appending each of a set of include file suffixes.
When searching in a given directory all of the suffixes are tried in that directory before moving on to the

199

TASKING VX-toolset for TriCore User Guide

next search directory. The default set of suffixes is, no extension and . stdh. The default can be overridden
using the --incl-suffixes command line option. A null file suffix cannot be used unless it is present in the
suffix list (that is, the C++ compiler will always attempt to add a suffix from the suffix list when the filename
has no suffix).

Example

Suppose that the C++ source file test.cc contains the following lines:

#include <stdio.h>
#include "myinc.h"

You can call the C++ compiler as follows:
cptc -Imyinclude test.cc

First the C++ compiler looks for the file stdio.h in the directory myinclude relative to the current
directory. If it was not found, the C++ compiler searches in the environment variable CPTCINC and then
in the default include directory.

The C++ compiler now looks for the file myinc.h, in the directory where test.cc is located. If the file
is not there the C++ compiler searches in the directory myinclude. If it was still not found, the C++
compiler searches in the environment variable CPTCINC and then in the default include . cpp and
include directories.

5.3. C++ Compiler Error Messages

The C++ compiler reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)

Catastrophic errors, also called 'fatal errors', indicate problems of such severity that the compilation cannot
continue. For example: command-line errors, internal errors, and missing include files. If multiple source
files are being compiled, any source files after the current one will not be compiled.

E (Errors)

Errors indicate violations of the syntax or semantic rules of the C++ language. Compilation continues,
but object code is not generated.

W (Warnings)

Warnings indicate something valid but questionable. Compilation continues and object code is generated
(if no errors are detected). You can control warnings in the C/C++ Build » Settings » Tool Settings »
C/C++ Compiler » Diagnostics page of the Project » Properties menu (C++ compiler option
--no-warnings).

R (Remarks)

Remarks indicate something that is valid and probably intended, but which a careful programmer may
want to check. These diagnostics are not issued by default. Compilation continues and object code is

200

Using the C++ Compiler

generated (if no errors are detected). To enable remarks, enable the option Issue remarks on C++ code
in the C/C++ Build » Settings » Tool Settings » C/C++ Compiler » Diagnostics page of the Project
» Properties menu (C++ compiler option --remarks).

S (Internal errors)

Internal compiler errors are caused by failed internal consistency checks and should never occur. However,
if such a 'SYSTEM' error appears, please report the occurrence to Altium. Please include a small C++
program causing the error.

Message format

By default, diagnostics are written in a form like the following:

cptc E0020: [test.cc" 3] identifier "name' iIs undefined

With the command line option --error-file=file you can redirect messages to a file instead of stderr.

Note that the message identifies the file and line involved. Long messages are wrapped to additional lines
when necessary.

With the option C/C++ Build » Settings » Tool Settings » Global Options » Treat warnings as errors
(option --warnings-as-errors) you can change the severity of warning messages to errors.

For some messages, a list of entities is useful; they are listed following the initial error message:

cptc EO0308: [''test.cc'" 4] more than one instance of overloaded
function "f'" matches the argument list:
function "f(int)"
function "f(float)"
argument types are: (double)

In some cases, some additional context information is provided; specifically, such context information is
useful when the C++ compiler issues a diagnostic while doing a template instantiation or while generating
a constructor, destructor, or assignment operator function. For example:

cptc E0265: [''test.cc" 7] "A::AQ" is inaccessible
detected during implicit generation of "B::B()" at line 7

Without the context information, it is very hard to figure out what the error refers to.
Termination Messages

The C++ compiler writes sign-off messages to stderr (the Problems view in Eclipse) if errors are detected.
For example, one of the following forms of message

n errors detected in the compilation of "file".
1 catastrophic error detected in the compilation of "file™.

n errors and 1 catastrophic error detected in the compilation of "file".

201

TASKING VX-toolset for TriCore User Guide

is written to indicate the detection of errors in the compilation. No message is written if no errors were
detected. The following message

Error limit reached.

is written when the count of errors reaches the error limit (see the option --error-limit); compilation is
then terminated. The message

Compilation terminated.

is written at the end of a compilation that was prematurely terminated because of a catastrophic error.
The message

Compilation aborted

is written at the end of a compilation that was prematurely terminated because of an internal error. Such
an error indicates an internal problem in the compiler. If such an internal error appears, please report the
occurrence to Altium. Please include a small C++ program causing the error.

202

Chapter 6. Profiling

Profiling is the process of collecting statistical data about a running application. With these data you can
analyze which functions are called, how often they are called and what their execution time is. This chapter
describes the TASKING profiling method with code instrumentation techniques and static profiling.

6.1. What is Profiling?

Profiling is a collection of methods to gather data about your application which helps you to identify code
fragments where execution consumes the greatest amount of time.

TASKING supplies a number of profiler tools each dedicated to solve a particular type of performance
tuning problem. Performance problems can be solved by:

« Identifying time-consuming algorithms and rewrite the code using a more time-efficient algorithm.

« Identifying time-consuming functions and select the appropriate compiler optimizations for these functions
(for example, enable loop unrolling or function inlining).

« Identifying time consuming loops and add the appropriate pragmas to enable the compiler to further
optimize these loops.

A profiler helps you to find and identify the time consuming constructs and provides you this way with
valuable information to optimize your application.

TASKING employs various schemes for collecting profiling data, depending on the capabilities of the
target system and different information needs.

6.1.1. Four Methods of Profiling

There are several methods of profiling: recording by an instruction set simulator, profiling using the
debugger, profiling with code instrumentation techniques (dynamic profiling) and profiling by the C compiler
at compile time (static profiling). Each method has its advantages and disadvantages.

Profiling by an instruction set simulator

One way to gather profiling information is built into the instruction set simulator (ISS). The ISS records
the time consumed by each instruction that is executed. The debugger then retrieves this information and
correlates the time spent for individual instructions to C source statements.

Advantages
* it gives (cycle) accurate information with extreme fine granularity
« the executed code is identical to the non-profiled code

Disadvantages

» the method requires an ISS as execution environment

203

TASKING VX-toolset for TriCore User Guide

Profiling with the debugger (intrusive profiling)

The second method of profiling is built into the debugger. You specify which functions you want to profile.
The debugger places breakpoints on the function entry and all its exit addresses and measures the time
spent in the function and its callees.

Advantages

« the executed code is identical to the non-profiled code

Disadvantage

» each time a profiling breakpoint is hit the target is stopped and control is passed to the debugger.
Although the debugger restarts the application immediately, the applications performance is significantly
reduced.

Profiling using code instrumentation techniques (Dynamic Profiling)

The TASKING C compiler has an option to add code to your application which takes care of the profiling
process. This is called code instrumentation. The gathered profiling data is first stored in the target's
memory and will be written to a file when the application finishes execution or when the function
__prof_cleanup() is called.

Advantages

* it can give a complete call graph of the application annotated with the time spent in each function and
basic block

« this profiling method is execution environment independent
« the application is profiled while it executes on its aimed target taking real-life input

Disadvantage

* instrumentation code creates a significant run-time overhead, and instrumentation code and gathered
data take up target memory

This method provides a valuable complement to the other two methods and is described into more detail
below.

Profiling estimation by the C compiler (Static Profiling)

The TASKING C compiler has an option to generate static profile information through various heuristics
and estimates. The profiling data produced this way at compile time is stored in an XML file, which can
be processed and displayed using the same tools used for dynamic (run-time) profiling.

Advantages
* it can give a give a quick estimation of the time spent in each function and basic block
« this profiling method is execution environment independent

« the application is profiled at compile time

204

Profiling

* it requires no extra code instrumentation, so no extra run-time overhead
Disadvantage
* itis an estimation by the compiler and therefore less accurate than dynamic profiling

This method also is described into more detail below.

6.2. Profiling using Code Instrumentation (Dynamic Profiling)

Profiling can be used to determine which parts of a program take most of the execution time.

Once the collected data are presented, it may reveal which pieces of your code execute slower than
expected and which functions contribute most to the overall execution time of a program. It gives you
also information about which functions are called more or less often than expected. This information not
only reveal design flaws or bugs that had otherwise been unnoticed, it also reveals parts of the program
which can be effectively optimized.

Important considerations

The code instrumentation method adds code to your original application which is needed to gather the
profiling data. Therefore, the code size of your application increases. Furthermore, during the profiling
process, the gathered data is initially stored into dynamically allocated memory of the target. The heap
of your application should be large enough to store this data. Since code instrumentation is done by the
compiler, assembly functions used in your program do not show up in the profile.

The profiling information is collected during the actual execution of the program. Therefore, the input of
the program influences the results. If a part/function of the program is not activated while the program is
profiled, no profile data is generated for that part/function.

Itis not possible to profile applications that are compiled with the optimization code compaction (C compiler
option --optimize=+compact). Therefore, when you turn profiling on, the compiler automatically disables
parts of the code compaction optimization.

Overview of steps to perform

To obtain a profile using code instrumentation, perform the following steps:
1. Compile and link your program with profiling enabled

2. Execute the program to generate the profile data

3. Display the profile

First you need a completed project. If you are not using your own project, use the profi l ing example
as described below.

1. From the File menu, select Import...
The Import dialog appears.

2. Select TASKING C/C++ » TASKING TriCore Example Projects and click Next.

205

TASKING VX-toolset for TriCore User Guide

3.

4.

6.2

The

In the Example projects box, disable all projects except profiling .
Click Finish.

The profiling project should now be visible in the C/C++ view.

.1. Step 1: Build your Application for Profiling

first step is to add the code that takes care of the profiling, to your application. This is done with C

compiler options:

1.

206

From the Project menu, select Properties

The Properties for profiling dialog box appears.

In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

On the Tool Settings tab, expand the C/C++ Compiler entry and select Debugging.

Enable one or more of the following Generate profiling information options (the sample profiling
project already has profiling options enabled).

« for block counters (hot in combination with Call graph or Function timers)

to build a call graph (not in combination with Block counters)

« for function counters

« for function timers (not in combination with Block counters)

Note that the more detailed information you request, the larger the overhead in terms of

execution time, code size and heap space needed. The option Generate symbolic debug
information (--debug) does not affect profiling, execution time or code size.

Block counters (not in combination with Call graph or Time)

This will instrument the code to perform basic block counting. As the program runs, it will count how
many time it executed each branch of each if statement, each iteration of a for loop, and so on. Note
that though you can combine Block counters with Function counters, this has no effect because
Function counters is only a subset of Block counters.

Call graph (not in combination with Block counters)

This will instrument the code to reconstruct the run-time call graph. As the program runs it associates
the caller with the gathered profiling data.

Function counters

This will instrument the code to perform function call counting. This is a subset of the basic Block
counters.

Profiling

Function timers (not in combination with Block counters)

This will instrument the code to measure the time spent in a function. This includes the time spent
in all called functions (callees).

For the command line, see the C compiler option --profile (-p).
Profiling is only possible with optimization levels 0, 1 and 2. So:
5. Open the Optimization page and set the Optimization level to 2 - Optimize more.

6. Click OK to apply the new option settings and rebuild the project (%),

6.2.1.1. Profiling Modules and C Libraries

Profiling individual modules

It is possible to profile individual C modules. In this case only limited profiling data is gathered for the
functions in the modules compiled without the profiling option. When you use the suboption Call graph,
the profiling data reveals which profiled functions are called by non-profiled functions. The profiling data
does not show how often and from where the non-profiled functions themselves are called. Though this
does not affect the flat profile, it might reduce the usefulness of the call graph.

Profiling C library functions

Eclipse and/or the control program will link your program with the standard version of the C library.
Functions from this library which are used in your application, will not be profiled. If you do want to
incorporate the library functions in the profile, you must set the appropriate C compiler options in the C
library makefiles and rebuild the library.

6.2.1.2. Linking Profiling Libraries

When building your application, the application must be linked against the corresponding profile library.

Eclipse (or the control program) automatically select the correct library based on the profiling options you
specified. However, if you compile, assemble and link your application manually, make sure you specify
the correct library.

See Section 8.3, Linking with Libraries for an overview of the (profiling) libraries.

6.2.2. Step 2: Execute the Application

Once you have compiled and linked the application for profiling, it must be executed to generate the
profiling data. Run the program as usual: the program should run normally taking the same input as usual
and producing the same output as usual. The application will run somewhat slower than normal because
of the extra time spent on collecting the profiling data.

Eclipse has already made a default simulator debug configuration for your project. Follow the steps below
to run the application on the TASKING simulator, using the debugger. (In fact, you can run the application
also on a target board.)

1. From the Run menu, select Debug Configurations...

207

TASKING VX-toolset for TriCore User Guide

The Debug Configurations dialog appears.

2. Select the simulator debug configuration (TASKING Embedded C/C++ Application »
profiling.simulator).

3. Click the Debug button to start the debugger and launch the profiling application.

Eclipse will open the TASKING Debug perspective (as specified in the configuration) and asks for
confirmation.

4. Click Yes to open the TASKING Debug perspective.

The TASKING Debug perspective opens while the application has stopped before it enters main()

5 Inthe Debug view, click on the I® (Resume) button.
A file system simulation (FSS) view appears in which the application outputs the results.

When the program has finished, the collected profiling data is saved (for details see 'After execution
below).

Startup code

The startup code initializes the profiling functions by calling the function __prof_init(). Eclipse will
automatically make the required modifications to the startup code. Or, when you use the control program,
this extracts the correct startup code from the C library.

If you use your own startup code, you must manually insert a call to the function __prof_init just before
the call to main and its stack setup.

An application can have multiple entry points, such as main() and other functions that are called by
interrupt. This does not affect the profiling process.

Small heap problem

When the program does not run as usual, this is typically caused by a shortage of heap space. In this

case a message is issued (when running with file system simulation, it is displayed on the Debug console).

To solve this problem, increase the size of the heap. Information about the heap is stored in the linker

script file (.Isl) file which is automatically added when a project is created.

1. In the C/C++ view, expand the project tree and double-click on the file profiling. Isl to open it.
In the editor view, the LSL file is opened, showing a number of tabs at the bottom.

2. Open the Stack/Heap tab and enter a larger value for heap.

3. Save the file.

Presumable incorrect call graph

The call graph is based on the compiled source code. Due to compiler optimizations the call graph may
therefor seem incorrect at first sight. For example, the compiler can replace a function call immediately

208

Profiling

followed by a return instruction by a jump to the callee, thereby merging the callee function with the caller
function. In this case the time spent in the callee function is not recorded separately anymore, but added
to the time spent in the caller function (which, as said before, now holds the callee function). This represents
exactly the structure of your source in assembly but may differ from the structure in the initial C source.

After execution

When the program has finished (returning from main()), the exit code calls the function
__prof_cleanup(void). This function writes the gathered profiling data to a file on the host system
using the debugger's file system simulation features. If your program does not return from main(), you
can force this by inserting a call to the function __prof_cleanup() in your application source code.
Please note the double underscores when calling from C code!

The resulting profiling data file is named amon . prt.
If your program does not run under control of the debugger and therefore cannot use the file
system simulation (FSS) functionality to write a file to the host system, you must implement a way
to pass the profiling data gathered on the target to the host. Adapt the function
__prof_cleanup() in the profiling libraries or the underlying 1/O functions for this purpose.

6.2.3. Step 3: Displaying Profiling Results

After the function __prof_cleanup() has been executed, the result of the profiler can be displayed in
the TASKING Profiler perspective. The profiling data in the file amon._pr¥ is then converted to an XML
file. This file is read and its information is displayed. To view the profiling information, open the TASKING
Profiler perspective:

1. From the Window menu, select Open Perspective » Other...
The Select Perspective dialog appears.
2. Select the TASKING Profiler perspective and click OK.

The TASKING Profiler perspective opens.

209

TASKING VX-toolset for TriCore User Guide

W TASKING Profiler - profiling/profiling.c - TASKING VX-toolset for TriCore

B& Cjc++ Projects 52

SR profiling
1;-? Binaries
[l Includes
(= Debug
@ cstart.h
@ cskark.c
@ profiling.c

PomE

File Edit Refactor Mavigate Search Project Run Window Help

= Mavigakor

i b E- e [@ e - G BTrQ- g T | @ TaskmG Prof.. |
= B g profiing.c &2 =8
= } L
3

@ time.c
@ profiling.lsl
\=| profiling.simulatar.Jaunch
Q- prafiler £
Module #line | Function
_cstart
53 non_criticall
. i non_rritical2
ojprofiling.c 38 criticall
. Jprofiing.c 46 critical2
wjprofiling.c &7 non_criticald
.Jprofiling.c 74 print_result
Q; Callers | Callees 22
Module: #line | Caller
_Cstart
Module #line | Callee
. Jprofiling.c 53 non_criticall
wJprofiing.c 38 criticall

/% main roucine malls both the cricical and non critical path #/
void mainivoid)
{

printf("Profiling exsmplein" j;

non_criticall({ 3 j;

cricicalli| 3):

printfi "Donein" };

-
w
&= 7 70
Total Time Self Time % in Function Calls | #Callers = #Callees
0.000000

0.003100
0.000500 0.000300

1
I U
1 1

1
0.000300 0.000300 1 1 1
0,00z200 0.000600 1 1 z
0.000300 0.000600 1 1 1
0.001200 0.000600 z z 1
0.000900 0.000900 3 2

(6o - - b

Tatal Time: Self Time Contribution % Calls Calls %
0.003100 0.000000 100.00% 1 100.0...
Total Time Self Time Contribution % = Calls Calls %
0.000300 0.000300 25.61% 1 50.00%
0,00z200 0.000600 F0.97% 1 S0.00%:

The TASKING Profiler perspective

The TASKING Profiler perspective contains the following Views:

Profiler view

Callers / Callees

view

Shows the profiling information of all functions in all C source modules belonging
to your application.

The first table in this view, the callers table, shows the functions that called the
focus function.

The second table in this view, the callees table, shows the functions that are called
by the focus function.

* Clicking on a function (or on its table row) makes it the focus function.

» Double-clicking on a function, opens the appropriate C source module in the Editor view at the location
of the function definition.

» To sort the rows in the table, click on one of the column headers.

210

Profiling

The profiling information

Based on the profiling options you have set before compiling your application, some profiling data may
be present and some may be not. The columns in the tables represent the following information:

Module
#Line
Function

Total Time

Self Time

% in
Function

Calls
#Callers
#Callees

Contribution
%

Calls %

The C source module in which the function resides.
The line number of the function definition in the C source module.

The function for which profiling data is gathered and (if present) the code blocks in each
function. To show or hide the block counts, in the Profiler view click the Menu button (=)
and select Show Block Counts.

The total amount of time in seconds that was spent in this function and all of its
sub-functions.

The amount of time in seconds that was spent in the function itself. This excludes the
time spent in the sub-functions.

This is the relative amount of time spent in this function. These should add up to 100%.
Similar to self time.

Number of times the function has been executed.
Number of functions by which the function was called.
Number of functions that was actually called from this function.

In the caller table: shows for which part (in percent) the caller contributes to the time spent
in the focus function.

In the callee table: shows how much time the focus function has spent relatively in each
of its callees.

In the caller table: shows how often each callee was called as a percentage of all calls
from the focus function.

In the callee table: shows how often the focus function was called from a particular caller
as a percentage of all calls to the focus function.

Toolbar icons

Icon Action Description
) Show/Hide Block |Toggle. If enabled, shows profiling information for block counters.

Counts
&= Link with Editor | Toggle. If enabled, updates the profiling information according to the active
o .

source file.

- Select Profiling Opens a dialog where you can specify profiling files for display.

File(s)
o Refresh Profiler |Updates the views with the latest profiling information.

Data

Viewing previously recorded profiling results, combining results

Each time you run your application, new profiling information is gathered and stored in the file amon . prf.
You can store previous results by renaming the file amon _pr¥ (keep the extension . prf¥); this prevents

211

TASKING VX-toolset for TriCore User Guide

the existing amon . pr¥ from being overwritten by the new amon . prf. At any time, you can reload these
profiling results in the profiler. You can even load multiple . prf files into the Profiler to view the combined
results.

First, open the TASKING Profiler perspective if it is not open anymore:

1. In the Profiler view, click on the = (Select Profiling File(s)) button.

The Select Profiling File(s) dialog appears.
2. Inthe Projects box, select the project for which you want to see profiling information.
3. Inthe Profiling Type group box, select Dynamic Profiling.
4. Inthe Profiling Files group box, disable the option Use default.
5. Click the Add... button, select the . prf files you want to load and click Open to confirm your choice.
6. Make sure the correct symbol file is selected, in this example profiling.elf.

7. Click OK to finish.

6.3. Profiling at Compile Time (Static Profiling)

Just as with dynamic profiling, static profiling can be used to determine which parts of a program take
most of the execution time. It can provide a good alternative if you do not want that your code is affected
by extra code.

Overview of steps to perform

To obtain a profile using code instrumentation, perform the following steps:
1. Compile and link your program with static profiling enabled

2. Display the profile

First you need a completed project. If you are not using your own project, use the profil ing example
as described in Section 6.2, Profiling using Code Instrumentation (Dynamic Profiling).

6.3.1. Step 1: Build your Application with Static Profiling

The first step is to tell the C compiler to make an estimation of the profiling information of your application.
This is done with C compiler options:

1. From the Project menu, select Properties
The Properties for profiling dialog box appears.
2. Inthe left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

212

5.
6.

Profiling

On the Tool Settings tab, expand the C/C++ Compiler entry and select Debugging.
Enable Static profiling.

For the command line, see the C compiler option --profile (-p).

Profiling is only possible with optimization levels 0, 1 and 2. So:

Open the Optimization page and set the Optimization level to 2 - Optimize more.

Click OK to apply the new option settings and rebuild the project (%21).

6.3.2. Step 2: Displaying Static Profiling Results

After your project has been built with static profiling, the result of the profiler can be displayed in the
TASKING Profiler perspective. The profiling data of each individual file (. sxml), is combined in the XML
file profiling.xprof. This file is read and its information is displayed. To view the profiling information,
open the TASKING Profiler perspective:

1.

From the Window menu, select Open Perspective » Other...
The Select Perspective dialog appears.
Select the TASKING Profiler perspective and click OK.

The TASKING Profiler perspective opens. This perspective is explained in Section 6.2.3, Step 3:
Displaying Profiling Results

To display static profiling information in the Profiler view

1.

In the Profiler view, click on the & (Select Profiling File(s)) button.

The Select Profiling File(s) dialog appears.

In the Projects box, select the project for which you want to see profiling information.
In the Profiling Type group box, select Static Profiling.

In the Static Profiling File group box, enable the option Use default.

By default, the file project. xprof is used (profiling.xprof). If you want to specify another file,
disable the option Use default and use the edit field and/or Browse button to specify a static profiling
file (.xprof).

Click OK to finish.

213

TASKING VX-toolset for TriCore User Guide

214

Chapter 7. Using the Assembler

This chapter describes the assembly process and explains how to call the assembler.

The assembler converts hand-written or compiler-generated assembly language programs into machine
language, resulting in object files in the ELF/DWARF object format.

The assembler takes the following files for input and output:

assembly file
. 5ICC
assembly file . asm ¥ |
¢hand coded? | w= listfile .1st
assemhbler

-———MF QITOrmessages ers

relocatahle object file
.0

The following information is described:
» The assembly process.

» How to call the assembler and how to use its options. An extensive list of all options and their descriptions
is included in Section 11.3, Assembler Options.

» The various assembler optimizations.
» How to generate a list file.

» Types of assembler messages.

7.1. Assembly Process

The assembler generates relocatable output files with the extension . o. These files serve as input for
the linker.

Phases of the assembly process

 Parsing of the source file: preprocessing of assembler directives and checking of the syntax of
instructions

« Instruction grouping and reordering
» Optimization (instruction size and generic instructions)
» Generation of the relocatable object file and optionally a list file

The assembler integrates file inclusion and macro facilities. See Section 3.10, Macro Operations for more
information.

215

TASKING VX-toolset for TriCore User Guide

7.2. Calling the Assembler

The TASKING VX-toolset for TriCore under Eclipse can use the internal builder (default) or the TASKING
makefile generator (external builder) to build your entire project. After you have built your project, the
output files are available in a subdirectory of your project directory, depending on the active configuration
you have set in the C/C++ Build » Settings page of the Project » Properties dialog.

Building a project under Eclipse

You have several ways of building your project:

Build Selected File(s) (). This compiles and assembles the selected file(s) without calling the linker.
1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

Build Individual Project (I21).

To build individual projects incrementally, select Project » Build Project.

Rebuild Project (%), This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click OK.

Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you only need to set them
once. Based on the target processor, the compiler includes a special function register file. This is a regular
include file which enables you to use virtual registers that are located in memory.

1.

From the Project menu, select Properties

The Properties dialog appears.

In the left pane, expand C/C++ Build and select Processor.
In the right pane the Processor page appears.

From the Processor Selection list, select a processor.

216

Using the Assembler

To access the assembler options
1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Assembler.
4. Select the sub-entries and set the options in the various pages.

Note that the options you enter in the Assembler page are not only used for hand-coded assembly
files, but also for the assembly files generated by the compiler.

You can find a detailed description of all assembler options in Section 11.3, Assembler Options.
Invocation syntax on the command line (Windows Command Prompt):

astc [[option]... [file]---]---

The input file must be an assembly source file (.asm or .src).

7.3. How the Assembler Searches Include Files

When you use include files (with the . INCLUDE directive), you can specify their location in several ways.
The assembler searches the specified locations in the following order:

1. If the . INCLUDE directive contains an absolute path name, the assembler looks for this file. If no path
or a relative path is specified, the assembler looks in the same directory as the source file.

2. When the assembler did not find the include file, it looks in the directories that are specified in the
Assembler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the Project
Properties dialog (equivalent to the - command line option).

3. When the assembler did not find the include file (because it is not in the specified include directory or
because no directory is specified), it looks in the path(s) specified in the environment variable ASTCINC.

4. When the assembiler still did not find the include file, it finally tries the default include directory relative
to the installation directory.

Example

Suppose that the assembly source file test.asm contains the following lines:

- INCLUDE “myinc.inc*

217

TASKING VX-toolset for TriCore User Guide

You can call the assembler as follows:
astc -Imyinclude test.asm

First the assembler looks for the file myinc.asm, in the directory where test.asm is located. If the file
is not there the assembler searches in the directory myinclude. If it was still not found, the assembler
searches in the environment variableASTCINC and then in the default include directory.

7.4. Assembler Optimizations

The assembler can perform various optimizations that you can enable or disable.
1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Assembler » Optimization.
4. Enable one or more optimizations.

You can enable or disable the optimizations described below. The command line option for each
optimization is given in brackets.

Allow generic instructions (option -Og/-0OG)

When this option is enabled, you can use generic instructions in your assembly source. The assembler
tries to replace instructions by faster or smaller instructions. For example, the instruction jeq
do,#0, labellis replaced by jz dO, labell.

By default this option is enabled. Because shorter instructions may influence the number of cycles, you

may want to disable this option when you have written timed code. In that case the assembler encodes
all instructions as they are.

Optimize instruction size (option -Os/-0OS)

When this option is enabled, the assembler tries to find the shortest possible operand encoding for
instructions. By default this option is enabled.

7.5. Generating a List File

The list file is an additional output file that contains information about the generated code. You can
customize the amount and form of information.

If the assembler generates errors or warnings, these are reported in the list file just below the source line
that caused the error or warning.

218

Using the Assembler

To generate a list file
1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Assembler » List File.
4. Enable the option Generate list file.
5. (Optional) Enable the options to include that information in the list file.
Example on the command line (Windows Command Prompt)
The following command generates the list file test. Ist:
astc -1 test.asm

See Section 13.1, Assembler List File Format, for an explanation of the format of the list file.

7.6. Assembler Error Messages

The assembler reports the following types of error messages in the Problems view of Eclipse.
F (Fatal errors)

After a fatal error the assembler immediately aborts the assembly process.

E (Errors)

Errors are reported, but the assembler continues assembling. No output files are produced unless you
have set the assembler option --keep-output-files (the resulting output file may be incomplete).

W (Warnings)
Warning messages do not result into an erroneous assembly output file. They are meant to draw your
attention to assumptions of the assembler for a situation which may not be correct. You can control

warnings in the C/C++ Build » Settings » Tool Settings » Assembler » Diagnostics page of the Project
» Properties menu (assembler option --no-warnings).

Display detailed information on diagnostics
1. From the Window menu, select Show View » Other » General » Problems.

The Problems view is added to the current perspective.

219

TASKING VX-toolset for TriCore User Guide

2. Inthe Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

On the command line you can use the assembler option --diag to see an explanation of a diagnostic
message:

astc --diag=[format :]J{all | nunber,.._]

220

Chapter 8. Using the Linker

This chapter describes the linking process, how to call the linker and how to control the linker with a script
file.

The TASKING linker is a combined linker/locator. The linker phase combines relocatable object files (.o
files, generated by the assembler), and libraries into a single relocatable linker object file (- out). The

locator phase assigns absolute addresses to the linker object file and creates an absolute object file which
you can load into a target processor. From this point the term linker is used for the combined linker/locator.

The linker can simultaneously link and locate all programs for all cores available on a target board. The

target board may be of arbitrary complexity. A simple target board may contain one standard processor

with some external memory that executes one task. A complex target board may contain multiple standard
processors and DSPs combined with configurable IP-cores loaded in an FPGA. Each core may execute
a different program, and external memory may be shared by multiple cores.

The linker takes the following files for input and output:
relocatahle objectfiles . o

relocatahle linker object file . out —‘ ’— relocatable object library . a
linkerscriptfile . 151 ———n] inker ——=- linker map file . map
----- = errormessages . elk
relocatable linker objectfile . cut J I—' mermaory definition
file .mdf
{ ~ }
Intel Hex ELFDWARF 2 Motarola 5-record
abszolute ohjectfile ahsolute objectfile ahsolute objectfile
Chex .elf =]

This chapter first describes the linking process. Then it describes how to call the linker and how to use
its options. An extensive list of all options and their descriptions is included in Section 11.4, Linker Options.

To control the link process, you can write a script for the linker. This chapter shortly describes the purpose
and basic principles of the Linker Script Language (LSL) on the basis of an example. A complete description
of the LSL is included in Linker Script Language.

8.1. Linking Process

The linker combines and transforms relocatable object files (- 0) into a single absolute object file. This
process consists of two phases: the linking phase and the locating phase.

In the first phase the linker combines the supplied relocatable object files and libraries into a single
relocatable object file. In the second phase, the linker assigns absolute addresses to the object file so it
can actually be loaded into a target.

221

TASKING VX-toolset for TriCore User Guide

Terms used in the linking process

Term

Definition

Absolute object file

Address
Address space

Architecture

Copy table

Core
Derivative

Library

Logical address

LSL file
MAU

Object code
Physical address
Processor

Relocatable object
file

Relocation

222

Object code in which addresses have fixed absolute values, ready to load into a
target.

A specification of a location in an address space.

The set of possible addresses. A core can support multiple spaces, for example in
a Harvard architecture the addresses that identify the location of an instruction
refer to code space, whereas addresses that identify the location of a data object
refer to a data space.

A description of the characteristics of a core that are of interest for the linker. This
encompasses the address space(s) and the internal bus structure. Given this
information the linker can convert logical addresses into physical addresses.

A section created by the linker. This section contains data that specifies how the
startup code initializes the data and BSS sections. For each section the copy table
contains the following fields:

« action: defines whether a section is copied or zeroed
» destination: defines the section's address in RAM
* source: defines the sections address in ROM, zero for BSS sections

« length: defines the size of the section in MAUs of the destination space

An instance of an architecture.

The design of a processor. A description of one or more cores including internal
memory and any number of buses.

Collection of relocatable object files. Usually each object file in a library contains
one symbol definition (for example, a function).

An address as encoded in an instruction word, an address generated by a core
(CPU).

The set of linker script files that are passed to the linker.

Minimum Addressable Unit. For a given processor the number of bits between an
address and the next address. This is not necessarily a byte or a word.

The binary machine language representation of the C source.
An address generated by the memory system.

An instance of a derivative. Usually implemented as a (custom) chip, but can also
be implemented in an FPGA, in which case the derivative can be designed by the
developer.

Object code in which addresses are represented by symbols and thus relocatable.

The process of assigning absolute addresses.

Using the Linker

Term Definition

Relocation Information about how the linker must modify the machine code instructions when

information it relocates addresses.

Section A group of instructions and/or data objects that occupy a contiguous range of
addresses.

Section attributes Attributes that define how the section should be linked or located.

Target The hardware board on which an application is executing. A board contains at least
one processor. However, a complex target may contain multiple processors and
external memory and may be shared between processors.

Unresolved A reference to a symbol for which the linker did not find a definition yet.

reference

8.1.1. Phase 1: Linking

The linker takes one or more relocatable object files and/or libraries as input. A relocatable object file, as
generated by the assembler, contains the following information:

* Header information: Overall information about the file, such as the code size, name of the source file
it was assembled from, and creation date.

» Object code: Binary code and data, divided into various named sections. Sections are contiguous
chunks of code that have to be placed in specific parts of the memory. The program addresses start
at zero for each section in the object file.

« Symbols: Some symbols are exported - defined within the file for use in other files. Other symbols are
imported - used in the file but not defined (external symbols). Generally these symbols are names of
routines or names of data objects.

» Relocation information: A list of places with symbolic references that the linker has to replace with
actual addresses. When in the code an external symbol (a symbol defined in another file or in a library)
is referenced, the assembler does not know the symbol's size and address. Instead, the assembler
generates a call to a preliminary relocatable address (usually 0000), while stating the symbol name.

» Debug information: Other information about the object code that is used by a debugger. The assembler
optionally generates this information and can consist of line numbers, C source code, local symbols
and descriptions of data structures.

The linker resolves the external references between the supplied relocatable object files and/or libraries
and combines the files into a single relocatable linker object file.

The linker starts its task by scanning all specified relocatable object files and libraries. If the linker
encounters an unresolved symbol, it remembers its name and continues scanning. The symbol may be
defined elsewhere in the same file, or in one of the other files or libraries that you specified to the linker.
If the symbol is defined in a library, the linker extracts the object file with the symbol definition from the
library. This way the linker collects all definitions and references of all of the symbols.

Next, the linker combines sections with the same section name and attributes into single sections. The
linker also substitutes (external) symbol references by (relocatable) numerical addresses where possible.

223

TASKING VX-toolset for TriCore User Guide

At the end of the linking phase, the linker either writes the results to a file (a single relocatable object file)
or keeps the results in memory for further processing during the locating phase.

The resulting file of the linking phase is a single relocatable object file (. out). If this file contains unresolved
references, you can link this file with other relocatable object files (. 0) or libraries (. a) to resolve the
remaining unresolved references.

With the linker command line option --link-only, you can tell the linker to only perform this linking phase
and skip the locating phase. The linker complains if any unresolved references are left.

8.1.2. Phase 2: Locating

In the locating phase, the linker assigns absolute addresses to the object code, placing each section in
a specific part of the target memory. The linker also replaces references to symbols by the actual address
of those symbols. The resulting file is an absolute object file which you can actually load into a target
memory. Optionally, when the resulting file should be loaded into a ROM device the linker creates a
so-called copy table section which is used by the startup code to initialize the data and BSS sections.

Code modification

When the linker assigns absolute addresses to the object code, it needs to modify this code according
to certain rules or relocation expressions to reflect the new addresses. These relocation expressions are
stored in the relocatable object file. Consider the following snippet of x86 code that moves the contents
of variable a to variable b via the eax register:

Al 3412 0000 mov a,%eax (a defined at 0x1234, byte reversed)
A3 0000 0000 mov %eax,b (b 1s imported so the instruction refers to
0x0000 since its location is unknown)

Now assume that the linker links this code so that the section in which a is located is relocated by 0x10000
bytes, and b turns out to be at 0x9A12. The linker modifies the code to be:

Al 3412 0100 mov a,%eax (0x10000 added to the address)
A3 129A 0000 mov %eax,b (0x9A12 patched in for b)

These adjustments affect instructions, but keep in mind that any pointers in the data part of a relocatable
object file have to be modified as well.

Output formats

The linker can produce its output in different file formats. The default ELF/DWARF 2 format (. e 1 F) contains
an image of the executable code and data, and can contain additional debug information. The Intel-Hex
format (. hex) and Motorola S-record format (. sre) only contain an image of the executable code and
data. You can specify a format with the options --output (-0) and --chip-output (-c).

Controlling the linker

Via a so-called linker script file you can gain complete control over the linker. The script language is called
the Linker Script Language (LSL). Using LSL you can define:

» The memory installed in the embedded target system:

224

Using the Linker

To assign locations to code and data sections, the linker must know what memory devices are actually
installed in the embedded target system. For each physical memory device the linker must know its
start-address, its size, and whether the memory is read-write accessible (RAM) or read-only accessible
(ROM).

» How and where code and data should be placed in the physical memory:

Embedded systems can have complex memory systems. If for example on-chip and off-chip memory
devices are available, the code and data located in internal memory is typically accessed faster and
with dissipating less power. To improve the performance of an application, specific code and data
sections should be located in on-chip memory. By writing your own LSL file, you gain full control over
the locating process.

» The underlying hardware architecture of the target processor.

To perform its task the linker must have a model of the underlying hardware architecture of the processor
you are using. For example the linker must know how to translate an address used within the object
file (a logical address) into an offset in a particular memory device (a physical address). In most linkers
this model is hard coded in the executable and can not be modified. For the TASKING linker this
hardware model is described in the linker script file. This solution is chosen to support configurable
cores that are used in system-on-chip designs.

When you want to write your own linker script file, you can use the standard linker script files with
architecture descriptions delivered with the product.

See also Section 8.7, Controlling the Linker with a Script.

8.2. Calling the Linker

In Eclipse you can set options specific for the linker. After you have built your project, the output files are
available in a subdirectory of your project directory, depending on the active configuration you have set
in the C/C++ Build » Settings page of the Project » Properties dialog.

Building a project under Eclipse

You have several ways of building your project:

* Build Individual Project (&),

To build individual projects incrementally, select Project » Build Project.

Rebuild Project (%), This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click OK.

 Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

225

TASKING VX-toolset for TriCore User Guide

This way of building is not recommended, but to enable this feature select Project » Build Automatically
and ensure there is a check mark beside the Build Automatically menu item.

To access the linker options
1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Linker.
4. Select the sub-entries and set the options in the various pages.

You can find a detailed description of all linker options in Section 11.4, Linker Options.
Invocation syntax on the command line (Windows Command Prompt):

ltc [[option]... [file]--.]---

When you are linking multiple files, either relocatable object files (. 0) or libraries (. a), it is important to
specify the files in the right order. This is explained in Section 8.3, Linking with Libraries.

Example:
Itc -dtcl165.1sl test.o

This links and locates the file test.o and generates the file test.elf.
8.3. Linking with Libraries
There are two kinds of libraries: system libraries and user libraries.

System library

System libraries are stored in the directories:

<Tri Core installation path>\lib\tcl2 (TriCore 1.2 libraries)
<Tri Core installation path>\lib\tcl3 (TriCore 1.3 libraries)
<Tri Core installation path>\lib\tcl3_mmu (MMU variant)

<Tri Core installation path>\lib\tcl1l31 (TriCore 1.3.1 libraries)
<Tri Core installation path>\lib\p (protected libraries)

The p directory contains subdirectories with the protected libraries for CPU functional problems.

An overview of the system libraries is given in the following table:

226

Using the Linker

Libraries Description
libc[s].a C libraries
libc[s]_fpu.a Optional letter:
s = single precision floating-point (compiler option --no-double)
_fpu = with FPU instructions (compiler option --fpu-present)
libfp[t].a Floating-point libraries

libfp[t]_fpu.a

Optional letter:
t = trapping (control program option --fp-trap)
_fpu = with FPU instructions (compiler option --fpu-present)

librt.a Run-time library

libpb.a Profiling libraries

libpc.a pb = block/function counter
libpct.a pc = call graph

libpd.a pct = call graph and timing
libpt.a pd = dummy

pt = function timing

libcp[s][x].a

C++ libraries

Optional letter:

s = single precision floating-point
X = exception handling

libstl[s]x.a

STLport C++ libraries (exception handling variants only)
Optional letter:
s = single precision floating-point

To link the default C (system) libraries

1. From the Project menu, select Properties

The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Libraries.

4. Enable the option Link default libraries.

5. Enable or disable the option Use trapped floating-point library.

When you want to link system libraries from the command line, you must specify this with the option
--library (-1). For example, to specify the system library libc.a, type:

Itc --library=c test.o

User library

You can create your own libraries. Section 9.4, Archiver describes how you can use the archiver to create
your own library with object modules.

227

TASKING VX-toolset for TriCore User Guide

To link user libraries

1. From the Project menu, select Properties
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Libraries.

4. Add your libraries to the Libraries box.

When you want to link user libraries from the command line, you must specify their filenames on the
command line:

Itc start.o mylib.a
If the library resides in a sub-directory, specify that directory with the library name:
Itc start.o mylibs\mylib.a

If you do not specify a directory, the linker searches the library in the current directory only.

Library order

The order in which libraries appear on the command line is important. By default the linker processes
object files and libraries in the order in which they appear at the command line. Therefore, when you use
a weak symbol construction, like printf, in an object file or your own library, you must position this
object/library before the C library.

With the option --first-library-first you can tell the linker to scan the libraries from left to right, and extract
symbols from the first library where the linker finds it. This can be useful when you want to use newer
versions of a library routine:

Itc —-first-library-first a.a test.o b.a

If the file test.o calls a function which is both present in a.a and b.a, normally the function in b_.a
would be extracted. With this option the linker first tries to extract the symbol from the first library a.a.

Note that routines in b . a that call other routines that are present in both a.a and b.a are now also
resolved from a.a.

8.3.1. How the Linker Searches Libraries

System libraries

You can specify the location of system libraries in several ways. The linker searches the specified locations
in the following order:

228

Using the Linker

1. The linker first looks in the Library search path that are specified in the Linker » Libraries page in
the C/C++ Build » Settings » Tool Settings tab of the Project Properties dialog (equivalent to the -L
command line option). If you specify the -L option without a pathname, the linker stops searching after
this step.

2. When the linker did not find the library (because it is not in the specified library directory or because
no directory is specified), it looks in the path(s) specified in the environment variables LIBTC1V1_2
/ LIBTC1V1l_3 / LIBTC1V1l_3_1.

3. When the linker did not find the library, it tries the default 1ib directory relative to the installation
directory (or a processor specific sub-directory).

User library

If you use your own library, the linker searches the library in the current directory only.

8.3.2. How the Linker Extracts Objects from Libraries

A library built with the TASKING archiver artc always contains an index part at the beginning of the library.
The linker scans this index while searching for unresolved externals. However, to keep the index as small
as possible, only the defined symbols of the library members are recorded in this area.

When the linker finds a symbol that matches an unresolved external, the corresponding object file is
extracted from the library and is processed. After processing the object file, the remaining library index
is searched. If after a complete search of the library unresolved externals are introduced, the library index
will be scanned again. After all files and libraries are processed, and there are still unresolved externals
and you did not specify the linker option --no-rescan, all libraries are rescanned again. This way you do
not have to worry about the library order on the command line and the order of the object files in the
libraries. However, this rescanning does not work for ‘weak symbols'. If you use a weak symbol construction,
like printf, in an object file or your own library, you must position this object/library before the C library.

The option--verbose (-v) shows how libraries have been searched and which objects have been extracted.
Resolving symbols

If you are linking from libraries, only the objects that contain symbols to which you refer, are extracted
from the library. This implies that if you invoke the linker like:

Itc mylib.a

nothing is linked and no output file will be produced, because there are no unresolved symbols when the
linker searches through mylib_a.

It is possible to force a symbol as external (unresolved symbol) with the option --extern (-e):
Itc --extern=main mylib.a

In this case the linker searches for the symbol main in the library and (if found) extracts the object that
contains main.

If this module contains new unresolved symbols, the linker looks again in mylib _a. This process repeats
until no new unresolved symbols are found.

229

TASKING VX-toolset for TriCore User Guide

8.4. Incremental Linking

With the TASKING linker it is possible to link incrementally. Incremental linking means that you link some,
but not all . o modules to a relocatable object file . out. In this case the linker does not perform the locating
phase. With the second invocation, you specify both new .o files as the . out file you had created with
the first invocation.

Incremental linking is only possible on the command line.

Itc --incremental testl.o -otest.out
Itc test2.0 test.out

This links the file testl.o0 and generates the file test.out. This file is used again and linked together
with test2.o to create the file test_el T (the default name if no output filename is given in the default
ELF/DWARF 2 format).

With incremental linking it is normal to have unresolved references in the output file until all .o files are
linked and the final .out or .elf file has been reached. The option --incremental (-r) for incremental
linking also suppresses warnings and errors because of unresolved symbols.

8.5. Importing Binary Files

With the TASKING linker it is possible to add a binary file to your absolute output file. In an embedded
application you usually do not have a file system where you can get your data from. With the linker option
--import-object you can add raw data to your application. This makes it possible for example to display
images on a device or play audio. The linker puts the raw data from the binary file in a section. The section
is aligned on a 4-byte boundary. The section name is derived from the filename, in which dots are replaced
by an underscore. So, when importing a file called my .mp3, a section with the name my_mp3 is created.
In your application you can refer to the created section by using linker labels.

For example:

#include <stdio.h>

__far extern char _lc_ub_my mp3; /* linker labels */
__Ffar extern char _lc_ue_my_mp3;

char* mp3 = & lc_ub_my_mp3;

void main(void)

{
int size = & Ic_ue_my mp3 - & lc_ub_my_mp3;
int i;
for (i=0;i<size;i++)

230

Using the Linker

putchar(mp3[i]);

Because the compiler does not know in which space the linker will locate the imported binary, you
have to make sure the symbols refer to the same space in which the linker will place the imported
binary. You do this by using the memory qualifier __Far, otherwise the linker cannot bind your
linker symbols.

Also note that if you want to use the export functionality of Eclipse, the binary file has to be part
of your project.

8.6. Linker Optimizations

During the linking and locating phase, the linker looks for opportunities to optimize the object code. Both
code size and execution speed can be optimized.

To enable or disable optimizations

1. From the Project menu, select Properties
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Optimization.

4. Enable one or more optimizations.

You can enable or disable the optimizations described below. The command line option for each
optimization is given in brackets.

Delete unreferenced sections (option -Oc/-OC)

This optimization removes unused sections from the resulting object file.

First fit decreasing (option -OIl/-OL)

When the physical memory is fragmented or when address spaces are nested it may be possible that a
given application cannot be located although the size of the available physical memory is larger than the
sum of the section sizes. Enable the first-fit-decreasing optimization when this occurs and re-link your
application.

The linker's default behavior is to place sections in the order that is specified in the LSL file (that is, working
from low to high memory addresses or vice versa). This also applies to sections within an unrestricted
group. If a memory range is partially filled and a section must be located that is larger than the remainder
of this range, then the section and all subsequent sections are placed in a next memory range. As a result
of this gaps occur at the end of a memory range.

231

TASKING VX-toolset for TriCore User Guide

When the first-fit-decreasing optimization is enabled the linker will first place the largest sections in the
smallest memory ranges that can contain the section. Small sections are located last and can likely fit in
the remaining gaps.

Compress copy table (option -Ot/-OT)

The startup code initializes the application's data areas. The information about which memory addresses
should be zeroed and which memory ranges should be copied from ROM to RAM is stored in the copy
table.

When this optimization is enabled the linker will try to locate sections in such a way that the copy table
is as small as possible thereby reducing the application's ROM image.

Delete duplicate code (option -Ox/-OX)
Delete duplicate constant data (option -Oy/-QY)

These two optimizations remove code and constant data that is defined more than once, from the resulting
object file.

8.7. Controlling the Linker with a Script

With the options on the command line you can control the linker's behavior to a certain degree. From
Eclipse itis also possible to determine where your sections will be located, how much memory is available,
which sorts of memory are available, and so on. Eclipse passes these locating directions to the linker via
a script file. If you want even more control over the locating process you can supply your own script.

The language for the script is called the Linker Script Language, or shortly LSL. You can specify the script
file to the linker, which reads it and locates your application exactly as defined in the script. If you do not
specify your own script file, the linker always reads a standard script file which is supplied with the toolset.

8.7.1. Purpose of the Linker Script Language
The Linker Script Language (LSL) serves three purposes:

1. It provides the linker with a definition of the target's core architecture. This definition is supplied with
the toolset.

2. It provides the linker with a specification of the memory attached to the target processor.

3. It provides the linker with information on how your application should be located in memory. This gives
you, for example, the possibility to create overlaying sections.

The linker accepts multiple LSL files. You can use the specifications of the core architectures that Altium
has supplied in the include. Isl directory. Do not change these files.

If you use a different memory layout than described in the LSL file supplied for the target core, you must
specify this in a separate LSL file and pass both the LSL file that describes the core architecture and your
LSL file that contains the memory specification to the linker. Next you may want to specify how sections
should be located and overlaid. You can do this in the same file or in another LSL file.

232

Using the Linker

LSL has its own syntax. In addition, you can use the standard C preprocessor keywords, such as #include
and #define, because the linker sends the script file first to the C preprocessor before it starts interpreting
the script.

The complete LSL syntax is described in Linker Script Language.

8.7.2. Eclipse and LSL

In Eclipse you can specify the size of the stack and heap; the physical memory attached to the processor;
identify that particular address ranges are reserved; and specify which sections are located where in
memory. Eclipse translates your input into an LSL file that is stored in the project directory under the
name project_name. Isl and passes this file to the linker. If you want to learn more about LSL you can
inspect the generated file project_name. Isl.

To add a generated Linker Script File to your project

1. From the File menu, select File » New » Other... » TASKING C/C++ » TASKING VX-toolset for
TriCore C/C++ Project.

The New C/C++ Project wizard appears.

2. Fillin the project settings in each dialog and click Next > until the following dialog appears.

B New C/C++ Project |Z|E] El

TriCore Project Settings &

Set opkions bo create a TriCore project

Add C startup code ko the project
Add Linker script file to the project

'3:':’:3' [Finish H Cancel]

3. Enable the option Add Linker script file to the project and click Finish.
Eclipse creates your project and the file "project_name. | sl " in the project directory.

If you do not add the linker script file here, you can always add it later with File » New » Other... »
TASKING C/C++ » Linker Script File (LSL)

233

TASKING VX-toolset for TriCore User Guide

To change the Linker Script File in Eclipse
1. Double-click on the file project_name. Isl.

The project LSL file opens in the editor area with several tabs.

kél myprojeck.sl &3 =08
memory xrom b -
{
man = 3

size = 5S1Zk:;

type = rom;

map (dest=bus:spe:fpi bus, dest offget=0xb0000000, size=31zZk):
}

memory Xram b
{

mau = 35;

size = 445k;

type = ram;

map (dest=bus:zpe:fpi bus, dest offset=0xb00S0000, size=448k):;
¥

memory vecttahle
{

mau = 3;

size = 9k;

type = rom;

map (dest=busg:spe:fpi bus, dest offget=0xb00L£0000, size=2%k):
* “
£ >

Memary | Sections | Reserved |StackfHeap | Special Areas | myproject.lsl

2. You can edit the LSL file directly in the project_name . Isl tab or make changes to the other tabs
(Memory, Sections, ...).

The LSL file is updated automatically according to the changes you make in the tabs. A * appears
in front of the name of the LSL file to indicate that the file has changes.

3. click [or select File » Save to save the changes.

You can quickly navigate through the LSL file by using the Outline view (Window » Show View » Outline).
8.7.3. Structure of a Linker Script File

A script file consists of several definitions. The definitions can appear in any order.

The architecture definition (required)

In essence an architecture definition describes how the linker should convert logical addresses into
physical addresses for a given type of core. If the core supports multiple address spaces, then for each
space the linker must know how to perform this conversion. In this context a physical address is an offset

on a given internal or external bus. Additionally the architecture definition contains information about items
such as the (hardware) stack and the interrupt vector table.

234

Using the Linker

This specification is normally written by Altium. Altium supplies LSL files in the include. Isl directory.
The file tc_arch.Isl defines the base architecture for all cores and includes an interrupt vector table
(inttab.Isl) and an trap vector table (traptab. Isl). The files tclvl _2_1Isl, tclvl 3.Isl and

tclvl_3 1.1Isl extend the base architecture for each TriCore core.

The architecture definition of the LSL file should not be changed by you unless you also modify the core's
hardware architecture. If the LSL file describes a multi-core system an architecture definition must be
available for each different type of core.

The linker uses the architecture name in the LSL file to identify the target. For example, the default library
search path can be different for each core architecture.

The derivative definition

The derivative definition describes the configuration of the internal (on-chip) bus and memory system.
Basically it tells the linker how to convert offsets on the buses specified in the architecture definition into
offsets in internal memory. Microcontrollers and DSPs often have internal memory and I/O sub-systems
apart from one or more cores. The design of such a chip is called a derivative.

When you want to use multiple cores of the same type, you must instantiate the cores in a derivative
definition, since the linker automatically instantiates only a single core for an unused architecture.

Altium supplies LSL files for each derivative (deri vati ve.Isl), along with "SFR files", which provide
easy access to registers in I/O sub-systems from C and assembly programs. When you build an ASIC
or use a derivative that is not (yet) supported by the TASKING tools, you may have to write a derivative
definition.

The processor definition

The processor definition describes an instance of a derivative. A processor definition is only needed in a
multi-processor embedded system. It allows you to define multiple processors of the same type.

If for a derivative 'A' no processor is defined in the LSL file, the linker automatically creates a processor
named 'A' of derivative 'A'. This is why for single-processor applications it is enough to specify the derivative
in the LSL file.

The memory and bus definitions (optional)

Memory and bus definitions are used within the context of a derivative definition to specify internal memory
and on-chip buses. In the context of a board specification the memory and bus definitions are used to
define external (off-chip) memory and buses. Given the above definitions the linker can convert a logical
address into an offset into an on-chip or off-chip memory device.

The board specification

The processor definition and memory and bus definitions together form a board specification. LSL provides
language constructs to easily describe single-core and heterogeneous or homogeneous multi-core
systems. The board specification describes all characteristics of your target board's system buses, memory
devices, 1/0 sub-systems, and cores that are of interest to the linker. Based on the information provided
in the board specification the linker can for each core:

» convert a logical address to an offset within a memory device

235

TASKING VX-toolset for TriCore User Guide

* locate sections in physical memory
* maintain an overall view of the used and free physical memory within the whole system while locating
The section layout definition (optional)

The optional section layout definition enables you to exactly control where input sections are located.
Features are provided such as: the ability to place sections at a given address, to place sections in a
given order, and to overlay code and/or data sections.

Example: Skeleton of a Linker Script File

A linker script file that defines a derivative "X™ based on the TC1V1.3 architecture, its external memory
and how sections are located in memory, may have the following skeleton:

architecture TC1V1.3

{
// Specification of the TC1V1.3 core architecture.
// Written by Altium.
}
derivative X // derivative name is arbitrary
{
// Specification of the derivative.
// Written by Altium.
core tc // always specify the core
{
architecture = TC1V1.3;
}
bus fpi_bus // internal bus
{
// maps to bus "fpi_bus" in "tc" core
}
// internal memory
}
processor spe // processor name is arbitrary
{
derivative = X;
// You can omit this part, except if you use a
// multi-core system.
}
memory ext_nane
{
// external memory definition
}

236

Using the Linker

section_layout spe:tc:linear // section layout

{

// section placement statements

// sections are located in address space "linear”
// of core "tc" of processor "spe”

3
Overview of LSL files delivered by Altium

Altium supplies the following LSL files in the directory include. Isl.

LSL file Description
tc_arch.lIsl Defines the base architecture (TC) for all cores. It includes the files

inttab. Isl and traptab.Isl.
inttab._lIsl Defines the interrupt vector table. It is included in the file tc_arch_1sl.
traptab.Isl Defines the trap vector table. It is included in the file tc_arch. Isl.
tclvl 2.1sl Extends the base architecture for cores TC1V1.2, TC1V1.3 and TC1V1.3.1. It
tclvl 3.1sl includes the file tc_arch.Isl.
tclvl_3 1.1sl
derivative.lsl Defines the derivative and defines a single processor. Contains a memory

definition and section layout. It includes one of the files tcver si on_1sl or
pxbver si on. Isl. The selection of the derivative is based on your CPU
selection (control program option --cpu).

userdefl12.1sl Defines a user defined derivative for cores TC1V1.2, TC1V1.3 or TC1V1.3.1
userdef13.1Isl and defines a single processor.

userdef131.1Isl

template.lsl This file is used by Eclipse as a template for the project LSL file. It includes

thefilederi vati ve. lsl based on your CPU selection and contains a default
specification of the external memory attached to the target processor.

default.Isl Contains a default memory definition and section layout based on the t¢1920b
derivative. This file is used on a command line invocation of the tools, when
no CPU is selected (no option --cpu).

extmem. Isl Template file with a specification of the external memory attached to the target
processor.

When you select to add a linker script file when you create a project in Eclipse, Eclipse makes a copy of
the file template. Isl and names it “project_name. Isl”. On the command line, the linker uses the file
default.Isl, unless you specify another file with the linker option --Isl-file (-d).

8.7.4.The Architecture Definition

Although you will probably not need to program the architecture definition (unless you are building your
own processor core) it helps to understand the Linker Script Language and how the definitions are
interrelated.

237

TASKING VX-toolset for TriCore User Guide

Within an architecture definition the characteristics of a target processor core that are important for the
linking process are defined. These include:

» space definitions: the logical address spaces and their properties

* bus definitions: the I/O buses of the core architecture

* mappings: the address translations between logical address spaces, the connections between logical
address spaces and buses and the address translations between buses

Address spaces

A logical address space is a memory range for which the core has a separate way to encode an address
into instructions. Most microcontrollers and DSPs support multiple address spaces. For example, the
Tricore's 32-bit linear address space encloses 16 24-bit sub-spaces and 16 14-bit sub-spaces. See also
the section "Memory Model" in the Tricore Architecture Manual. Normally, the size of an address space
is 2N, with N the number of bits used to encode the addresses.

The relation of an address space with another address space can be one of the following:
* one space is a subset of the other. These are often used for "small" absolute, and relative addressing.

* the addresses in the two address spaces represent different locations so they do not overlap. This
means the core must have separate sets of address lines for the address spaces. For example, in
Harvard architectures we can identify at least a code and a data memory space.

Address spaces (even nested) can have different minimal addressable units (MAU), alignment restrictions,
and page sizes. All address spaces have a number that identifies the logical space (id). The following
table lists the different address spaces for the architecture TC as defined in tc_arch.Isl.

Space Id [MAU |Description ELF sections

linear 1 Linear address space. .text, .bss, .data, .rodata, table, istack, ustack
abs24 2 Absolute 24-bit addressable space

abs18 3 Absolute 18-bit addressable space. |.zdata, .zbss

csa 418 Context Save Area csa.*

pcp_code (8 |16 |PCP code .pcptext

pcp_data |9 |32 |PCP data .pcpdata

The TriCore architecture in LSL notation

The best way to program the architecture definition, is to start with a drawing. The following figure shows
a part of the TriCore architecture:

238

Using the Linker

space linear bus fai_tus
LT 0 — — ——
|rspace ahs18-i_" man = 8
| g=g | width =32
I rnaw =5 |
| Lol
L1
256k
i =1 s
m 4G
SpAcE pop_tode ks pop_code_kus
L
i =38 ran = 8
tmau = 16
————— -

004000000

The figure shows three address spaces called I inear, abs18 and pcp_code. The address space abs18
is a subset of the address space Iinear. All address spaces have attributes like a number that identifies
the logical space (id), a MAU and an alignment. In LSL notation the definition of these address spaces
looks as follows:

space linear

{
id = 1;
mau = 8;
map (src_offset=0x00000000, dest_offset=0x00000000,
size=4G, dest=bus:fpi_bus);
}
space absl18
{
id = 3;
mau = 8;
map (src_offset=0x00000000, dest_offset=0x00000000,
size=16k, dest=space:linear);
map (src_offset=0x10000000, dest_offset=0x10000000,
size=16k, dest=space:linear);
map (src_offset=0x20000000, dest_offset=0x20000000,
size=16k, dest=space:linear);
//. ..
}
space pcp_code
{
id = 8;
mau = 16;
map (src_offset=0x00000000, dest_ offset=0,
size=0x04000000, dest=bus:pcp_code_bus);
}

239

TASKING VX-toolset for TriCore User Guide

The keyword map corresponds with the arrows in the drawing. You can map:
» address space => address space

» address space => bus

* memory => bus (not shown in the drawing)

* bus => bus (not shown in the drawing)

Next the two internal buses, named fpi_bus and pcp_code_bus must be defined in LSL:

bus fpi_bus
{
mau = 8;
width = 32; // there are 32 data lines on the bus
}
bus pcp_code_bus
{
mau = 8;
width = 8;
}

This completes the LSL code in the architecture definition. Note that all code above goes into the
architecture definition, thus between:

architecture TC1V1.3

// All code above goes here.

}
8.7.5.The Derivative Definition

Although you will probably not need to program the derivative definition (unless you are using multiple
cores) it helps to understand the Linker Script Language and how the definitions are interrelated.

A derivative is the design of a processor, as implemented on a chip (or FPGA). It comprises one or more
cores and on-chip memory. The derivative definition includes:

+ core definition: an instance of a core architecture

* bus definition: the I/O buses of the core architecture

* memory definitions: internal (or on-chip) memory (in Eclipse this is called 'System memory')
Core

Each derivative must have at least one core and each core must have a specification of its core architecture.
This core architecture must be defined somewhere in the LSL file(s).

240

Using the Linker

core tc

{
}

Bus

architecture = TC1V1.3;

Each derivative can contain a bus definition for connecting external memory. In this example, the bus
fpi_bus maps to the bus fpi_bus defined in the architecture definition of core tc:

bus fpi_bus
{

mau = 8;

width = 32;

map (dest=bus:tc:fpi_bus, dest offset=0, size=4G);
}

Memory

External memory is usually described in a separate memory definition, but you can specify on-chip memory
for a derivative. For example:

0xFOO20000
>

hY
A
AS
\\ .,
K

\\ \\ peode

P, o

| omaw =8

- ———

Ox04000

According to the drawing, the TriCore contains internal memory called pcode with a size 0x04000 (16
kB). This is physical memory which is mapped to the internal bus pcp_code_bus and to the fpi_bus,
so both the tc unit and the PCP can access the memory:

memory pcode

{
mau = 8;
size = 16k;
type = ram;
map (dest=bus:tc:fpi_bus, dest offset=0xF0020000,
size=16Kk);
map (dest=bus:tc:pcp_code_ bus, size=16k);
}

241

TASKING VX-toolset for TriCore User Guide
This completes the LSL code in the derivative definition. Note that all code above goes into the derivative
definition, thus between:

derivative X // name of derivative

// All code above goes here

}
8.7.6.The Processor Definition

The processor definition is only needed when you write an LSL file for a multi-processor embedded
system. The processor definition explicitly instantiates a derivative, allowing multiple processors of the
same type.

processor nane

{
}

If no processor definition is available that instantiates a derivative, a processor is created with the same
name as the derivative.

derivative = derivative_nane;

Altium defines a “single processor environment” (spe) in each deri vati ve . Isl file. For example:

processor spe

{
}
8.7.7.The Memory Definition

derivative = tcl920b;

Once the core architecture is defined in LSL, you may want to extend the processor with external (or
off-chip) memory. You need to specify the location and size of the physical external memory devices in
the target system.

The principle is the same as defining the core's architecture but now you need to fill the memory definition:

memory nane

{
}

// memory definitions

242

Using the Linker

Frigtvary code_rom

- —— —]| 0
mad = 8
-]
16k
1._'-‘_—\--_
7 — 0

FREMMARY Y _Hiskar

Suppose your embedded system has 16 kB of external ROM, named code_rom and 2 kB of external
NVRAM, named my_nvsram. Both memories are connected to the bus fpi_bus. In LSL this looks like:

memory code_rom

{

mau = 8;

size = 16k;

type = rom;

map(dest=bus:spe:fpi_bus, dest_offset=0xa0000000, size=16k);
ks
memory my_nvsram
{

mau = 8;

size = 2Kk;

type = ram;

map(dest=bus:spe:fpi_bus, dest_offset=0xc0000000, size=2k);
ks

If you use a different memory layout than described in the LSL file supplied for the target core, you can
specify this in Eclipse or you can specify this in a separate LSL file and pass both the LSL file that describes
the core architecture and your LSL file that contains the memory specification to the linker.

To add memory using Eclipse
1. Double-click on the file project. Isl.
The project LSL file opens in the editor area with several tabs.
2. Open the Memory tab and click on the Add button.
A new line is added to the list of Memory.
3. Click in each field to change the type, name (for example my _nvsram) and sizes.

The LSL file is updated automatically according to the changes you make.

243

TASKING VX-toolset for TriCore User Guide

4. click [or select File » Save to save the changes.

A (& in front of a memory chip means that you cannot change this memory, because it is defined is a
system LSL file.

8.7.8. The Section Layout Definition: Locating Sections

Once you have defined the internal core architecture and optional memory, you can actually define where
your application must be located in the physical memory.

During compilation, the compiler divides the application into sections. Sections have a name, an indication
(section type) in which address space it should be located and attributes like writable or read-only.

In the section layout definition you can exactly define how input sections are placed in address spaces,
relative to each other, and what their absolute run-time and load-time addresses will be.

Example: section propagation through the toolset

To illustrate section placement, the following example of a C program (bat.c) is used. The program
saves the number of times it has been executed in battery back-upped memory, and prints the number.

#define BATTERY_BACKUP_TAG Oxa5f0
#include <stdio.h>

int uninitialized_data;

int initialized_data = 1;

#pragma section all "non_volatile"
#pragma noclear

int battery_backup_tag;

int battery_backup_invok;

#pragma clear

#pragma section all

void main (void)

if (battery backup_tag !'= BATTERY_BACKUP_TAG)

{
// battery back-upped memory area contains invalid data
// initialize the memory
battery_backup_tag = BATTERY_BACKUP_TAG;
battery_backup_invok = O;

3

printf("This application has been invoked %d times\n",
battery_backup_invok++);
3

The compiler assigns names and attributes to sections. With the #pragma section the compiler's
default section nhaming convention is overruled and a section with the name non_volatile is defined.
In this section the battery back-upped data is stored.

244

Using the Linker

By default the compiler creates a section with the name ".zbss.bat" of section type data to store
uninitialized data objects. The section prefix ". zbss" tells the linker to locate the section in address space
abs18 and that the section content should be filled with zeros at startup.

As aresult of the #pragma section all "non_volatile", the data objects between the pragma
pair are placed in a section with the name ”".zbss.non_volatile". Note that ". zbss" sections are
cleared at startup. However, battery back-upped sections should not be cleared and therefore we used
#pragma noclear.

Section placement

The number of invocations of the example program should be saved in non-volatile (battery back-upped)
memory. This is the memory my_nvsram from the example in Section 8.7.7, The Memory Definition.

To control the locating of sections, you need to write one or more section definitions in the LSL file. At
least one for each address space where you want to change the default behavior of the linker. In our
example, we need to locate sections in the address space abs18:

section_layout ::abs18

{
}

To locate sections, you must create a group in which you select sections from your program. For the
battery back-up example, we need to define one group, which contains the section .zbss_non_volatile.
All other sections are located using the defaults specified in the architecture definition. Section
-zbss._non_volati le should be placed in non-volatile ram. To achieve this, the run address refers to
our non-volatile memory called my_nvsram.

// Section placement statements

group (ordered, run_addr = mem:my_nvsram)

{
}

Section placement from Eclipse

select "_zbss.non_volatile";

1. Double-click on the file project. Isl.

The project LSL file opens in the editor area with several tabs.
2. Open the Sections tab and click on the Add... button.

The Add New LSL Element dialog appears.

3. Inthe New element box, select Section Layout and click Finish.

A new section layout t appears. In the Section layout properties you can specify its characteristics.
Note that you can add 'tags', which is just arbitrary text that can be added to a statement.

4. Inthe Space field of the Section layout properties, enter abs18.

5. Click on the abs18 section layout and click on the Add... button.

245

TASKING VX-toolset for TriCore User Guide
6. Inthe New element box, select Group and in the Parent box select section_layout ::abs18. Click
Finish.

An empty group element {*} is added to the section layout. In the Group properties you can specify
its characteristics.

7. Click in the Run address field of the group and enter mem:my_nvsram.
8. Inthe Group properties part, select Ordered.

9. Click the Add... button, select Select Section(s) and in the Parent box select the corresponding
group. Click Finish.

A default select section element with the name "section_name" is added to the group. In the Section
selection properties you can specify its characteristics.

10. Click on the section_name and change it to .zbss.non_valatile.

The LSL file is updated automatically according to the changes you make.

11. click [or select File » Save to save the changes.

This completes the LSL file for the sample architecture and sample program. You can now invoke the
linker with this file and the sample program to obtain an application that works for this architecture.

For a complete description of the Linker Script Language, refer to Chapter 15, Linker Script Language
(LSL).

8.8. Linker Labels

The linker creates labels that you can use to refer to from within the application software. Some of these
labels are real labels at the beginning or the end of a section. Other labels have a second function, these
labels are used to address generated data in the locating phase. The data is only generated if the label
is used.

Linker labels are labels starting with _Ic_. The linker assigns addresses to the following labels when
they are referenced:

Label Description

_lc_ub_nane Begin of section name. Also used to mark the begin of the stack or heap or
copy table.

_Ic_b_nane

_Ic_ue_nane End of section name. Also used to mark the end of the stack or heap.

_Ic_e nane

_lc_cb_nane Start address of an overlay section in ROM.

_lIc_ce _nane End address of an overlay section in ROM.

_lc_gb_nane Begin of group name. This label appears in the output file even if no reference
to the label exists in the input file.

246

Using the Linker

Label Description

_lc_ge_nane End of group name. This label appears in the output file even if no reference
to the label exists in the input file.

_Ic_s nane Variable name is mapped through memory in shared memory situations.

The linker only allocates space for the stack and/or heap when a reference to either of the section labels
exists in one of the input object files.

If you want to use linker labels in your C source for sections that have a dot (.) in the name, you
have to replace all dots by underscores.

Additionally, the linker script file defines the following symbols:

Symbol Description

_Ic_cp Start of copy table. Same as _Ic_ub_table. The copy table gives the source
and destination addresses of sections to be copied. This table will be generated
by the linker only if this label is used.

_Ic_bh Begin of heap. Same as _Ic_ub_heap.

_lIc_eh End of heap. Same as _Ic_ue_heap.

Example: refer to a label with section name with dots from C
Suppose the C source file foo . c contains the following:

int myfunc(int a)
{

/* some source lines */
return 1;

}

This results in a section with the name . text.foo.myfunc.
In the following source file main.c all dots of the section name are replaced by underscores:

#include <stdio.h>
extern char _lc_ub__text_foo_myfunc[];

void main(void)

{

printf(""The function myfunc is located at %x\n",
_Ic_ub__text_foo_myfunc);
3
Example: refer to a PCP variable from TriCore C source

When memory is shared between two or more cores, for instance TriCore and PCP, the addresses of
variables (or functions) on that memory may be different for the cores. For the TriCore the variable will

247

TASKING VX-toolset for TriCore User Guide

be defined and you can access it in the usual way. For the PCP, when you would use the variable directly
in your TriCore source, this would use an incorrect address (PCP address). The linker can map the
address of the variable from one space to another, if you prefix the variable name with _| c_s_.

When a symbol foo is defined in a PCP assembly source file, by default it gets the symbol name foo.
To use this symbol from a TriCore C source file, write:

extern long _lc_s_ foo;

void main(int argc, char **argv)

{
}

Example: refer to the stack

_Ic_s foo = 7;

Suppose in an LSL file a stack section is defined with the name "ustack" (with the keyword stack). You
can refer to the begin and end of the stack from your C source as follows:

#include <stdio.h>

extern char _lc_ub_ustack[];
extern char _lc_ue_ustack[];
void main(Q)

{
printf("Size of stack is %d\n",
_lIc_ue_ustack - _Ic_ub_ustack);
/* stack grows from low to high */
3

From assembly you can refer to the end of the stack with:

.extern _lIc_ue_ustack ; end of user stack

8.9. Generating a Map File

The map file is an additional output file that contains information about the location of sections and symbols.
You can customize the type of information that should be included in the map file.

To generate a map file

1. From the Project menu, select Properties
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Map File.

4. Enable the option Generate XML map file format (.mapxml) for map file viewer.

248

Using the Linker

5. (Optional) Enable the option Generate map file (.map).

6. (Optional) Enable the options to include that information in the map file.
Example on the command line (Windows Command Prompt)
The following command generates the map file test.map:

Itc --map-file test.o

With this command the map file test.map is created.

See Section 13.2, Linker Map File Format, for an explanation of the format of the map file.

8.10. Linker Error Messages

The linker reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)

After a fatal error the linker immediately aborts the link/locate process.

E (Errors)

Errors are reported, but the linker continues linking and locating. No output files are produced unless you
have set the linker option--keep-output-files.

W (Warnings)

Warning messages do not result into an erroneous output file. They are meant to draw your attention to
assumptions of the linker for a situation which may not be correct. You can control warnings in the C/C++
Build » Settings » Tool Settings » Linker » Diagnostics page of the Project » Properties menu (linker
option --no-warnings).

| (Information)

Verbose information messages do not indicate an error but tell something about a process or the state
of the linker. To see verbose information, use the linker option--verbose.

S (System errors)

System errors occur when internal consistency checks fail and should never occur. When you still receive
the system error message

S6##: nmessage

please report the error number and as many details as possible about the context in which the error
occurred.

249

TASKING VX-toolset for TriCore User Guide

Display detailed information on diagnostics
1. From the Window menu, select Show View » Other » General » Problems.
The Problems view is added to the current perspective.
2. In the Problems view right-click on a message.
A popup menu appears.
3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.
On the command line you can use the linker option --diag to see an explanation of a diagnostic message:

Itc --diag=[format :]{all | nunber,...]

250

Chapter 9. Using the Utilities

The TASKING VX-toolset for TriCore comes with a number of utilities:

cctc A control program. The control program invokes all tools in the toolset and lets you quickly

generate an absolute object file from C and/or assembly source input files. Eclipse uses
the control program to call the compiler, assembler and linker.

mktc A utility program to maintain, update, and reconstruct groups of programs. The make utility

looks whether files are out of date, rebuilds them and determines which other files as a
consequence also need to be rebuilt.

amk The make utility which is used in Eclipse. It supports parallelism which utilizes the multiple

cores found on modern host hardware.

artc An archiver. With this utility you create and maintain library files with relocatable object

modules (.0) generated by the assembler.

9.1. Control Program

The control program is a tool that invokes all tools in the toolset for you. It provides a quick and easy way
to generate the final absolute object file out of your C/C++ sources without the need to invoke the compiler,
assembler and linker manually.

Eclipse uses the control program to call the C++ compiler, C compiler, assembler and linker, but you can
call the control program from the command line. The invocation syntax is:

cctc [[option]... [file]---]---

Recognized input files

Files with a .cc, .cxx or . cpp suffix are interpreted as C++ source programs and are passed to the
C++ compiler.

Arguments with a . c suffix are interpreted as C source programs and are passed to the compiler.

Files with a .asm suffix are interpreted as hand-written assembly source files which have to be passed
to the assembler.

Files with a . src suffix are interpreted as compiled assembly source files. They are directly passed to
the assembler.

Files with a . a suffix are interpreted as library files and are passed to the linker.
Files with a . o suffix are interpreted as object files and are passed to the linker.

Files with a . out suffix are interpreted as linked object files and are passed to the locating phase of
the linker. The linker accepts only one . out file in the invocation.

Files with a - Isl suffix are interpreted as linker script files and are passed to the linker.

251

TASKING VX-toolset for TriCore User Guide

Options

The control program accepts several command line options. If you specify an unknown option to the
control program, the control program looks if it is an option for a specific tool. If so, it passes the option
directly to the tool. However, it is recommended to use the control program options --pass-* (-Wcp, -Wc,
-Wa, -WI) to pass arguments directly to tools.

For a complete list and description of all control program options, see Section 11.5, Control Program
Options.

Example with verbose output

cctc --verbose test.c

The control program calls all tools in the toolset and generates the absolute object file test.elf. With
option --verbose (-v) you can see how the control program calls the tools:

+ "pat h\ctc" -0 cc3248a.src test.c

+ "pat h\astc" -0 cc3248b.o cc3248a.src

+ "pat h\ltc" -o test.elf -dextmem.lsl -ddefault.lsl --map-file
cc3248b.o "-Lpat h\lib\tcl1" -Ic -Ifp -Irt

The control program produces unique filenames for intermediate steps in the compilation process (such
as cc3248a.src and cc3248b .0 in the example above) which are removed afterwards, unless you
specify command line option --keep-temporary-files (-t).

Example with argument passing to a tool

cctc --pass-compiler=-0c test.c

The option -Oc is directly passed to the compiler.

252

Using the Utilities

9.2. Make Utility mktc

If you are working with large quantities of files, or if you need to build several targets, it is rather
time-consuming to call the individual tools to compile, assemble, link and locate all your files.

You save already a lot of typing if you use the control program and define an options file. You can even
create a batch file or script that invokes the control program for each target you want to create. But with
these methods all files are completely compiled, assembled and linked to obtain the target file, even if
you changed just one C source. This may demand a lot of (CPU) time on your host.

The make utility mktc is a tool to maintain, update, and reconstruct groups of programs. The make utility
looks which files are out-of-date and only recreates these files to obtain the updated target.

Make process
In order to build a target, the make utility needs the following input:
« the target it should build, specified as argument on the command line

« the rules to build the target, stored in a file usually called makefile

In addition, the make utility also reads the file mktc .mk which contains predefined rules and
macros. See Section 9.2.2, Writing a Makefile.

The makefi le contains the relationships among your files (called dependencies) and the commands
that are necessary to create each of the files (called rules). Typically, the absolute object file (.elf) is
updated when one of its dependencies has changed. The absolute file depends on .o files and libraries
that must be linked together. The .o files on their turn depend on . src files that must be assembled and
finally, . src files depend on the C source files (. c) that must be compiled. In the makeTi le this looks
like:

test.src : test.c # dependency
ctc test.c # rule
test.o : test.src

astc test.src

test.elf : test.o
Itc test.o -0 test.elf --map-file -Ic -1fp -Irt

You can use any command that is valid on the command line as a rule in the makefile. So, rules are
not restricted to invocation of the toolset.

Example

To build the target test.elf, call mktc with one of the following lines:

mktc test.elf

mktc -fmymake.mak test.elf

253

TASKING VX-toolset for TriCore User Guide
By default the make utility reads the file makefi le so you do not need to specify it on the command line.
If you want to use another name for the makefile, use the option -f.

If you do not specify a target, mktc uses the first target defined in the makefile. In this example it would
build test.src instead of test.elf.

Based on the sample invocation, the make utility now tries to build test.elf based on the makefile and
performs the following steps:

1. From the makefile the make utility reads that test.elf depends on test.o.

2. If test.o does not exist or is out-of-date, the make utility first tries to build this file and reads from the
makefile that test.o depends on test.src.

3. If test.src does exist, the make utility now creates test. o by executing the rule for it: astc
test._src.

4. There are no other files necessary to create test.elf so the make utility now can use test.o to
create test.el T by executing the rule: I'tc test.o -0 test.elf ...

The make utility has now built test._el T but it only used the assembler to update test.o and the linker
to create test.elf.

If you compare this to the control program:
cctc test.c

This invocation has the same effect but now all files are recompiled (assembled, linked and located).

9.2.1. Calling the Make Utility

You can only call the make utility from the command line. The invocation syntax is:
nktc [[option]... [target]... [macro=def]...]

For example:

mktc test.elf

target You can specify any target that is defined in the makefile. A target can also be one
of the intermediate files specified in the makefile.

macro=def Macro definition. This definition remains fixed for the mktc invocation. It overrides
any regular definitions for the specified macro within the makefiles and from the
environment. It is inherited by subordinate mktc's but act as an environment variable
for these. That is, depending on the -e setting, it may be overridden by a makefile
definition.

option For a complete list and description of all make utility options, see Section 11.6, Make
Utility Options.

254

Using the Utilities

Exit status

The make utility returns an exit status of 1 when it halts as a result of an error. Otherwise it returns an
exit status of 0.

9.2.2. Writing a Makefile

In addition to the standard makefile makefi le, the make utility always reads the makefile mktc . mk
before other inputs. This system makefile contains implicit rules and predefined macros that you can use
in the makefile makeFfile.

With the option -r (Do not read the mktc . mk file) you can prevent the make utility from reading mktc . mk.

The default name of the makefile is makeFi le in the current directory. If you want to use another makefile,
use the option -f.

The makefile can contain a mixture of:

« targets and dependencies

 rules

« macro definitions or functions

 conditional processing

e comment lines

* include lines

» export lines

To continue a line on the next line, terminate it with a backslash (\):

this comment line is continued\
on the next line

If a line must end with a backslash, add an empty macro:

this comment line ends with a backslash \$(EMPTY)
this is a new line

9.2.2.1. Targets and Dependencies

The basis of the makefile is a set of targets, dependencies and rules. A target entry in the makefile has
the following format:

target ... : [dependency ...] [; rule]
[rule]

255

TASKING VX-toolset for TriCore User Guide

Target lines must always start at the beginning of a line, leading white spaces (tabs or spaces) are not
allowed. A target line consists of one or more targets, a semicolon and a set of files which are required
to build the target (dependencies). The target itself can be one or more filenames or symbolic names:

all: demo.elf final.elf
demo.elf Final.elf: test.o demo.o final.o

You can now can specify the target you want to build to the make utility. The following three invocations
all have the same effect:

mktc
mktc all
mktc demo.elf final.elf

If you do not specify a target, the first target in the makefile (in this example all) is built. The target al l
depends on demo.elf and final el f so the second and third invocation have the same effect and
the files demo.el ¥ and final .elf are built.

You can normally use colons to denote drive letters. The following works as intended:

c:foo.o : a:foo.c

If a target is defined in more than one target line, the dependencies are added to form the target's complete
dependency list:

all: demo.elf # These two lines are equivalent with:
all: final.elf # all: demo.elf final.elf

Special targets

There are a number of special targets. Their names begin with a period.

Target Description

-DEFAULT If you call the make utility with a target that has no definition in the makefile, this
target is built.

-DONE When the make utility has finished building the specified targets, it continues with
the rules following this target.

- IGNORE Non-zero error codes returned from commands are ignored. Encountering this in a
makefile is the same as specifying the option -i on the command line.

INIT The rules following this target are executed before any other targets are built.

-PRECIOUS Dependency files mentioned for this target are never removed. Normally, if a

command in a rule returns an error or when the target construction is interrupted,
the make utility removes that target file. You can use the option -p on the command
line to make all targets precious.

-SILENT Commands are not echoed before executing them. Encountering this in a makefile
is the same as specifying the option -s on the command line.

256

Using the Utilities

Target Description

-SUFFIXES This target specifies a list of file extensions. Instead of building a completely specified
target, you now can build a target that has a certain file extension. Implicit rules to
build files with a number of extensions are included in the system makefile mktc . mk.

If you specify this target with dependencies, these are added to the existing
. SUFFIXES target in mktc.mkK. If you specify this target without dependencies, the
existing list is cleared.

9.2.2.2. Makefile Rules

A line with leading white space (tabs or spaces) is considered as a rule and associated with the most
recently preceding dependency line. A rule is a line with commands that are executed to build the
associated target. A target-dependency line can be followed by one or more rules.

final.src : final.c # target and dependency
move test.c final.c # rulel
ctc final.c # rule2

You can precede a rule with one or more of the following characters:

@ does not echo the command line, except if -n is used.

- the make utility ignores the exit code of the command. Normally the make utility stops if a
non-zero exit code is returned. This is the same as specifying the option -i on the command
line or specifying the special . IGNORE target.

+ The make utility uses a shell or Windows command prompt (cmd . exe) to execute the
command. If the '+' is not followed by a shell line, but the command is an MS-DOS command
or if redirection is used (<, |, >), the shell line is passed to cmd . exe anyway.

You can force mktc to execute multiple command lines in one shell environment. This is accomplished
with the token combination ';\'. For example:

cd c:\Tasking\bin ;\
mktc -V

Note that the ;' must always directly be followed by the '\' token. Whitespace is not removed when it is at
the end of the previous command line or when it is in front of the next command line. The use of the '}’
as an operator for a command (like a semicolon ';' separated list with each item on one line) and the '\
as a layout tool is not supported, unless they are separated with whitespace.

Inline temporary files

The make utility can generate inline temporary files. If a line contains <<LABEL (no whitespaces!) then
all subsequent lines are placed in a temporary file until the line LABEL is encountered. Next, <<LABEL
is replaced by the name of the temporary file. For example:

Itc -0 $@ -T <<EOF
$(separate "\n" $(match .o $1))
$(separate "\n" $(match .a $!))

257

TASKING VX-toolset for TriCore User Guide

$(LKFLAGS)
EOF

The three lines between <<EOF and EOF are written to a temporary file (for example mkce4cOa. tmp),
and the rule is rewritten as: Itc -0 $0@ -f mkce4cOa.tmp.

Suffix targets

Instead of specifying a specific target, you can also define a general target. A general target specifies the
rules to generate a file with extension . ex1 to a file with extension .ex2. For example:

.SUFFIXES: .c
.Cc.0 :
cctc -c $<

Read this as: to build a file with extension .o out of a file with extension . c, call the control program with
-Cc $<. $<is a predefined macro that is replaced with the name of the current dependency file. The special
target . SUFFIXES: is followed by a list of file extensions of the files that are required to build the target.

Implicit rules

Implicit rules are stored in the system makefile mktc.mk and are intimately tied to the . SUFFIXES special
target. Each dependency that follows the .SUFFIXES target, defines an extension to a flename which
must be used to build another file. The implicit rules then define how to actually build one file from another.
These files share a common basename, but have different extensions.

If the specified target on the command line is not defined in the makefile or has not rules in the makefile,
the make utility looks if there is an implicit rule to build the target.

Example:

LIB = -Ic -Ifp -Irt # macro

prog.elf: prog.o sub.o
Itc prog.o sub.o $(LIB) -0 prog.elf

prog.o: prog.c inc.h
ctc prog.c
astc prog.src

sub.o: sub.c inc.h
ctc sub.c
astc sub.src

This makefile says that prog . el ¥ depends on two files prog . o and sub . 0, and that they in turn depend
on their corresponding source files (prog.c and sub.c) along with the common file inc.h.

The following makefile uses implicit rules (from mktc.mk) to perform the same job.

LDFLAGS = -1c -Ifp -Irt # macro used by implicit rules
prog.elf: prog.o sub.o # implicit rule used

258

Using the Utilities

prog.o: prog.c inc.h # implicit rule used
sub.o: sub.c inc.h # implicit rule used

9.2.2.3. Macro Definitions

A macro is a symbol nhame that is replaced with its definition before the makefile is executed. Although
the macro name can consist of lower case or upper case characters, upper case is an accepted convention.
The general form of a macro definition is:

MACRO = text
MACRO += and more text

Spaces around the equal sign are not significant. With the += operator you can add a string to an existing
macro. An extra space is inserted before the added string automatically.

To use a macro, you must access its contents:

$(MACRO) # you can read this as
${MACRO} # the contents of macro MACRO

If the macro name is a single character, the parentheses are optional. Note that the expansion is done
recursively, so the body of a macro may contain other macros. These macros are expanded when the
macro is actually used, not at the point of definition:

FOOD = $(EAT) and $(DRINK)
EAT = meat and/or vegetables
DRINK = water

export FOOD

The macro FOOD is expanded as meat and/or vegetables and water atthe momentitis used in
the export line, and the environment variable FOOD is set accordingly.

Predefined macros

Macro Description

MAKE Holds the value mktc. Any line which uses MAKE, temporarily overrides the option -n
(Show commands without executing), just for the duration of the one line. This way
you can test nested calls to MAKE with the option -n.

MAKEFLAGS Holds the set of options provided to mktc (except for the options -f and -d). If this
macro is exported to set the environment variable MAKEFLAGS, the set of options is
processed before any command line options. You can pass this macro explicitly to
nested mktc's, but it is also available to these invocations as an environment variable.

PRODDIR Holds the name of the directory where mktc is installed. You can use this macro to
refer to files belonging to the product, for example a library source file.

DOPRINT = $(PRODDIR)/1ib/src/_doprint.c
When mktc is installed in the directory c:/Tasking/bin this line expands to:

DOPRINT = c:/Tasking/lib/src/_doprint.c

259

TASKING VX-toolset for TriCore User Guide

Macro Description

SHELLCMD Holds the default list of commands which are local to the SHELL. If a rule is an
invocation of one of these commands, a SHELL is automatically spawned to handle
it.

$ This macro translates to a dollar sign. Thus you can use "$$" in the makefile to represent
a single "$".

Dynamically maintained macros

There are several dynamically maintained macros that are useful as abbreviations within rules. It is best
not to define them explicitly.

Macro Description

$* The basename of the current target.

$< The name of the current dependency file.

$@ The name of the current target.

$? The names of dependents which are younger than the target.
$! The names of all dependents.

The $< and $* macros are normally used for implicit rules. They may be unreliable when used within
explicit target command lines. All macros may be suffixed with F to specify the Filename components
(e.g. ${*F}, ${0@F}). Likewise, the macros $*, $< and $@ may be suffixed by D to specify the Directory
component.

The result of the $* macro is always without double quotes ("), regardless of the original target having
double quotes (") around it or not.

The result of using the suffix F (Filename component) or D (Directory component) is also always without
double quotes ("), regardless of the original contents having double quotes () around it or not.

9.2.2.4. Makefile Functions

A function not only expands but also performs a certain operation. Functions syntactically look like macros
but have embedded spaces in the macro name, e.g. '$(match argl arg2 arg3)". All functions are built-in
and currently there are five of them: match, separate, protect, exist and nexist.

match

The match function yields all arguments which match a certain suffix:
$(match .o prog.o sub.o mylib.a)

yields:

prog.o sub.o

260

Using the Utilities

separate

The separate function concatenates its arguments using the first argument as the separator. If the first
argument is enclosed in double quotes then \n' is interpreted as a newline character, \t' is interpreted as
atab, "\ooo'is interpreted as an octal value (where, 000 is one to three octal digits), and spaces are taken
literally. For example:

$(separate '"\n" prog.o sub.o)
results in:

prog.o
sub.o

Function arguments may be macros or functions themselves. So,

$(separate '\n" $(match .o $!))

yields all object files the current target depends on, separated by a newline string.
protect

The protect function adds one level of quoting. This function has one argument which can contain white
space. If the argument contains any white space, single quotes, double quotes, or backslashes, it is
enclosed in double quotes. In addition, any double quote or backslash is escaped with a backslash.

Example:

echo $(protect 111 show you the "protect™ function)

yields:

echo "1°11 show you the \'"protect\" function"”

exist

The exist function expands to its second argument if the first argument is an existing file or directory.
Example:

$(exist test.c cctc test.c)

When the file test.c exists, it yields:

cctc test.c

When the file test.c does not exist nothing is expanded.

261

TASKING VX-toolset for TriCore User Guide

nexist

The nexist function is the opposite of the exist function. It expands to its second argument if the first
argument is not an existing file or directory.

Example:
$(nexist test.src cctc test.c)
9.2.2.5. Conditional Processing

Lines containing i fdef, ifndef, else or endi f are used for conditional processing of the makefile.
They are used in the following way:

i fdef macro-nane

if-lines
el se

el se-1ines
endi f

The if-lines and else-lines may contain any number of lines or text of any kind, even other i fdef, i fndef,
else and endiflines, or no lines at all. The el se line may be omitted, along with the else-lines following
it.

First the macro-name after the i fdef command is checked for definition. If the macro is defined then
the if-lines are interpreted and the else-lines are discarded (if present). Otherwise the if-lines are discarded;
and if there is an el se line, the else-lines are interpreted; but if there is no else line, then no lines are
interpreted.

When you use the 1fndef line instead of i fdef, the macro is tested for not being defined. These
conditional lines can be nested up to 6 levels deep.

You can also add tests based on strings. With i feq the result is true if the two strings match, with i fneq
the result is true if the two strings do not match. They are used in the following way:

i feq(stringl,string2)

if-lines
el se

el se-1ines
endi f

9.2.2.6. Comment, Include and Export Lines
Comment lines

Anything after a "#" is considered as a comment, and is ignored. If the "#" is inside a quoted string, it is
not treated as a comment. Completely blank lines are ignored.

test.src : test.c # this is comment and is
cctc test.c # ignored by the make utility

262

Using the Utilities

Include lines

An include line is used to include the text of another makefile (like including a -h file in a C source).
Macros in the name of the included file are expanded before the file is included. You can include several
files. Include files may be nested.

include makefile2 makefile3
Export lines

An export line is used to export a macro definition to the environment of any command executed by the
make utility.

GREETING = Hello
export GREETING

This example creates the environment variable GREET ING with the value Hel 1o. The macro is exported
at the moment the export line is read so the macro definition has to precede the export line.

263

TASKING VX-toolset for TriCore User Guide

9.3. Make Utility amk

amk is the make utility Eclipse uses to maintain, update, and reconstruct groups of programs. But you
can also use it on the command line. Its features are a little different from mktc. The main difference
compared to mktc and other make utilities, is that amk features parallelism which utilizes the multiple
cores found on modern host hardware, hardening for path names with embedded white space and it has
an (internal) interface to provide progress information for updating a progress bar. It does not use an
external command shell (/bin/sh, cmd . exe) but executes commands directly.

The primary purpose of any make utility is to speed up the edit-build-test cycle. To avoid having to build
everything from scratch even when only one source file changes, it is necessary to describe dependencies
between source files and output files and the commands needed for updating the output files. This is
done in a so called "makefile”.

9.3.1. Makefile Rules

A makefile dependency rule is a single line of the form:
[target ...] : [prerequisite ...]

where target and prerequisite are path names to files. Example:
test.o : test.c

This states that target test.o depends on prerequisite test.c. So, whenever the latter is modified the
first must be updated. Dependencies accumulate: prerequisites and targets can be mentioned in multiple
dependency rules (circular dependencies are not allowed however). The command(s) for updating a
target when any of its prerequisites have been modified must be specified with leading white space after
any of the dependency rule(s) for the target in question. Example:

test.o :
cctc test.c # leading white space

Command rules may contain dependencies too. Combining the above for example yields:

test.o - test.c
cctc test.c

White space around the colon is not required. When a path name contains special characters such as
"', '#' (start of comment), '=" (macro assignment) or any white space, then the path name must be enclosed
in single or double quotes. Quoted strings can contain anything except the quote character itself and a
newline. Two strings without white space in between are interpreted as one, so it is possible to embed
single and double quotes themselves by switching the quote character.

When a target does not exist, its modification time is assumed to be very old. So, amk will try to make it.
When a prerequisite does not exist possibly after having tried to make it, it is assumed to be very new.
So, the update commands for the current target will be executed in that case. amk will only try to make
targets which are specified on the command line. The default target is the first target in the makefile which
does not start with a dot.

264

Using the Utilities

9.3.2. Makefile Directives

Directives inside makefiles are executed while reading the makefile. When a line starts with the word
"include" or "-include" then the remaining arguments on that line are considered filenames whose
contents are to be inserted at the current line. "-include" will silently skip files which are not present.
You can include several files. Include files may be nested.

Example:

include makefile2 makefile3

9.3.3. Macro Definitions

A macro is a symbol name that is replaced with its definition before the makefile is executed. Although
the macro name can consist of lower case or upper case characters, upper case is an accepted convention.
When a line does not start with white space and contains the assignment operator '=', ":=' or '+=' then the
line is interpreted as a macro definition. White space around the assignment operator and white space
at the end of the line is discarded. Single character macro evaluation happens by prefixing the name with
'$". To evaluate macros with names longer than one character put the name between parentheses '()' or
curly braces '{}'. Macro names may contain anything, even white space or other macro evaluations.
Example:

DINNER = $(FOOD) and $(BEVERAGE)
FOOD = pizza

BEVERAGE = sparkling water

FOOD += with cheese

With the += operator you can add a string to an existing macro. An extra space is inserted before the
added string automatically.

Macros are evaluated recursively. Whenever $(DINNER) or ${DINNER} is mentioned after the above,

it will be replaced by the text "pizza with cheese and sparkling water". The left hand side in

a macro definition is evaluated before the definition takes place. Right hand side evaluation depends on
the assignment operator:

= Evaluate the macro at the moment it is used.

= Evaluate the replacement text before defining the macro.

Subsequent '+=' assignments will inherit the evaluation behavior from the previous assignment. If there
is none, then '+='is the same as '=". The default value for any macro is taken from the environment. Macro
definitions inside the makefile overrule environment variables. Macro definitions on the amk command
line will be evaluated first and overrule definitions inside the makefile.

265

TASKING VX-toolset for TriCore User Guide

Predefined macros

Macro Description

$ This macro translates to a dollar sign. Thus you can use "$$" in the makefile to represent
a single "$".

@ The name of the current target. When a rule has multiple targets, then it is the name
of the target that caused the rule commands to be run.

< The name of the first prerequisite.

MAKE The amk path name (quoted if necessary). Optionally followed by the options -n and
-S.

ORIGIN The name of the directory where amk is installed (quoted if necessary).

SUBDIR The argument of option -G. If you have nested makes with -G options, the paths are

combined. This macro is defined in the environment (i.e. default macro value).

The @ and < macros may be suffixed by 'D' to specify the directory component or by 'F' to specify the
filename component. $(@D) evaluates to the directory name holding the file$(@F). $(@D)/$(@F) is
equivalent to $@. Note that on MS-Windows most programs accept forward slashes, even for UNC path
names.

The result of the predefined macros @ and < and 'D' and 'F' variants is not quoted, so it may be necessary
to put quotes around it.

Macro string substitution
When the macro name in an evaluation is followed by a colon and equal sign as in
$(MACRO:stringl=string2)

then amk will replace stringl at the end of every word in $(MACRO) by string2 during evaluation. When
$(MACRO) contains quoted path names, the quote character must be mentioned in both the original string
and the replacement stringl. For example:

$(MACRO: .0"'=.d")
9.3.4. Makefile Parsing

amk reads and interprets a makefile in the following order:

1. When the last character on a line is a backslash (\) (i.e. without trailing white space) then that line and
the next line will be concatenated, removing the backslash and newline.

2. The unquoted '#' character indicates start of comment and may be placed anywhere on a line. It will
be removed in this phase.

this comment line is continued\
on the next line

1Internally, amk tokenizes the evaluated text, but performs substitution on the original input text to preserve compatibility here with
existing make implementations and POSIX.

266

9.

Using the Utilities

. Trailing white space is removed.
. When a line starts with white space then it is interpreted as a command for updating a target.

. Otherwise, when a line contains the unquoted text '=', '+=' or ':=' operator, then it will be interpreted as

a macro definition.

. Otherwise, all macros on the line are evaluated before considering the next steps.
. When the resulting line contains an unquoted "' the line is interpreted as a dependency rule.

. When the first token on the line is "include” or "-include" (which by now must start on the first

column of the line), amk will execute the directive.

Otherwise, the line must be empty.

Macros in commands for updating a target are evaluated right before the actual execution takes place
(or would take place when you use the -n option).

9.3.5. Makefile Command Processing

A line with leading white space (tabs or spaces) is considered as a command for updating a target. When
you use the option -j or -J, amk will execute the commands for updating different targets in parallel. In
that case standard input will not be available and standard output and error output will be merged and
displayed on standard output only after the commands have finished for a target.

You can precede a command by one or more of the following characters:

@

Do not show the command. By default, commands are shown prior to their output.
Continue upon error. This means that amk ignores a non-zero exit code of the command.
Execute the command, even when you use option -n (dry run).

Execute the command on the foreground with standard input, standard output and error
output available.

Built-in commands

Command Description

true This command does nothing. Arguments are ignored.

false This command does nothing, except failing with exit code 1. Arguments are
ignored.

echo arg... Display a line of text.

text arg... Display a line of text in the progress bar of Eclipse.

argfile file arg... Create an argument file suitable for the --option-file (-f) option of all the other
tools. The first argfi le argument is the name of the file to be created.
Subsequent arguments specify the contents. An existing argument file is not
modified unless necessary. So, the argument file itself can be used to create
a dependency to options of the command for updating a target.

267

TASKING VX-toolset for TriCore User Guide

9.3.6. Calling the amk Make Utility

The invocation syntax of amk is:
ank [option]... [target]... [macro=def]...
For example:

amk test.abs

target You can specify any target that is defined in the makefile. A target can also be one
of the intermediate files specified in the makefile.

macro=def Macro definition. This definition remains fixed for the amk invocation. It overrides any
regular definitions for the specified macro within the makefiles and from the
environment. It is not inherited by subordinate amk's

option For a complete list and description of all amk make utility options, see Section 11.7,
Parallel Make Utility Options.

Exit status

The make utility returns an exit status of 1 when it halts as a result of an error. Otherwise it returns an
exit status of 0.

268

Using the Utilities

9.4. Archiver

The archiver artc is a program to build and maintain your own library files. A library file is a file with
extension -a and contains one or more object files (.0) that may be used by the linker.

The archiver has five main functions:

» Deleting an object module from the library

* Moving an object module to another position in the library file

» Replacing an object module in the library or add a new object module
» Showing a table of contents of the library file

» Extracting an object module from the library

The archiver takes the following files for input and output:

assemhbler

T
l—— relocatable ohjectfile
I .0

l

archiver

relocatable object library
.a linker

The linker optionally includes object modules from a library if that module resolves an external symbol
definition in one of the modules that are read before.

9.4.1. Calling the Archiver

You can create a library in Eclipse, which calls the archiver or you can call the archiver on the command
line.

To create a library in Eclipse

Instead of creating a TriCore absolute ELF file, you can choose to create a library. You do this when you
create a new project with the New C/C++ Project wizard.

1. From the File menu, select New » Other... » TASKING C/C++ » TASKING VX-toolset for TriCore
C/C++ Project.

The New C/C++ Project wizard appears.
2. Enter a project name.
3. Inthe Project types box, select TASKING TriCore Library and clickNext >.
4. Follow the rest of the wizard and click Finish.

5. Add the files to your project.

269

TASKING VX-toolset for TriCore User Guide

6. Build the project as usual. For example, select Project » Build Project (1),

Eclipse builds the library. Instead of calling the linker, Eclipse now calls the archiver.
Command line invocation
You can call the archiver from the command line. The invocation syntax is:
artc key_option [sub_option...] library [object file]
key_option With a key option you specify the main task which the archiver should perform. You

must always specify a key option.

sub_option Sub-options specify into more detail how the archiver should perform the task that is
specified with the key option. It is not obligatory to specify sub-options.

library The name of the library file on which the archiver performs the specified action. You
must always specify a library name, except for the options -? and -V. When the library
is not in the current directory, specify the complete path (either absolute or relative) to
the library.

object_file The name of an object file. You must always specify an object file name when you
add, extract, replace or remove an object file from the library.

Options of the archiver utility

The following archiver options are available:

Description Option Sub-option
Main functions (key options)

Replace or add an object module -r -a-b-c-u-v
Extract an object module from the library -X -V

Delete object module from library -d -V

Move object module to another position -m -a-b-v
Print a table of contents of the library -t -s0 -sl
Print object module to standard output -p

Sub-options

Append or move new modules after existing module name -a name

Append or move new modules before existing module name -b name

Create library without notification if library does not exis -C

Preserve last-modified date from the library -0

Print symbols in library modules -s{0|1}

Replace only newer modules -u

Verbose -V

Miscellaneous

270

Using the Utilities

Description Option Sub-option
Display options -?

Display version header -V

Read options from file -f file

Suppress warnings above level n -wn

For a complete list and description of all archiver options, see Section 11.8, Archiver Options.
9.4.2. Archiver Examples

Create a new library

If you add modules to a library that does not yet exist, the library is created. To create a new library with
the name mylib.a and add the object modules cstart.o and calc.otoit:

artc -r mylib.a cstart.o calc.o
Add a new module to an existing library

If you add a new module to an existing library, the module is added at the end of the module. (If the
module already exists in the library, it is replaced.)

artc -r mylib.a mod3.o

Print a list of object modules in the library

To inspect the contents of the library:

artc -t mylib.a

The library has the following contents:

cstart.o

calc.o

mod3.0

Move an object module to another position

To move mod3 .o to the beginning of the library, position it just before cstart.o:
artc -mb cstart.o mylib.a mod3.0

Delete an object module from the library

To delete the object module cstart.o from the library mylib.a:

artc -d mylib.a cstart.o

271

TASKING VX-toolset for TriCore User Guide

Extract all modules from the library
Extract all modules from the library mylib.a:

artc -x mylib.a

272

Chapter 10. Using the Debugger

This chapter describes the debugger and how you can run and debug a C or C++ application. This chapter
only describes the TASKING specific parts.

10.1. Reading the Eclipse Documentation

Before you start with this chapter, it is recommended to read the Eclipse documentation first. It provides
general information about the debugging process. This chapter guides you through a number of examples
using the TASKING debugger with simulation as target.

You can find the Eclipse documentation as follows:
1. Start Eclipse.
2. From the Help menu, select Help Contents.
The help screen overlays the Eclipse Workbench.
3. Inthe left pane, select C/C++ Development User Guide.
4. Open the Getting Started entry and select Debugging projects.

This Eclipse tutorial provides an overview of the debugging process. Be aware that the Eclipse
example does not use the TASKING tools and TASKING debugger.

10.2. Creating a Customized Debug Configuration

Before you can debug a project, you need a Debug launch configuration. Such a configuration, identified
by a name, contains all information about the debug project: which debugger is used, which project is
used, which binary debug file is used, which perspective is used, ... and so forth.

When you created your project, a default launch configuration for the TASKING simulator is available. If
you used the Target Board Configuration wizard, as explained in the Getting Started with the TASKING
VX-toolset for TriCore, also a default debug launch configuration for your target board is available. At any
time you can change this configuration or create a custom debug configuration.

To debug or run a project, you need at least one opened and active project in your workbench.
In this chapter, it is assumed that the myproject is opened and active in your workbench.

Customize your debug configuration
To change or create your own debug configuration follow the steps below.
1. From the Run menu, select Debug Configurations...

The Debug Configurations dialog appears.

273

TASKING VX-toolset for TriCore User Guide

2. Inthe left pane, select the configuration you want to change, for example, TASKING Embedded
C/C++ Application » myproject.simulator.

Or: click the New launch configuration button (f) to add a new configuration.
The next dialog appears.

The dialog shows several tabs.

Main tab

On the Main tab, you can set the properties for the debug configuration such as a name for the configuration
and the project and the application binary file which are used when you choose this configuration.

B Debug Configurations @

Create, manage, and run configurations
TASKING Embedded C/C++ Application

CEX B3 |

Marne: | myproject. sinulator

| bype filker text

Main .)= Arguments | %5 Debugger | B Source | B Comman
E C]C++ Attach to Local App
E C/C++ Local Application
E C/C++ Postmorkem debugg

=[] TASKING Embedded €4 || | | mypraject | [Browse. ..]

[E] mypraject.board CiC++ application:

Project:

myproject. simulator

| ${praject_lacH$4build_confighiriyproject . elf | [Search Project...] [Erowse. ..]

[Use linker flocator memary map File {.mdf For memary map

2) [Debug l [Close]

« Name is the name of the configuration. By default, this is the name of the project, optionally appended
with simulator or board. You can give your configuration any name you want to distinguish it from
the project name.

* In the Project field, you can choose the project for which you want to make a debug configuration.
Because the project myproject is the active project, this project is filled in automatically. Click the
Browse... button to select a different project. Only the opened projects in your workbench are listed.

274

Using the Debugger

* In the C/C++ Application field, you can choose the binary file to debug. The file myproject._elfis
automatically selected from the active project.

» You can use the option Use linker/locator memory map file (.mdf) for memory map to find errors
in your application that cause access to non-existent memory or cause an attempt to write to read-only
memory. When building your project, the linker/locator creates a memory description file (.md¥) file
which describes the memory regions of the target you selected in your project properties. The debugger
uses this file to initialize the debugging target.

This option is only useful in combination with a simulator as debug target. The debugger may fail to
start if you use this option in combination with other debugging targets than a simulator.

Arguments tab

If your application's main() function takes arguments, you can pass them in this tab. Arguments are
conventionally passed in the argv[] array. Because this array is allocated in target memory, make sure
you have allocated sufficient memory space for it.

* In the C/C++ perspective double-click to open the file cstart.c in the Startup Code Editor view. At
the bottom of the view select the Configuration tab, enable the option Enable passing argc/argv to
main() and specify a Buffer size for argv.

B Debug Configurations @

Create, manage, and run configurations
TASKING Embeddad C/C++ Application

TEX B 3E-

Mame: | myproject.simulator

type Filker text — =
D Main | 9= Arguments #33 Debugger EV Source | | Common

E C/C++ Attach to Local App
E C/C++ Local Application
E C/C++ Postmorkem debuge

= [E] TASKING Embedded o+ argl arg2
E .m edded Cf arg3 argd

CJ/C++ Program Arguments:

Use default working directory
< >
@ Debug] [Close

275

TASKING VX-toolset for TriCore User Guide

Debugger tab
On the Debugger tab you can set the debugger options. You can choose which debugger should be
used and with what options it should work. The Debugger tab itself contains several tabs.

B Debug Configurations El

Create, manage, and run configurations
TASKING Embedded C/C++ Application

TEX B

type filter text

Mame: | nyproject. simulator

[Main | 69= Arguments | %% Debugger 'EV Source |] Comman
E C/C++ Attach to Local App

[€] CfC++ Lacal Application Execution Environment | Cammunication Setup | Inikialization | Miscellaneous
E CJC++ Postmorkern debugg
= E TASKING Embedded C/C+4 Target: TriCore 1 Instruction Set Simulator w

ject.board
Emyprmec — Communication: | TSIM1 Simulator w

myproject, simulator

@ [Debug H Close:]

» Onthe Execution Environment tab you can select on which target the application should be debugged.
An application may run on an external evaluation board, or on a simulator using your own PC. For the
evaluation board these settings should be the same as you specified in the Target Board Configuration
wizard. The information in this tab is based on the Debug Target Configuration (DTC) files as explained
in Chapter 16, Debug Target Configuration Files.

» On the Communication Setup tab you can select the type of communication (RS-232, TCP/IP, CAN)
for execution environments. This tab is grayed out for the simulator.

» On the Initialization tab enable one or more of the following options:
« Initial download of program

If enabled, the target application is downloaded onto the target. If disabled, only the debug information
in the file is loaded, which may be useful when the application has already been downloaded (or
flashed) earlier. If downloading fails, the debugger will shut down.

« Verify download of program

276

Using the Debugger
If enabled, the debugger verifies whether the code and data has been downloaded successfully. This
takes some extra time but may be useful if the connection to the target is unreliable.
¢ Program flash when downloading

If enabled, also flash devices are programmed (if necessary). Flash programming will not work when
you use a simulator.

* Reset target
If enabled, the target is immediately reset after downloading has completed.
* Goto main

If enabled, only the C startup code is processed when the debugger is launched. The application
stops executing when it reaches the first C instruction in the function main(). Usually you enable
this option in combination with the option Reset Target.

» Break on exit
If enabled, the target halts automatically when the exit() function is called.
* Reduce target state polling

If you have set a breakpoint, the debugger checks the status of the target every number of seconds
to find out if the breakpoint is hit. In this field you can change the polling frequency.

« Monitor file (Flash settings)

Filename of the monitor, usually an Intel Hex or S-Record file.
« Sector buffer size (Flash settings)

Specifies the buffer size for buffering a flash sector.
« Workspace address (Flash settings)

The address of the workspace of the flash programming monitor.
On the Miscellaneous tab you can specify several file locations.
« Debugger location

The location of the debugger itself. This should not be changed.
* FSS root directory

The initial directory used by file system simulation (FSS) calls. See the description of the FSS view.
* ORTI file and KSM module

If you wish to use the debugger's special facilities for OSEK kernels, specify the name of your ORTI
file and that of your KSM module (shared library) in the appropriate edit boxes. See also the description
of the RTOS view.

277

TASKING VX-toolset for TriCore User Guide

* GDI log file and Debug instrument log file

You can use the options GDI log file and Debug instrument log file (if applicable) to control the
generation of internal log files. These are primarily intended for use by or at the request of Altium
support personnel.

¢ SetTCP port to

The debugger may use the TCP/IP protocol for internal purposes, for which it needs to reserve a
TCP port number. In the unlikely case that the default number conflicts with a program already
running, you can change the TCP port.

» Cache target access

Except when using a simulator, the debugger's performance is generally strongly dependent on the
throughput and latency of the connection to the target. Depending on the situation, enabling this
option may result in a noticeable improvement, as the debugger will then avoid re-reading registers
and memory while the target remains halted. However, be aware that this may cause the debugger
to show the wrong data if tasks with a higher priority or external sources can influence the halted
target's state.

Source tab

On the Source tab, you can add additional source code locations in which the debugger should search
for debug data.

278

B Debug Configurations

TASKING Embedded CfC++ Application

4 [T T
|_|Li§|* H 5

| bype Filker text

E C/C++ Attach to Local App
E C/C++ Local Application
E C/C++ Postmortem debugg
=-[€] TASKING Embedded CJC+4
E myproject.board
m Cor

Create, manage, and run configurations

Using the Debugger

X]

Marne: | myproject. simulator

Main | (4= Arguments | %5 Debugger | B2 Source
Source Lookup Path:

1 Comman

T=F Default

add. .,

Edit. ..
Up

Dawn

Restore Default

[5earch For duplicate source files on the path

Apply Revert

Debug l [Close

» Usually, the default source code location is correct.

Common tab

On the Common tab you can set additional launch configuration settings.

279

TASKING VX-toolset for TriCore User Guide

B Debug Configurations

Create, manage, and run configurations
TASKING Embedded C/C++ Application

CEX| B %

Marne: | myproject. sinulator |

| bype filker text

E C/C++ Attach to Local App

Main | (4= Arguments | %5 Debugger | B2 Source |] Comman

[T] CjC++ Local Applicati aave a3
ocal Application y
Local Fi
E C/C++ Postmorkem debugg Olozalfie
=[] TASKING Embedded Cjc+4 ® Project File
[E] myproject board O sharedFie: |
Display in Favorites menu Consale Encoding
[% Detug (%) Default (Cp1252)
O Grun) Other

Standard Input and Output
Allacate Console {necessary for input)

CIFile: |

Launch in background

Debug l [Close

10.3. Troubleshooting

If the debugger does not launch properly, this is likely due to mistakes in the settings of the execution
environment or to an improper connection between the host computer and the execution environment.
Always read the notes for your particular execution environment.

Some common problems you may check for, are:

Problem

Solution

Wrong device name in the launch
configuration

Make sure the specified device name is correct.

Invalid baud rate

Specify baud rate that matches the baud rate the execution
environment is configured to expect.

No power to the execution
environment.

Make sure the execution environment or attached probe is powered.

Wrong type of RS—232 cable.

Make sure you are using the correct type of RS-232 cable.

Cable connected to the wrong port
on the execution environment or host.

Some target machines and hosts have several ports. Make sure
you connect the cable to the correct port.

280

Using the Debugger

Problem

Solution

Conflict between communication
ports.

A device driver or background application may use the same

communications port on the host system as the debugger. Disable
any service that uses the same port-number or choose a different

port-number if possible.

Port already in use by another user.

The port may already be in use by another user on some UNIX
hosts, or being allocated by a login process. Some target machines
and hosts have several ports. Make sure you connect the cable to

the correct port.

10.4. TASKING Debug Perspective

After you have launched the debugger, you are either asked if the TASKING Debug perspective should
be opened or it is opened automatically. The Debug perspective consists of several views.

To open views in the Debug perspective:

1. Make sure the Debug perspective is opened

2. From the Window menu, select Show View »

3. Select a view from the menu or choose Other... for more views.

By default, the Debug perspective is opened with the following views:

281

TASKING VX-toolset for TriCore User Guide

- TASKING Debug - myproject/myproject.c - TASKING Y¥X-toolset for, TriCore

File Edit Refactor MNavigate Search Project Run Mode ‘Window Help
BiE-E-E-G- Ml R E@-% F0 i e~ B 35 Tasca oebng | >
35 Debug 2 = O |[69= variables 52 %@ Breakpoints = O I TASKING Registers 2 B =0
= % B | § | Name Value 0 |
A%
&5 04 O 3 ® [T Hame: Walua it GRR
- & sMULATOR
=i =no shorage assigned> ey
83 Peripheral Control Frocessor
A5k
= [2] myproject.simulstor [TASKING Embedded CjC++ Application] o CSFR
=& TASKING Debunger (9/12/07 5:47 PH) {Suspended) flor SCULL
= o Thread [1:1:t] (Suspended: Breakpaint hit,) < 5 m SECLILL
= 2 main{) myproject. c:3 Dxa000012c aioi STM
= i Cerberus
= 1 _start) estart c:515 Dxa00040ec .
mar M3COLL v
< ¥ < ba
[€] myproject.c &3 =0 Disassembly 52 . B= Qutline =0
#include <stdio.h> ~
Address:| 0xa000012c
nt maini woid | int maini void)]
®»0xa000012c 0820 sub.a sSp,#0xS
int i for [i=1; i<=3; i++)
for (i=1; i<=3; i++) Oxald0001Ze Oida o di5, #0x1
{ Ox=a0000130 2fal mov.s als,#0x2
printf("sdin", i): printfi "xdin",1i 1:
¥ Oxa0000132 af74 st.w [=sp],dls
printf("Hello world, ™) 0xal000134 00Z0a4cS5 lea a4, Oxa000002Z0
printf{ "this is \n"); Ox=a0000138 2356006d call Oxa0004544
printfi "a small %dstin®,i-3) for (i=1; i<=3; i++)
printfi "debugging exawple.in"”); b Oxal00013c 1fc2 add dis, #0x1
v
B console 53 ¥ Tasks x BE | = B -5+ = 0|0 vemory 2) |=5| B |G =0
Debug [myprojsct.simulator] Manitars & Renderings Es
Launchinyg configuration: wyproject.similator ~
Using Debug Target Configuration:
Target: TriCore 1 Instruction 3est Simulator
Selected CPU type: tcll6s
Register file: regtoclléS.sfr
Corrunication: TSIN1 Simulator hd
< ¥
mé

10.4.1. Debug View

The Debug view shows the target information in a tree hierarchy shown below with a sample of the

possible icons:

Icon Session item Description

] Launch instance |Launch configuration name and launch type

Debugger instance | Debugger name and state

+F @ g |Thread instance |Thread number and state

= Stack frame Stack frame number, function, file name, and file line number
instance

The number beside the thread label is a reference counter, not a thread identification number (TID).

Stack display
During debugging (running) the actual stack is displayed as it increases or decreases during program

execution. By default, all views present information that is related to the current stack item (variables,
memory, source code etc.). To obtain the information from other stack items, click on the item you want.

282

Using the Debugger

The Debug view displays stack frames as child elements. It displays the reason for the suspension beside
the thread, (such as end of stepping range, breakpoint hit, and signal received). When a program exits,

the exit code is displayed.

The Debug view contains numerous functions for controlling the individual stepping of your programs and
controlling the debug session. You can perform actions such as terminating the session and stopping the
program. All functions are available from the right-click menu, though commonly used functions are also
available from the toolbar in the Debug view.

Controlling debug sessions

Icon Action Description
% Remove all Removes all terminated launches.
s Restart Restarts the application. The target system is not reset.
i Reset target Resets the target system and restarts the application.
system
b Resume R_esumes the application after it was suspended (manually, breakpoint,
signal).
oo Suspend Suspends the application (pause). Use the Resume button to continue.
) Right-click menu. Restarts the selected debug session when it was
Q, Relaunch terminated. If the debug session is still running, a new debug session is
launched.
4 Reload current Reloads the current application without restarting the debug session. The
: application application does restart of course.
. Ends the selected debug session and/or process. Use Relaunch to restart
L] Terminate .) ;
this debug session, or start another debug session.
[& | Terminate all Right-click menu. As terminate. Ends all debug sessions.
@, | Terminate and Right-click menu. Ends the debug session and removes it from the Debug
*Iremove view.
@ | Terminate and Right-click menu. Ends the debug session and relaunches it. This is the
*|Relaunch same as choosing Terminate end then Relaunch.
ot Disconnect Detaches the debugger from the selected process (useful for debugging
attached processes)
Stepping through the application
Icon Action Description
= Step into Steps to the next source line or instruction
_ Steps over a called function. The function is executed and the application
i Step over . .
suspends at the next instruction after the call.
s Step return Executes the current function. The application suspends at the next

instruction after the return of the function.

283

TASKING VX-toolset for TriCore User Guide

Icon Action Description

i Instruction Toggle. If enabled, the stepping functions are performed on instruction level
stepping instead of on C source line level.

0 Interrgpt aware Toggle. If enabled, the stepping functions do not step into an interrupt when
stepping it occurs.

Miscellaneous

Icon Action Description

Right-click menu. Copies the stack as text to the windows clipboard. You

Copy Stack can paste the copied selection as text in, for example, a text editor.
= Edit project... Right-click menu. O_pens_the debug configuration dialog to let you edit the
current debug configuration.
By Edit Source Right-click menu. Opens the Edit Source Lookup Path window to let you
Lookup... edit the search path for locating source files.

10.4.2. Breakpoints View

You can add, disable and remove breakpoints by clicking in the marker bar (left margin) of the Editor
view. This is explained in the Getting Started manual.

Description

The Breakpoints view shows a list of breakpoints that are currently set. The button bar in the Breakpoints
view gives access to several common functions. The right-most button = opens the Breakpoints menu.

Types of breakpoints
To access the breakpoints dialog, add a breakpoint as follows:

1. Click the Add TASKING Breakpoint button (&).

The Breakpoints dialog appears.
Each tab lets you set a breakpoint of a special type. You can set the following types of breakpoints:
 File breakpoint

The target halts when it reaches the specified line of the specified source file. Note that it is possible
that a source line corresponds to multiple addresses, for example when a header file has been included
into two different source files or when inlining has occurred. If so, the breakpoint will be associated with
all those addresses.

* Function

The target halts when it reaches the first line of the specified function. If no source file has been specified
and there are multiple functions with the given name, the target halts on all of those. Note that function
breakpoints generally will not work on inlined instances of a function.

284

Using the Debugger

* Address
The target halts when it reaches the specified instruction address.
» Stack
The target halts when it reaches the specified stack level.
» Data
The target halts when the given variable is read or written to, as specified.
* Instruction
The target halts when the given number of instructions has been executed.
* Cycle
The target halts when the given number of clock cycles has elapsed.
e Timer
The target halts when the given amount of time elapsed.
In addition to the type of the breakpoint, you can specify the condition that must be met to halt the program.

In the Condition field, type a condition. The condition is an expression which evaluates to ‘true’ (non-zero)
or ‘false' (zero). The program only halts on the breakpoint if the condition evaluates to 'true’.

In the Ignore count field, you can specify the number of times the breakpoint is ignored before the program
halts. For example, if you want the program to halt only in the fifth iteration of a while-loop, type '4": the
first four iterations are ignored.

10.4.3. File System Simulation (FSS) View

Description

The File System Simulation (FSS) view is automatically opened when the target requests FSS input or
generates FSS output. The virtual terminal that the FSS view represents, follows the VT100 standard. If
you right-click in the view area of the FSS view, a menu is presented which gives access to some
self-explanatory functions.

VT100 characteristics

The queens example demonstrates some of the VT100 features. (You can find the queens example in
the <TriCore installation path>\examples directory from where you can import it into your
workspace.) Per debugging session, you can have more than one FSS view, each of which is associated
with a positive integer. By default, the view "FSS #1" is associated with the standard streams stdin,
stdout, stderr and stdaux. Other views can be accessed by opening a file named "terminal window
<number>", as shown in the example below.

285

TASKING VX-toolset for TriCore User Guide

FILE * f3 = fopen(“terminal window 3", "rw'");
fprintf(f3, "Hello, window 3.\n");
fclose(f3);

You can set the initial working directory of the target application in the Debug configuration dialog (see
also Section 10.2, Creating a Customized Debug Configuration):

1. On the Debugger tab, select the Miscellaneous sub-tab.
2. In the FSS root directory field, specify the FSS root directory.

The FSS implementation is designed to work without user intervention. Nevertheless, there are some
aspects that you need to be aware of.

First, the interaction between the C library code (in the files dbg*.c and dbg*.h; see Section 12.1.5,
dbg.h) and the debugger takes place via a breakpoint, which incidentally is not shown in the Breakpoints
view. Depending on the situation this may be a hardware breakpoint, which may be in short supply.

Secondly, proper operation requires certain code in the C library to have debug information. This debug
information should normally be present but might get lost when this information is stripped later in the
development process.

When you use MIL linking/splitting the C library is translated along with your application. Therefore you
need to build your application with debug information generation enabled when FSS support is needed.

10.4.4. Disassembly View

The Disassembly view shows target memory disassembled into instructions and / or data. If possible, the
associated C / C++ source code is shown as well. The Address field shows the address of the current
selected line of code.

To view the contents of a specific memory location, type the address in the Address field. If the address
is invalid, the field turns red.

10.4.5. Expressions View
The Expressions view allows you to evaluate and watch regular C expressions.
To add an expression:
Click OK to add the expression.
1. Right-click in the Expressions View and select Add Watch Expression.
The Add Watch Expression dialog appears.
2. Enter an expression you want to watch during debugging, for example, the variable name "i"

If you have added one or more expressions to watch, the right-click menu provides options to Remove
and Edit or Enable and Disable added expressions.

» You can access target registers directly using #NAME. For example "arr[#R0 << 3]" or "#TIMER3
= m++". If a register is memory-mapped, you can also take its address, for example, "&#ADCIN".

286

Using the Debugger

» Expressions may contain target function calls like for example "g1 + invert(&g2)". Be aware that
this will not work if the compiler has optimized the code in such a way that the original function code
does not actually exist anymore. This may be the case, for example, as a result of inlining. Also, be
aware that the function and its callees use the same stack(s) as your application, which may cause
problems if there is too little stack space. Finally, any breakpoints present affect the invoked code in
the normal way.

10.4.6. Memory View

Use the Memory view to inspect and change process memory. The Memory view supports the same
addressing as the C and C++ languages. You can address memory using expressions such as:

» 0x0847d3c

« (&y)+1024

e *ptr

Monitors

To monitor process memory, you need to add a monitor:

1. Inthe Debug view, select a debug session. Selecting a thread or stack frame automatically selects
the associated session.

2. Click the Add Memory Monitor button in the Memory Monitors pane.
The Monitor Memory dialog appears.
3. Type the address or expression that specifies the memory section you want to monitor and click OK.

The monitor appears in the monitor list and the Memory Renderings pane displays the contents of
memory locations beginning at the specified address.

To remove a monitor:

1. Inthe Monitors pane, right-click on a monitor.

2. From the popup menu, select Remove Memory Monitor.
Renderings

You can inspect the memory in so-called renderings. A rendering specifies how the output is displayed:
hexadecimal, ASCII, signed integer or unsigned integer. You can add or remove renderings per monitor.
Though you cannot change a rendering, you can add or remove them:

1. Click the Add Rendering button in the Memory Renderings pane.
The Add Memory Rendering dialog appears.
2. Select the rendering you want (Hex, ASCII, Signed Integer or Unsigned Integer) and click OK.

To remove a rendering:

287

TASKING VX-toolset for TriCore User Guide

1. Right-click on a memory address in the rendering.
2. From the popup menu, select Remove Rendering.
Changing memory contents

In a rendering you can change the memory contents. Simply type a new value.

Warning: Changing process memory can cause a program to crash.

The right-click popup menu gives some more options for changing the memory contents or to change the
layout of the memory representation.

10.4.7. Compare Application View

You can use the Compare Application view to check if the downloaded application matches the application
in memory. Differences may occur, for example, if you changed memory addresses in the Memory view.

» To check for differences, click the Compare button.

10.4.8. Heap View

With the Heap view you can inspect the status of the heap memory. This can be illustrated with the
following example:

string = (char *) malloc(100);
strcpy (string, "abcdefgh”);
free (string);

If you step through these lines during debugging, the Heap view shows the situation after each line has
been executed. Before any of these lines has been executed, there is no memory allocated and the Heap
view is empty.

« After the first line the Heap view shows that memory is occupied, the description tells where the block
starts, how large it is (100 MAUs) and what its content is (Ox0, 0x0, ...).

 After the second line, "abcdefgh" has been copied to the allocated block of memory. The description
field of the Heap view again shows the actual contents of the memory block (0x61, 0x62,...).

» The third line frees the memory. The Heap view is empty again because after this line no memory is
allocated anymore.

10.4.9. Logging View

Use the Logging view to control the generation of internal log files. This view is intended mainly for use
by or at the request of Altium support personnel.

288

Using the Debugger

10.4.10. RTOS View

The debugger has special support for debugging real-time operating systems (RTOSSs). This support is

implemented in an RTOS-specific shared library called a kernel support module (KSM) or RTOS-aware
debugging module (RADM). Specifically, the TASKING VX-toolset for TriCore ships with a KSM supporting
the OSEK standard. You have to create your own OSEK Run Time Interface (ORTI) and specify this file

on the Miscellaneous sub tab while configuring a customized debug configuration (see also Section 10.2,
Creating a Customized Debug Configuration):

1. From the Run menu, select Debug Configurations...
The Debug Configurations dialog appears.

2. Inthe left pane, select the configuration you want to change, for example, TASKING Embedded
C/C++ Application » myproject.simulator.

Or: click the New launch configuration button (L) to add a new configuration.
3. Onthe Debugger tab, select the Miscellaneous tab
4. Inthe ORTI file field, specify the name of your own ORTI file.

The debugger supports ORTI specifications v2.0 and v2.1.

10.4.11. TASKING Registers View

When first opened, the TASKING Registers view shows a number of register groups, which together
contain all known registers. You can expand each group to see which registers they contain and examine
the register's values while stepping through your application. This view has a number of features:

» While you step through the application, the registers involved in the step turn yellow.
* You can change each register's value.

» You can copy registers and/or groups to the windows clipboard: select the groups and/or individual
registers, right-click on a register(group) and from the popup menu choose Copy Registers. You can
paste the copied selection as text in, for example, a text editor.

* You can change the way the register value is displayed: right-click on a register(group) and from the
popup menu choose the desired display mode (Natural, Hexadecimal, Decimal, Binary, Octal)

For registers that are depicted with the icon #%, the menu entry Symbolic Representation is available
in their right-click popup menu. This opens a new view which shows the internal fields of the register.
(Alternatively, you can double-click on a register). For example, the SBCU_CON register from the Slow
FPI Bus group may be shown as follows:

289

TASKING VX-toolset for TriCore User Guide

T SECU_CON X =0
SECU_CON

Yalue: O 00FFFF IUpdate

Bit# | Descripkion Yalue

0-15 TouT D:fFFF

16 DEG oM

15 PSE OFF

19 SPE oM

24-31 SPC x40

In this view you can set the individual values in the register, either by selecting a value from a drop-down
box or by simply entering a value depending on the chosen field. To update the register with the new
values, click the Update button.

* You can fully organize the register groups as you like: right-click on a register and from the popup menu
use the menu items Add Register Group..., Edit Register Group... or Remove Register Group. This
way you not only can choose which groups should be visible in the Register view, you can also create
your own groups to which you add the registers of your interest.

To restore the original groups: right-click on a register and from the popup menu choose Restore
Register Groups. Be aware: groups you have created will be removed, groups you have edited are
restored to their original and groups you have deleted are placed back!

Viewing a register group in a separate view

For a better overview, you can open a register group in a separate view. To do so, double-click on the
register group name. A new Register view is opened, showing all registers from the group. You can
consider this view as a sub view of the Register view with roughly the same features.

10.4.12. Trace View

If tracing is enabled, the Trace view shows the code that was most recently executed. For example, while
you step through the application, the Trace view shows the executed code of each step. To enable tracing:

* From the Run menu, select Trace.
A check mark appears when tracing is enabled.

The view has three tabs, Source, Instruction and Raw, each of which represents the trace in a different
way. However, not all target environments will support all three of these. The view is updated automatically
each time the target halts.

10.5. Programming a Flash Device

With the TASKING debugger you can download an application file to flash memory. Before you download
the file, you must specify the type of flash devices you use in your system and the address range(s) used
by these devices.

290

Using the Debugger

To program a flash device the debugger needs to download a flash programming monitor to the target
to execute the flash programming algorithm (target-target communication). This method uses temporary
target memory to store the flash programming monitor and you have to specify a temporary data workspace
for interaction between the debugger and the flash programming monitor.

Two types of flash devices can exist: on-chip flash devices and external flash devices.
Setup an on-chip flash device

When you specify a target configuration board using the Target Board Configuration wizard (Project
Target Board Configuration), as explained in the Getting Started with the TASKING VX-toolset for TriCore
manual, any on-chip flash devices are setup automatically.

Setup an external flash device
1. From the Project menu, select Properties
The Properties for project dialog appears.
2. Inthe left pane, expand C/C++ Build and select Flash.

The Flash pane appears.

@ Properties for myproject |Z|@E]
-

twpe Filker bext Hash e

Resource
Euilders
[CJC++ Build Configuration: | Debug b ‘ [Manage Configurations. ..
Build variables
Discovery Cptions

Environment on-chip Flash devices
Flash
Device Address Width Chips i) Unused

Processor
Settings
CICH+ General
Project References
Refactoring Hiskory
RuniDebug Settings

External flash devices

Device Address Width | Chips hin] Uriused

[Restore Defaults] [Apply]

3. Click Add... to specify an external flash device.

The Select a New Flash Device dialog appears.

201

TASKING VX-toolset for TriCore User Guide

¥ Select a New Flash Device

E5)

Hash Device
Select a flash device
Device kype: Seckar map:

m Sectar Size Start address
Infinean

Micron

Macronix

Intel

Allance Serniconductar

Fuijitsu

Hynix

Spansion

Akmnel

MNEC

AMD

AMIC

STMicroelectronics

Toshiba

33T

Sharp
Base address:
Chip width: h
Mumber of chips:

Number of unused address lines:

4. Inthe Device type box, expand the name of the manufacturer of the device and select a device.
The Sector map displays the memory layout of the flash device(s). Each sector has a size and

5. Inthe Base address field enter the start address of the memory range that will be covered by the
flash device. Any following addresses separated by commas are considered mirror addresses. This
allows the flash device to be programmed through its mirror address before switching the flash to its

base address.

6. Inthe Chip width field select the width of the flash device.

7. Inthe Number of chips field, enter the number of flash devices that are located in parallel. For
example, if you have two 8-bit devices in parallel attached to a 16-bit data bus, enter 2.

8. Fillin the Number of unused address lines field, if necessary.

The flash memory is added to the linker script file automatically with the tag "flash=flash-id".

To program a flash device
1. From the Run menu, select Debug Configurations...

The Debug Configurations dialog appears.

2. Inthe left pane, select the configuration you want to change, for example, TASKING Embedded

C/C++ Application » myproject.board.

292

Using the Debugger

On the Debugger tab, select the Initialization tab
Enable the option Program flash when downloading.
The Flash settings group box becomes active.

In the Monitor file field, specify the filename of the flash programming monitor, usually an Intel Hex
or S-Record file.

In the Sector buffer size field, specify the buffer size for buffering a flash sector.

Specify the data Workspace address used by the flash programming monitor. This address may
not conflict with the addresses of the flash devices.

Click Debug to program the flash device and start debugging.

293

TASKING VX-toolset for TriCore User Guide

294

Chapter 11. Tool Options

This chapter provides a detailed description of the options for the compiler, assembler, linker, control
program, make utility and the archiver.

Tool options in Eclipse (Menu entry)

For each tool option that you can set from within Eclipse, a Menu entry description is available. In Eclipse
you can customize the tools and tool options in the following dialog:

1. From the Project menu, select Properties
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. Open the Tool Settings tab.
You can set all tool options here.

Unless stated otherwise, all Menu entry descriptions expect that you have this Tool Settings tab
open.

11.1. C Compiler Options
This section lists all C compiler options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the compiler via the control program. Therefore, it uses the syntax of
the control program to pass options and files to the C compiler. If there is no equivalent option in Eclipse,
you can specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » Miscellaneous.
4. Inthe Additional options field, enter one or more command line options.

Because Eclipse uses the control program, you have to precede the option with -Wc¢ to pass the
option via the control program directly to the C compiler.

295

TASKING VX-toolset for TriCore User Guide

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option -n sends output to stdout instead of a file and has no effect in Eclipse.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

ctc -Oac test.c
ctc --optimize=+coalesce,+cse test.c

When you do not specify an option, a default value may become active.

296

Tool Options

C compiler option: --align

Menu entry

1. Select C/C++ Compiler » Code Generation.

2. Enter a value in the Minimum alignment field.

Command line syntax

--align=val ue

Default: --align=1

Description

By default the C compiler aligns objects to the minimum alignment required by the architecture. With this
option you can increase this alignment for objects of four bytes or larger. The value must be a power of
two.

Example

To align all objects of four bytes or larger on a 4-byte boundary, enter:

ctc --align=4 test.c

Instead of this option you can also specify the following pragma in your C source:

#pragma align 4

With #pragma align restore you can return to the previous alignment setting.

Related information

Pragma align

297

TASKING VX-toolset for TriCore User Guide

C compiler option: --check

Menu entry
Command line syntax
--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application because the code will not actually be compiled.

The compiler reports any warnings and/or errors.
This option is available on the command line only.
Related information

Assembler option --check (Check syntax)

298

Tool Options

C compiler option: --compact-max-size

Menu entry

1. Select C/C++ Compiler » Optimization.

2. Inthe Maximum size for code compaction field, enter the maximum size of a match.
Command line syntax

- - conpact - max- si ze=val ue

Default: 200

Description

This option is related to the compiler optimization --optimize=+compact (Code compaction or reverse
inlining). Code compaction is the opposite of inlining functions: large sequences of code that occur more

than once, are transformed into a function. This reduces code size (possibly at the cost of execution
speed).

However, in the process of finding sequences of matching instructions, compile time and compiler memory
usage increase quadratically with the number of instructions considered for code compaction. With this
option you tell the compiler to limit the number of matching instructions it considers for code compaction.
Example

To limit the maximum number of instructions in functions that the compiler generates during code
compaction:

ctc --optimize=+compact --compact-max-size=100 test.c
Related information
C compiler option --optimize=+compact (Optimization: code compaction)

C compiler option --max-call-depth (Maximum call depth for code compaction)

299

TASKING VX-toolset for TriCore User Guide

C compiler option: --core

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --core to the Additional options field.
Command line syntax

--core=core

You can specify the following core arguments:

tcl.2 TriCore 1.2 architecture
tcl.3 TriCore 1.3 architecture

tcl.3.1 TriCore 1.3.1 architecture, TriCore 1.3.1 instructions may be generated

Default: derived from - - cpu, if used, otherwise tc1.3

Description

With this option you specify the core architecture for a target processor for which you create your
application. If you use Eclipse or the control program, the TriCore toolset derives the core from the

processor you selected.

With --core=tc1.3.1, the compiler can generate TriCore 1.3.1 instructions in the assembly file. The macro

__TC131__ is defined in the C source file.

If you select a valid target processor (command line option --cpu (-C)), the core is automatically set,

based on the chosen target processor.
Example

Specify a custom core:

ctc --core=tcl.3.1 test.c

Related information

C compiler option --cpu (Select processor)

C compiler option --fpu-present (FPU present)

C compiler option --mmu-present (MMU present)

300

Tool Options

C compiler option: --cpu (-C)

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor Selection list, select a processor or select User defined TriCore
Command line syntax

- -cpu=cpu

- Ccpu

Description

With this option you define the target processor for which you create your application.

Based on this option the compiler always includes the special function register file regcpu.sfr, unless
you disable the option Automatic inclusion of '.sfr' file on the Preprocessing page (option
--no-tasking-sfr).

Based on the target processor the compiler automatically detects whether a FPU-unit is present. This
means you do not have to specify the compiler option --fpu-present explicitly when one of the supported
derivatives is selected.

To avoid conflicts, make sure you specify the same target processor to the assembler (Eclipse and the
control program do this automatically).

Example

To compile the file test. c for the TC1165 processor and use the SFR file regtcl1165.sfr:
ctc --cpu=tcll65 test.c

Related information

Assembler option --cpu (Select CPU)

C compiler option --no-tasking-sfr (Do not include SFR file)

Section 1.3.3, Accessing Hardware from C

301

TASKING VX-toolset for TriCore User Guide

C compiler option: --debug-info (-g)
Menu entry

1. Select C/C++ Compiler » Debugging.

2. To generate symbolic debug information, select Default, Small set or Full.
To disable the generation of debug information, select None.

Command line syntax
- -debug-i nf o[=subopti on]
-g[suboption]

You can set the following suboptions:

small 1l/c Emit small set of debug information.
default 2/d Emit default symbolic debug information.
all 3/a Emit full symbolic debug information.

Default: - - debug- i nf o (same as - - debug- i nf o=def aul t)
Description

With this option you tell the compiler to add directives to the output file for including symbolic information.
This facilitates high level debugging but increases the size of the resulting assembler file (and thus the
size of the object file). For the final application, compile your C files without debug information.

Small set of debug information

With this suboption only DWARF call frame information and type information are generated. This enables
you to inspect parameters of nested functions. The type information improves debugging. You can perform
a stack trace, but stepping is not possible because debug information on function bodies is not generated.
You can use this suboption, for example, to compact libraries.

Default debug information

This provides all debug information you need to debug your application. It meets the debugging
requirements in most cases without resulting in oversized assembler/object files.

Full debug information

With this information extra debug information is generated. In extraordinary cases you may use this debug
information (for instance, if you use your own debugger which makes use of this information). With this
suboption, the resulting assembler/object file increases significantly.

Related information

302

Tool Options

C compiler option: --default-a0-size (-Z)
Menu entry

1. Select C/C++ Compiler » Allocation

2. Enable the option Default __a0 allocations for objects below threshold, and enter a threshold
value in bytes.

Command line syntax

--defaul t-a0-si ze[=t hreshol d]
-Z[t hreshol d]

Default; - - def aul t - a0- si ze=0
Description

With this option you can specify a threshold value for __a0 allocation. If you do not specify a memory
qualifier such as __near or __far in the declaration of an object, the compiler chooses where to place
the object based on the size of the object.

First, the size of the object is checked against the near size threshold, according to the description of the
--default-near-size (-N) option. If the size of the object is larger than the near size threshold, but lower
or equal to the a0 size threshold, the object is allocated in ___a0 memory. Larger objects, arrays and
strings will be allocated __Far.

By default the a0 size threshold is zero, which means that the compiler will never use __a0 memory
unless you specify the --default-a0-size (-Z) option. If you omit a threshold value, all objects not allocated
__near, including arrays and string constants, will be allocated in __a0 memory.

Allocation in __a0 memory means that the object is addressed indirectly, using AO as the base pointer.
The total amount of memory that can be addressed this way is 64 kB.

Instead of this option you can also use #pragma default_aO_size in the C source.
Example

To put all data objects with a size of 12 bytes or smaller, but larger than the default near threshold of 8,
in __ a0 sections:

ctc --default-al0-size=12 test.c
Related information

C compiler option --default-al-size (-Y) (maximum size in bytes for data elements that are by default
located in __al sections)

C compiler option --default-near-size (-N) (maximum size in bytes for data elements that are by default
located in __near sections)

Section 1.2.1, Memory Qualifiers

303

TASKING VX-toolset for TriCore User Guide

C compiler option: --default-al-size (-Y)
Menu entry

1. Select C/C++ Compiler » Allocation

2. Enable the option Default __al allocations for objects below threshold, and enter a threshold
value in bytes.

Command line syntax

--defaul t-al-size[=threshol d]
- Y[t hreshol d]

Default; - - def aul t - al-si ze=0
Description

With this option you can specify a threshold value for __al allocation. If you do not specify a memory
qualifier such as __near or __far in the declaration of an object, the compiler chooses where to place
the object based on the size of the object.

First, the size of the object is checked against the near size threshold, according to the description of the
--default-near-size (-N) option. If the size of the object is larger than the near size threshold, but lower
or equal to the al size threshold, the object is allocated in ___al memory. Larger objects, arrays and
strings will be allocated __far.

By default the al size threshold is zero, which means that the compiler will never use __al memory
unless you specify the --default-al-size (-Y) option. If you omit a threshold value, all objects not allocated
__near, including arrays and string constants, will be allocated in __al memory.

Allocation in __al memory means that the object is addressed indirectly, using Al as the base pointer.
The total amount of memory that can be addressed this way is 64 kB.

Instead of this option you can also use #pragma default_al_size in the C source.
Example

To put all data objects with a size of 12 bytes or smaller, but larger than the default near threshold of 8,
in __al sections:

ctc --default-al-size=12 test.c
Related information

C compiler option --default-a0-size (-Z) (maximum size in bytes for data elements that are by default
located in __a0 sections)

C compiler option --default-near-size (-N) (maximum size in bytes for data elements that are by default
located in __near sections)

Section 1.2.1, Memory Qualifiers

304

Tool Options

C compiler option: --default-near-size (-N)

Menu entry

1. Select C/C++ Compiler » Allocation

2. Inthe Threshold for putting data in __near field, enter a value in bytes.
Command line syntax

--defaul t-near-size[=t hreshol d]
- N[t hreshol d]

Default; - - def aul t - near - si ze=8
Description

With this option you can specify a threshold value for __near allocation. If you do not specify __near
or __far in the declaration of an object, the compiler chooses where to place the object. The compiler
allocates objects smaller or equal to the threshold in __near sections. Larger objects are allocated in

__a0,__alor__ far sections.

If you omit a threshold value, all objects will be allocated __near, including arrays and string constants.
Instead of this option you can also use #pragma default_near_size in the C source.

Example

To put all data objects with a size of 12 bytes or smaller in __near sections:

ctc --default-near-size=12 test.c

Related information

C compiler option --default-a0-size (-Z) (maximum size in bytes for data elements that are by default
located in __a0 sections)

C compiler option --default-al-size (-Y) (maximum size in bytes for data elements that are by default
located in __al sections)

Section 1.2.1, Memory Qualifiers

305

TASKING VX-toolset for TriCore User Guide

C compiler option: --define (-D)
Menu entry
1. Select C/C++ Compiler » Preprocessing.
The Defined symbols box shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, demo=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

- -defi ne=macr o_name[=macro_definition]
- Dmacr o_nane[=nmacro_definition]
Description

With this option you can define a macro and specify it to the preprocessor. If you only specify a macro
name (no macro definition), the macro expands as '1'.

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, use the option --define (-D) multiple times. If the command line exceeds the limit
of the operating system, you can define the macros in an option file which you then must specify to the
compiler with the option --option-file (-f) file.

Defining macros with this option (instead of in the C source) is, for example, useful to compile conditional
C source as shown in the example below.

Example
Consider the following C program with conditional code to compile a demo program and a real program:

void main(void)

{
#if DEMO

demo_func(Q); /* compile for the demo program */
#else

real_func(); /* compile for the real program */
#endif
}

You can now use a macro definition to set the DEMO flag:

306

Tool Options

ctc --define=DEMO test.c
ctc --define=DEMO=1 test.c

Note that both invocations have the same effect.

The next example shows how to define a macro with arguments. Note that the macro name and definition
are placed between double quotes because otherwise the spaces would indicate a new option.

ctc --define="MAX(A,B)=(CA) > (B) ? (A) : (B))" test.c
Related information
C compiler option --undefine (Remove preprocessor macro)

C compiler option --option-file (Specify an option file)

307

TASKING VX-toolset for TriCore User Guide

C compiler option: --dep-file

Menu entry

Command line syntax

--dep-file[=file]

Description

With this option you tell the compiler to generate dependency lines that can be used in a Makefile. In
contrast to the option --preprocess=+make, the dependency information will be generated in addition to
the normal output file.

By default, the information is written to a file with extension . d (one for every input file). When you specify
a filename, all dependencies will be combined in the specified file.

Example
ctc --dep-file=test.dep test.c

The compiler compiles the file test. c, which results in the output file test._src, and generates
dependency lines in the file test.dep.

Related information

C compiler option --preprocess=+make (Generate dependencies for make)

308

Tool Options

C compiler option: --diag

Menu entry

1. From the Window menu, select Show View » Other » Basic » Problems.
The Problems view is added to the current perspective.

2. Inthe Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

Command line syntax

--diag=[format :]{all | nr,...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

Example

To display an explanation of message number 282, enter:
ctc --diag=282

This results in the following message and explanation:

E282: unterminated comment

Make sure that every comment starting with /* has a matching */.
Nested comments are not possible.

309

TASKING VX-toolset for TriCore User Guide

To write an explanation of all errors and warnings in HTML format to file cerrors._html, use redirection
and enter:

ctc --diag=html:all > cerrors.html
Related information

Section 4.9, C Compiler Error Messages

310

Tool Options

C compiler option: --error-file
Menu entry

Command line syntax
--error-file[=file]

Description

With this option the compiler redirects error messages to a file. If you do not specify a filename, the error
file will be named after the input file with extension .err.

Example
To write errors to errors.err instead of stderr, enter:

ctc --error-file=errors.err test.c

Related information

311

TASKING VX-toolset for TriCore User Guide

C compiler option: --fp-trap

Menu entry

1. Select Linker » Libraries.

2. Enable the option Use trapped floating-point library.

Command line syntax

--fp-trap

Description

With this option you tell the compiler to allow trapping of floating-point exceptions.

The floating-point instructions, as implemented in the FPU, need to be handled in a special way if
floating-point trapping behavior is expected from the generated code. A trapped floating-point library is
required.

Related information

Control program option --fp-trap (Use trapped floating-point library)

Section 8.3, Linking with Libraries

312

Tool Options

C compiler option: --fpu-present

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor Selection list, select a processor that has an FPU.
Command line syntax

- - f pu- present

Description

With this option the compiler can generate single precision floating-point instructions in the assembly file.
When you select this option, the macro __FPU___is defined in the C source file.

If you select a valid target processor (command line option --cpu (-C)), this option is automatically set,
based on the chosen target processor.

Example

To allow the use of floating-point unit (FPU) instructions in the assembly code, enter:
ctc --fpu-present test.c

Related information

C compiler option --core (Select TriCore architecture)

C compiler option --cpu (Select processor)

313

TASKING VX-toolset for TriCore User Guide

C compiler option: --help (-?)
Menu entry
Command line syntax

--hel p[=item]

-?

You can specify the following arguments:

intrinsics i Show the list of intrinsic functions

options o Show extended option descriptions

pragmas p Show the list of supported pragmas

typedefs t Show the list of predefined typedefs
Description

Displays an overview of all command line options. With an argument you can specify which extended
information is shown.

Example

The following invocations all display a list of the available command line options:
ctc -?

ctc —-help

ctc

The following invocation displays a list of the available pragmas:

ctc --help=pragmas

Related information

314

Tool Options

C compiler option: --immediate-in-code

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --immediate-in-code to the Additional options field.
Command line syntax

--i medi at e-i n- code

Description

By default the TriCore C compiler creates a data object to represent an immediate value of 32 or 64 bits,
then loading this constant value directly into a register. With this option you can tell the compiler to code
the immediate values directly into the instructions, thus using less data, but more code.

Actually when option --default-near-size < 4, 32-bit immediates will be coded into instructions anyhow,
when it is >= 4 they will be located in neardata. When --default-near-size < 8, 64-bit immediates will be
located in fardata, when it is >= 8 they will be located in neardata as well.

Instead of this option you can also specify the following pragma in your C source:
#pragma immediate_in_code
Related information

C compiler option --default-near-size (Maximum size for objects to be allocated by default in __near
sections)

Pragma immediate_in_code

315

TASKING VX-toolset for TriCore User Guide

C compiler option: --include-directory (-I)

Menu entry
1. Select C/C++ Compiler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.
2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax
--include-directory=path,...
-lpath,...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory,

The order in which the compiler searches for include files is:

1. The pathname in the C source file and the directory of the C source (only for #include files that are
enclosed in ")

2. The path that is specified with this option.

3. The path that is specified in the environment variable CTCINC when the product was installed.
4. The default directory $(PRODDIR)\include (unless you specified option --no-stdinc).
Example

Suppose that the C source file test. c contains the following lines:

#include <stdio.h>
#include "myinc.h"

You can call the compiler as follows:
ctc —-include-directory=myinclude test.c

First the compiler looks for the file stdio.h in the directory myinclude relative to the current directory.
If it was not found, the compiler searches in the environment variable and then in the default include
directory.

316

Tool Options

The compiler now looks for the file myinc.h in the directory where test. c is located. If the file is not
there the compiler searches in the directory myinclude. If it was still not found, the compiler searches
in the environment variable and then in the default include directory.

Related information

C compiler option --include-file (Include file at the start of a compilation)

C compiler option --no-stdinc (Skip standard include files directory)

317

TASKING VX-toolset for TriCore User Guide

C compiler option: --include-file (-H)
Menu entry
1. Select C/C++ Compiler » Preprocessing.
The Pre-include files box shows the files that are currently included before the compilation starts.
2. To define a new file, click on the Add button in the Pre-include files box.

3. Type the full path and file name or select a file.

Use the Edit and Delete button to change a file name or to remove a file from the list.

Command line syntax
--include-file=file,...
-Hile,...

Description

With this option you include one or more extra files at the beginning of each C source file, before other
includes. This is the same as specifying #include "Ffile" at the beginning of each of your C sources.

Example

ctc --include-file=stdio.h testl.c test2.c

The file stdio.his included at the beginning of both testl.c and test2.c.
Related information

C compiler option --include-directory (Add directory to include file search path)

318

Tool Options

C compiler option: --indirect

Menu entry

1. Select C/C++ Compiler » Code Generation.

2. Enable the option Call functions indirectly.

Command line syntax

--indirect

Description

With this option you tell the compiler to generate code for indirect function calling.
Instead of this option you can also specify the following pragma in your C source:
#pragma indirect

Example

With the following command the compiler generates far calls for all functions:
ctc --indirect test.c

Related information

C compiler option --indirect-runtime (Call run-time functions indirectly)

Section 1.9.1, “Function Calling Modes: __indirect”

319

TASKING VX-toolset for TriCore User Guide

C compiler option: --indirect-runtime
Menu entry

1. Select C/C++ Compiler » Code Generation.

2. Enable the option Call run-time functions indirectly.
Command line syntax

--indirect-runtine

Description

With this option you tell the compiler to generate code for indirect calls to run-time functions. Use this
option if you locate the entire run-time library in far memory.

Instead of this option you can also specify the following pragma in your C source:
#pragma indirect_runtime

Example

With the following command the compiler generates far calls for all run-time functions:
ctc --indirect-runtime test.c

Related information

C compiler option --indirect (Call functions indirectly)

Section 1.9.1, “Function Calling Modes: __indirect”

320

Tool Options

C compiler option: --inline

Menu entry

1. Select C/C++ Compiler » Optimization.

2. Enable the option Always inline function calls.
Command line syntax

--inline

Description

With this option you instruct the compiler to inline calls to functions without the __noinline function
qualifier whenever possible. This option has the same effect as a #pragma inline at the start of the
source file.

This option can be useful to increase the possibilities for code compaction (C compiler option
--optimize=+compact).

Example

To always inline function calls:

ctc --optimize=+compact --inline test.c

Related information

C compiler option --optimize=+compact (Optimization: code compaction)

Section 1.9.3, Inlining Functions: inline

321

TASKING VX-toolset for TriCore User Guide

C compiler option: --inline-max-incr / --inline-max-size

Menu entry

1. Select C/C++ Compiler » Optimization.

2. In the Maximum size increment when inlining field, enter a value (default -1).

3. Inthe Maximum size for functions to always inline field, enter a value (default -1).
Command line syntax

--inline-max-incr=percentage (default: -1)
--inline-max-si ze=t hreshol d (default: -1)

Description

With these options you can control the automatic function inlining optimization process of the compiler.
These options have only effect when you have enabled the inlining optimization (option --optimize=+inline
or Optimize most).

Regardless of the optimization process, the compiler always inlines all functions that have the
function qualifier inline.

With the option --inline-max-size you can specify the maximum size of functions that the compiler inlines
as part of the optimization process. The compiler always inlines all functions that are smaller than the
specified threshold. The threshold is measured in compiler internal units and the compiler uses this
measure to decide which functions are small enough to inline. The default threshold is -1, which means
that the threshold depends on the option --tradeoff.

After the compiler has inlined all functions that have the function qualifier inline and all functions that
are smaller than the specified threshold, the compiler looks whether it can inline more functions without
increasing the code size too much. With the option --inline-max-incr you can specify how much the code
size is allowed to increase. The default value is -1, which means that the value depends on the option
--tradeoff.

Example

ctc --inline-max-incr=40 --inline-max-size=15 test.c

The compiler first inlines all functions with the function qualifier inline and all functions that are smaller
than the specified threshold of 15. If the code size has still not increased with 40%, the compiler decides
which other functions it can inline.

Related information

C compiler option --optimize=+inline (Optimization: automatic function inlining)

Section 1.9.3, Inlining Functions: inline
Section 4.6.3, Optimize for Size or Speed

322

Tool Options

C compiler option: --integer-enumeration

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Always use 32-bit integers for enumeration.

Command line syntax

--integer-enuneration

Description

Normally the compiler treats enumerated types as the smallest data type possible (char or short instead
of int). This reduces code size. With this option the compiler always treats enum-types as int as defined
in the ISO C99 standard.

Related information

Section 1.1, Data Types

323

TASKING VX-toolset for TriCore User Guide

C compiler option: --iso (-c)

Menu entry

1. Select C/C++ Compiler » Language.

2. From the Comply to C standard list, select ISO C99 or ISO C90.
Command line syntax

--is0={90]99}

-c{90]99}

Default: - - i s0=99

Description

With this option you select the ISO C standard. C90 is also referred to as the "ANSI C standard". C99
refers to the newer ISO/IEC 9899:1999 (E) standard. C99 is the default.

Example

To select the ISO C90 standard on the command line:

ctc --is0=90 test.c
Related information

C compiler option --language (Language extensions)

324

Tool Options

C compiler option: --keep-output-files (-k)

Menu entry

Eclipse always removes the .src file when errors occur during compilation.
Command line syntax

--keep-output-files

-k

Description

If an error occurs during compilation, the resulting . src file may be incomplete or incorrect. With this
option you keep the generated output file (. src) when an error occurs.

By default the compiler removes the generated output file (. src) when an error occurs. This is useful
when you use the make utility. If the erroneous files are not removed, the make utility may process corrupt
files on a subsequent invocation.

Use this option when you still want to inspect the generated assembly source. Even if it is incomplete or
incorrect.

Example

ctc --keep-output-files test.c

When an error occurs during compilation, the generated output file test.src will not be removed.
Related information

C compiler option --warnings-as-errors (Treat warnings as errors)

325

TASKING VX-toolset for TriCore User Guide

C compiler option: --language (-A)

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable or disable one or more of the following options:

» Allow GNU C extensions

¢ Allow // comments in ISO C90 mode

» Check assignment of string literal to non-const string pointer

Command line syntax
- -l anguage=[f I ags]
-A[fl ags]

You can set the following flags:

+/-gcc g/G

+/-comments p/P

+/-strings XIX
Default: - AGpx

Default (without flags): - AGPX

Description

enable a number of gcc extensions
/l comments in ISO C90 mode
relaxed const check for string literals

With this option you control the language extensions the compiler can accept. By default the TriCore
compiler allows all language extensions, except for gcc extensions.

The option --language (-A) without flags disables all language extensions.

GNU C extensions

The --language=+gcc (-Ag) option enables the following gcc language extensions:

» The identifier __FUNCTION__ expands to the current function name.

Alternative syntax for variadic macros.

« Alternative syntax for designated initializers.

 Allow zero sized arrays.

 Allow empty struct/union.

326

Tool Options

* Allow empty initializer list.

« Allow initialization of static objects by compound literals.

» The middle operand of a ? : operator may be omitted.

« Allow a compound statement inside braces as expression.

« Allow arithmetic on void pointers and function pointers.

» Allow a range of values after a single case label.

» Additional preprocessor directive #warning.

» Allow comma operator, conditional operator and cast as Ivalue.
 An inline function without "static" or "extern" will be global.
* An"extern inline" function will not be compiled on its own.

* An __attribute__ directly following a struct/union definition relates to that tag instead of to the
objects in the declaration.

For a more complete description of these extensions, you can refer to the UNIX gcc info pages (info
gcce).

Comments in ISO C90 mode

With --language=+comments (-Ap) you tell the compiler to allow C++ style comments (//) in ISO C90
mode (option --is0=90). In ISO C99 mode this style of comments is always accepted.

Check assignment of string literal to non-const string pointer

With --language=+strings (-Ax) you disable warnings about discarded const qualifiers when a string
literal is assigned to a non-const pointer.

char *p;
void main(void) { p = "hello™; }

Example

ctc --language=-comments,+strings --iso=90 test.c
ctc -APx -c90 test.c

The compiler compiles in ISO C90 mode, accepts assignments of a constant string to a hon-constant
string pointer and does not allow C++ style comments.

Related information

C compiler option --iso (ISO C standard)

327

TASKING VX-toolset for TriCore User Guide

C compiler option: --loop-alignment

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --loop-alignment to the Additional options field.

Command line syntax

- -1 oop-al i gnnent =al i gnment

Default: 8

Description

Specify the alignment loop bodies will get when the loop-alignment optimization is used. When a loop
body is properly aligned, the number of fetches required to retrieve the loop body can be significantly
reduced.

The alignment can be either 4 bytes, 8 bytes, 16 bytes or 32 bytes.

Instead of this option you can also specify the following pragma in your C source:

#pragma loop_alignment val ue

Related information

C compiler option --optimize=+align-loop (Optimization: align loop bodies)

Pragma loop_alignment

328

Tool Options

C compiler option: --make-target

Menu entry

Command line syntax

- - make-t ar get =nane

Description

With this option you can overrule the default target name in the make dependencies generated by the
options --preprocess=+make (-Em) and --dep-file. The default target name is the basename of the input
file, with extension .o.

Example

ctc --preprocess=+make --make-target=mytarget.o test.c

The compiler generates dependency lines with the default target name mytarget.o instead of test.o.
Related information

C compiler option --preprocess=+make (Generate dependencies for make)

C compiler option --dep-file (Generate dependencies in a file)

329

TASKING VX-toolset for TriCore User Guide

C compiler option: --max-call-depth

Menu entry

1. Select C/C++ Compiler » Optimization.

2. In the Maximum call depth for code compaction field, enter a value.
Command line syntax

- - max- cal | - dept h=val ue

Default: -1

Description

This option is related to the compiler optimization --optimize=+compact (Code compaction or reverse
inlining). Code compaction is the opposite of inlining functions: large sequences of code that occur more
than once, are transformed into a function. This reduces code size (possibly at the cost of execution
speed).

During code compaction it is possible that the compiler generates nested calls. This may cause the
program to run out of its stack. To prevent stack overflow caused by too deeply nested function calls, you
can use this option to limit the call depth. This option can have the following values:

-1 Poses no limit to the call depth (default)

0 The compiler will not generate any function calls. (Effectively the same as if you turned of
code compaction with option --optimize=-compact)

>0 Code sequences are only reversed if this will not lead to code at a call depth larger than
specified with value. Function calls will be placed at a call depth no larger than value-1.
(Note that if you specified a value of 1, the option --optimize=+compact may remain
without effect when code sequences for reversing contain function calls.)

This option does not influence the call depth of user written functions.

If you use this option with various C modules, the call depth is valid for each individual module.
The call depth after linking may differ, depending on the nature of the modules.

Related information
C compiler option --optimize=+compact (Optimization: code compaction)

C compiler option --compact-max-size (Maximum size of a match for code compaction)

330

Tool Options

C compiler option: --mil / --mil-split

Menu entry

1. Select Global Options.

2. Enable the option Build for application wide optimizations (MIL linking).

3. (Optional) Enable the option Build for application wide code compaction.
Command line syntax

il
—-mil-split[=file,...]

Description

With option --mil the C compiler skips the code generator phase and writes the optimized intermediate
representation (MIL) to a file with the suffix .mi 1. The C compiler accepts -.mi | files as input files on the
command line.

Option --mil-split does the same as option --mil, but in addition, the C compiler splits the MIL representation
and writes it to separate files with suffix .ms. One file is written for each input file or MIL library specified
on the command line. The .ms files are only updated on a change. The C compiler accepts .ms files as
input files on the command line.

With option --mil-split you can perform application-wide optimizations during the frontend phase by
specifying all modules at once, and still invoke the backend phase one module at a time to reduce the
total compilation time.

Optionally, you can specify another filename for the .ms file the C compiler generates. Without an
argument, the basename of the C source file is used to create the .ms filename. Note that if you specify
a filename, you have to specify one filename for every input file.

Related information

Section 4.1, Compilation Process

Control program option --mil-link / --mil-split

331

TASKING VX-toolset for TriCore User Guide

C compiler option: --misrac

Menu entry
1. Select C/C++ Compiler » MISRA-C.
2. Make a selection from the MISRA-C checking list.

3. If you selected Custom, expand the Custom 2004 or Custom 1998 entry and enable one or more
individual rules.

Command line syntax
--misrac={all | nr[-nr]},---
Description

With this option you specify to the compiler which MISRA-C rules must be checked. With the option
--misrac=all the compiler checks for all supported MISRA-C rules.

Example

ctc --misrac=9-13 test.c

The compiler generates an error for each MISRA-C rule 9, 10, 11, 12 or 13 violation in file test.c.
Related information

Section 4.8, C Code Checking: MISRA-C

C compiler option --misrac-advisory-warnings

C compiler option --misrac-required-warnings

Linker option --misrac-report

332

Tool Options

C compiler option: --misrac-advisory-warnings / --misrac-required-warnings
Menu entry

1. Select C/C++ Compiler » MISRA-C.

2. Make a selection from the MISRA-C checking list.

3. Enable one or both options Warnings instead of errors for required rules and Warnings instead
of errors for advisory rules.

Command line syntax

--m srac-advi sory-war ni ngs
--m srac-required-warni ngs
Description

Normally, if an advisory rule or required rule is violated, the compiler generates an error. As a consequence,
no output file is generated. With this option, the compiler generates a warning instead of an error.

Related information
Section 4.8, C Code Checking: MISRA-C
C compiler option --misrac

Linker option --misrac-report

333

TASKING VX-toolset for TriCore User Guide

C compiler option: --misrac-version

Menu entry

1. Select C/C++ Compiler » MISRA-C.

2. Select the MISRA-C version: 2004 or 1998.

Command line syntax

--m srac-versi on={1998]2004%}

Default: 2004

Description

MISRA-C rules exist in two versions: MISRA-C:1998 and MISRA-C:2004. By default, the C source is
checked against the MISRA-C:2004 rules. With this option you can specify to check against the
MISRA-C:1998 rules.

Related information

Section 4.8, C Code Checking: MISRA-C

C compiler option --misrac

334

Tool Options

C compiler option: --mmu-present / --mmu-on

Menu entry
1. Expand C/C++ Build and select Processor.

2. From the Processor Selection list, select a processor that has an MMU or select a user defined
processor.

3. (Optional) Select C/C++ Compiler » Miscellaneous.
4. (Optional) Add the option --mmu-present to the Additional options field.
5. Select C/C++ Compiler » Code Generation.
6. Enable the option Use the MMU if present.
For predefined TriCore processors, the option --mmu-present is set automatically, so you only

need to enable the option Use the MMU if present. For user defined processors you need to
enable them both.

Command line syntax

- - mmu- pr esent
- - mmu- on

Description

If the processor you are using has an MMU which is activated, you can tell the compiler to use the MMU.
The compiler then will align data naturally. To instruct the compiler to use the MMU, you must set both
the option --mmu-present and the option --mmu-on.

With the option --mmu-present you tell the compiler that an MMU is physically present. With the option
--mmu-on you tell the compiler the MMU is activated. In this case the compiler needs to align data
naturally. Both options are necessary.

If you select a valid target processor (command line option --cpu (-C)), the option --mmu-present is set
automatically, based on the chosen target processor. If you are using a target processor with MMU that
is not predefined, you need to set this option manually.

Example

To instruct the compiler to use the activated MMU:

ctc --mmu-present --mmu-on test.c

Related information

C compiler option --fpu-present (FPU present)

C compiler option --cpu (Select processor)

335

TASKING VX-toolset for TriCore User Guide

C compiler option: --no-default-section-alignment

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --no-default-section-alignment to the Additional options field.

Command line syntax

--no-defaul t-section-alignment

Description

By default the TriCore C compiler gives data sections an alignment of 4 bytes. This is required for the
initialization algorithm in the startup code (as provided by the compiler). When you use this option, data
sections are no longer forced to a 4-byte alignment. You will need to use a custom made startup code.

Furthermore you will have to remove the copy_unit = 4 part of the copytable declaration within the
LSL file.

By default the TriCore C compiler gives code sections an alignment of 8 bytes. When you use this option,
code section alignment is 2 bytes.

Related information

Section 1.10.3, Change Section Alignment

336

Tool Options

C compiler option: --no-double (-F)

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Treat double as float.

Command line syntax

--no-doubl e

-F

Description

With this option you tell the compiler to treat variables of the type double as Float. Because the float
type_tgkes less space, execution speed increases and code size decreases, both at the cost of less
precision.

Example

ctc --no-double test.c

The file test.c is compiled where variables of the type double are treated as float.

Related information

337

TASKING VX-toolset for TriCore User Guide

C compiler option: --no-stdinc

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --no-stdinc to the Additional options field.

Command line syntax

--no-stdinc

Description

With this option you tell the compiler not to look in the default include directory relative to the installation
directory, when searching for include files. This way the compiler only searches in the include file search
paths you specified.

Related information

C compiler option --include-directory (Add directory to include file search path)

Section 4.4, How the Compiler Searches Include Files

338

Tool Options

C compiler option: --no-tasking-sfr

Menu entry

1. Select C/C++ Compiler » Preprocessing.

2. Disable the option Automatic inclusion of *.sfr" file.

Command line syntax

- - no-tasking-sfr

Description

Normally, the compiler includes a special function register (SFR) file before compiling. The compiler
automatically selects the SFR file belonging to the target you selected on the Processor page (C compiler
option --cpu).

With this option the compiler does not include the register file regcpu.sfr as based on the selected
target processor.

Use this option if you want to use your own set of SFR files.
Related information
C compiler option --cpu (Select processor)

Section 1.3.3, Accessing Hardware from C

339

TASKING VX-toolset for TriCore User Guide

C compiler option: --no-warnings (-w)
Menu entry
1. Select C/C++ Compiler » Diagnostics.
The Suppress C compiler warnings box shows the warnings that are currently suppressed.
2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas, of the warnings you want to suppress (for example
537,538). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.

Use the Edit and Delete button to change a warning number or to remove a humber from the list.

Command line syntax

- -no-war ni ngs[=nunber ,...]

-w[nunber ,...]

Description

With this option you can suppresses all warning messages or specific warning messages.
On the command line this option works as follows:

« If you do not specify this option, all warnings are reported.

* If you specify this option but without numbers, all warnings are suppressed.

« If you specify this option with a number, only the specified warning is suppressed. You can specify the
option --no-warnings=number multiple times.

Example

To suppress warnings 537 and 538, enter:

ctc test.c --no-warnings=537,538

Related information

C compiler option --warnings-as-errors (Treat warnings as errors)

Pragma warning

340

Tool Options

C compiler option: --object-comment

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add your comment to the Comment in object file field.
Command line syntax

- - obj ect - corment =coment

Description

With this option the compiler generates a . comment section at the end of the assembly file. The section
contains the comment specified with this option. After assembling, this text is included in the .o object
and el files. Place the comment between double quotes.

Instead of this option you can also specify the following pragma in your C source:
#pragma object_comment conment

Example

ctc --object-comment="Created by Altium" test.c

The compiler creates the file test.src with a .comment section at the end of the file. After assembling
this file, the text "Created by Altium" is incorporated in the generated object file.

Related information

341

TASKING VX-toolset for TriCore User Guide

C compiler option: --optimize (-O)

Menu entry

1. Select C/C++ Compiler » Optimization.

2. Select an optimization level in the Optimization level box.
Command line syntax

--optim ze[=fl ags]

-Ofl ags

You can set the following flags:

+/-coalesce alA Coalescer: remove unnecessary moves
+/-cse c/C Common subexpression elimination
+/-expression e/lE Expression simplification

+/-flow fIF Control flow simplification

+/-glo g/G Generic assembly code optimizations
+/-inline i/l Automatic function inlining

+/-schedule k/IK Instruction scheduler

+/-loop I/L Loop transformations

+/-simd m/M Perform SIMD optimizations
+/-align-loop n/N Align loop bodies

+/-forward o/O Forward store

+/-propagate p/P Constant propagation

+/-compact r’R Code compaction (reverse inlining)
+/-subscript SIS Subscript strength reduction

+/-unroll u/U Unroll small loops

+/-ifconvert viV Convert IF statements using predicates
+/-pipeline w/W Software pipelining

+/-peephole ylIY Peephole optimizations

Use the following options for predefined sets of flags:

--optimize=0 -O0 No optimization
Alias for -OACEFGIKLMNOPRSUVWY

No optimizations are performed. The compiler tries to achieve an optimal resemblance between source

code and produced code. Expressions are evaluated in the same order as written in the source code,
associative and commutative properties are not used.

342

Tool Options

--optimize=1 -O1 Optimize
Alias for -OaCefgIKLMNOPRSUVWy

Enables optimizations that do not affect the debug ability of the source code. Use this level when you
encounter problems during debugging your source code with optimization level 2.

--optimize=2 -02 Optimize more (default)
Alias for -OacefglkIMNopRsUvwy

Enables more optimizations to reduce code size and/or execution time. This is the default optimization
level.

--optimize=3 -O3 Optimize most
Alias for -OacefgikimnopRsuvwy

This is the highest optimization level. Use this level to decrease execution time to meet your real-time
requirements.

Default: - - opti mi ze=2
Description

With this option you can control the level of optimization. If you do not use this option, the default
optimization level is Optimize more (option --optimize=2 or --optimize).

When you use this option to specify a set of optimizations, you can overrule these settings in your C
source file with #pragma optimize fl ag/#pragma endoptimize.

In addition to the option --optimize, you can specify the option --tradeoff (-t). With this option you specify
whether the used optimizations should optimize for more speed (regardless of code size) or for smaller
code size (regardless of speed).

Example
The following invocations are equivalent and result all in the default optimization set:

ctc test.c

ctc --optimize=2 test.c
ctc -02 test.c

ctc --optimize test.c
ctc -0 test.c

ctc -OacefglkIMNopRsUvwy test.c

ctc --optimize=+coalesce,+cse,+expression,+flow,+glo,-inline,
+schedule,+loop,-simd,-align-loop,+forward,+propagate,
-compact, +subscript,-unroll,+ifconvert,+pipeline,+peephole test.c

343

TASKING VX-toolset for TriCore User Guide

Related information
C compiler option --tradeoff (Trade off between speed and size)
Pragma optimize/endoptimize

Section 4.6, Compiler Optimizations

344

Tool Options

C compiler option: --option-file (-f)

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the C compiler options you have set in the
other pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax
--option-file=file,...
-f file,...
Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the compiler.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file

* Multiple arguments on one line in the option file are allowed.

» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote " embedded"
"This has a double quote " embedded*
"This has a double quote " and a single quote """ embedded"
* When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

-> "This is a continuation line"

345

TASKING VX-toolset for TriCore User Guide

* Itis possible to nest command line files up to 25 levels.
Example

Suppose the file myoptions contains the following lines:

--debug-info
--define=DEMO=1
test.c

Specify the option file to the compiler:
ctc --option-file=myoptions
This is equivalent to the following command line:

ctc --debug-info --define=DEMO=1 test.c

Related information

346

Tool Options

C compiler option: --output (-0)

Menu entry

Eclipse names the output file always after the C source file.
Command line syntax

--output=file

-o file

Description

With this option you can specify another filename for the output file of the compiler. Without this option
the basename of the C source file is used with extension .src.

Example
To create the file output.src instead of test.src, enter:

ctc --output=output.src test.c

Related information

347

TASKING VX-toolset for TriCore User Guide

C compiler option: --preprocess (-E)

Menu entry

1. Select C/C++ Compiler » Preprocessing.

2. Enable the option Store preprocessor output in <file>.pre.

3. (Optional) Enable the option Keep comments in preprocessor output.
4. (Optional) Enable the option Keep #line info in preprocessor output.
Command line syntax

--preprocess[=fl ags]

-E[f1 ags]

You can set the following flags:

+/-comments c/C keep comments
+/-make m/M generate dependencies for make
+/-noline p/P strip #line source position information
Default: - ECVP
Description

With this option you tell the compiler to preprocess the C source. Under Eclipse the compiler sends the
preprocessed output to the file nanme . pre (where name is the name of the C source file to compile).
Eclipse also compiles the C source.

On the command line, the compiler sends the preprocessed file to stdout. To capture the information in
a file, specify an output file with the option --output.

With --preprocess=+comments you tell the preprocessor to keep the comments from the C source file
in the preprocessed output.

With --preprocess=+make the compiler will generate dependency lines that can be used in a Makefile.
The preprocessor output is discarded. The default target name is the basename of the input file, with the
extension .o. With the option --make-target you can specify a target name which overrules the default

target name.

With --preprocess=+noline you tell the preprocessor to strip the #line source position information (lines
starting with #1 ine). These lines are normally processed by the assembler and not needed in the
preprocessed output. When you leave these lines out, the output is easier to read.

Example

ctc --preprocess=+comments,-make,-noline test.c --output=test.pre

348

Tool Options

The compiler preprocesses the file test. c and sends the output to the file test.pre. Comments are
included but no dependencies are generated and the line source position information is not stripped from
the output file.

Related information

C compiler option --dep-file (Generate dependencies in a file)

C compiler option --make-target (Specify target name for -Em output)

349

TASKING VX-toolset for TriCore User Guide

C compiler option: --profile (-p)
Menu entry
1. Select C/C++ Compiler » Debugging.

2. Enable or disable Static profiling.

3. Enable or disable one or more of the following Generate profiling information options (dynamic
profiling):

« for block counters (not in combination with Call graph or Function timers)

to build a call graph

» for function counters

for function timers

Note that the more detailed information you request, the larger the overhead in terms of execution
time, code size and heap space needed. The option --debug does not affect profiling, execution
time or code size.

Command line syntax
--profile[=flag,--.-]

-p[fl ags]

Use the following option for a predefined set of flags:

--profile=g -pg Profiling with call graph and function timers.
Alias for: -pBcFSt

You can set the following flags:

+/-block b/B block counters
+/-callgraph c/C call graph

+/-function fIF function counters
+/-static SIS static profile generation
+/-time uT function timers

Default (without flags): - pBCf ST

Description

Profiling is the process of collecting statistical data about a running application. With these data you can
analyze which functions are called, how often they are called and what their execution time is.

350

Tool Options
Several methods of profiling exist. One method is code instrumentation which adds code to your application
that takes care of the profiling process when the application is executed. Another method is static profiling.
For an extensive description of profiling refer to Chapter 6, Profiling.
You can obtain the following profiling data (see flags above):
Block counters (not in combination with Call graph or Function timers)

This will instrument the code to perform basic block counting. As the program runs, it counts the number
of executions of each branch in an if statement, each iteration of a for loop, and so on. Note that though
you can combine Block counters with Function counters, this has no effect because Function counters
is only a subset of Block counters.

Call graph (not in combination with Block counters)

This will instrument the code to reconstruct the run-time call graph. As the program runs it associates the
caller with the gathered profiling data.

Function counters
This will instrument the code to perform function call counting. This is a subset of the basic Block counters.
Function timers (not in combination with Block counters/Function counters)

This will instrument the code to measure the time spent in a function. This includes the time spent in all
sub functions (callees).

Static profiling

With this option you do not need to run the application to get profiling results. The compiler generates
profiling information at compile time, without adding extra code to your application.

If you use one or more profiling options that use code instrumentation, you must link the corresponding
libraries too! Refer to Section 8.3, Linking with Libraries, for an overview of the (profiling) libraries. In
Eclipse the correct libraries are linked automatically.

Example

To generate block count information for the module test. c during execution, compile as follows:

ctc —-profile=+block test.c

In this case you must link the library Fibpb.a.

Related information

Chapter 6, Profiling

351

TASKING VX-toolset for TriCore User Guide

C compiler option: --rename-sections (-R)

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --rename-sections to the Additional options field.
Command line syntax

--renane- secti ons[=nane]

- R[nan®e]

Description

The compiler defaults to a section naming convention, using a prefix indicating the section type, the
module name and a symbol name:

section_type_prefix.nmodul e_nane.synbol _nane
For example, . text.module_name.symbol_name for code sections.

In case a module must be loaded at a fixed address, or a data section needs a special place in memory,
you can use this option to generate different section names (section_type_prefix.name where name
replaces the part module_name.symbol_name). You can then use this unique section name in the linker
script file for locating.

If you use this option without a value, the compiler uses the default section naming.
Example

To generate the section name section_type_prefix.NEW instead of the default section name
section_type_prefix.module_name.symbol_name, enter:

ctc -RNEW test.c

To generate the section name section_type_prefix instead of the default section name
section_type_prefix.module_name.symbol_name, enter:

ctc -R" " test.c (note the space between the quotes)
Related information

Section 1.10, Compiler Generated Sections

352

Tool Options

C compiler option: --runtime (-r)

Menu entry

1. Select C/C++ Compiler » Debugging.

2. Enable or disable one or more of the following run-time error checking options:
» Generate code for bounds checking
» Generate code to detect unhandled case in a switch

» Generate code for malloc consistency checks

Command line syntax
--runtime[=flag,---]

-r [flags]

You can set the following flags:

+/-bounds b/B bounds checking
+/-case c/C report unhandled case in a switch
+/-malloc m/M malloc consistency checks

Default (without flags): - r bcm

Description

This option controls a number of run-time checks to detect errors during program execution. Some of
these checks require additional code to be inserted in the generated code, and may therefore slow down
the program execution. The following checks are available:

bounds

Every pointer update and dereference will be checked to detect out-of-bounds accesses, null pointers
and uninitialized automatic pointer variables. This check will increase the code size and slow down the
program considerably. In addition, some heap memory is allocated to store the bounds information. You
may enable bounds checking for individual modules or even parts of modules only (see #pragma
runtime).

case

Report an unhandled case value in a switch without a default part. This check will add one function call
to every switch without a default part, but it will have little impact on the execution speed.

malloc

This option enables the use of wrappers around the functions malloc/realloc/free that will check for common
dynamic memory allocation errors like:

353

TASKING VX-toolset for TriCore User Guide

buffer overflow

write to freed memory

multiple calls to free
 passing invalid pointer to free

Enabling this check will extract some additional code from the library, but it will not enlarge your application
code. The dynamic memory usage will increase by a couple of bytes per allocation.

Related information

Pragma runtime

354

Tool Options

C compiler option: --section-name-with-symbol

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --section-name-with-symbol to the Additional options field.
Command line syntax

--section-nanme-w t h- synmbol

Description

Normally, when you use an option or pragma to influence section naming, the symbol name is not included.
With this option you tell the compiler to include the symbol name in the section name.
Instead of this option you can use the following pragma:

#pragma section_name_with_symbol

Related information

Section 1.10.1, Rename Sections

355

TASKING VX-toolset for TriCore User Guide

C compiler option: --section-per-data-object
Menu entry

1. Select C/C++ Compiler » Code Generation.

2. Enable the option Generate a section for each data object.
Command line syntax

--section- per-dat a- obj ect

Description

Normally the compiler generates one section for each data type in a module (such as .data, .rodata, .bss,
.zdata, ...).

With this option you force the compiler to generate a separate section for each data object. This provides
more control about allocation during the linking process.

Instead of this option you can use the following pragma:
#pragma section_per_data_object
Related information

Section 1.10.2, Influence Section Definition

356

C compiler option: --silicon-bug

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor Selection list, select a processor.

Tool Options

The CPU Problem Bypasses and Checks box shows the available workarounds/checks available
for the selected processor.

3. (Optional) Select Show all CPU problem bypasses and checks.

4. Click Select All or select one or more individual options.

Command line syntax

--silicon-bug=arg,.

You can give one or more of the following arguments:

all-tc1lib

all-tc1100
all-tc1115
all-tc1130
all-tc1161
all-tc1162
all-tc1163
all-tc1164
all-tc1165
all-tc1166
all-tc1736
all-tc1762
all-tc1764
all-tc1765
all-tc1766
all-tc1767
all-tc1775
all-tc1792
all-tc1796
all-tc1797

cpu-tc013

All TriCore TC11IB workarounds
All TriCore TC1100 workarounds
All TriCore TC1115 workarounds
All TriCore TC1130 workarounds
All TriCore TC1161 workarounds
All TriCore TC1162 workarounds
All TriCore TC1163 workarounds
All TriCore TC1164 workarounds
All TriCore TC1165 workarounds
All TriCore TC1166 workarounds
All TriCore TC1736 workarounds
All TriCore TC1762 workarounds
All TriCore TC1764 workarounds
All TriCore TC1765 workarounds
All TriCore TC1766 workarounds
All TriCore TC1767 workarounds
All TriCore TC1775 workarounds
All TriCore TC1792 workarounds
All TriCore TC1796 workarounds
All TriCore TC1797 workarounds

Workaround for CPU_TC.013

357

TASKING VX-toolset for TriCore User Guide

cpu-tc018 Workaround for CPU_TC.018
cpu-tc021 Workaround for CPU_TC.021
cpu-tc024 Workaround for CPU_TC.024
cpu-tc030 Workaround for CPU_TC.030
cpu-tc031 Workaround for CPU_TC.031
cpu-tc033 Workaround for CPU_TC.033
cpu-tc034 Workaround for CPU_TC.034
cpu-tc048 Workaround for CPU_TC.048
cpu-tc050 Workaround for CPU_TC.050
cpu-tc051 Workaround for CPU_TC.051
Ccpu-tc052 Workaround for CPU_TC.052
cpu-tc060 Workaround for CPU_TC.060
cpu-tc065 Workaround for CPU_TC.065
cpu-tc068 Workaround for CPU_TC.068
cpu-tc069 Workaround for CPU_TC.069
cpu-tc070 Workaround for CPU_TC.070
cpu-tc071 Workaround for CPU_TC.071
cpu-tc072 Workaround for CPU_TC.072
cpu-tc082 Workaround for CPU_TC.082
cpu-tc083 Workaround for CPU_TC.083
cpu-tc094 Workaround for CPU_TC.094
cpu-tc095 Workaround for CPU_TC.095
cpu-tc096 Workaround for CPU_TC.096
cpu-tc103 Workaround for CPU_TC.103
cpu-tc104 Workaround for CPU_TC.104
cpu-tc105 Check for CPU_TC.105
cpu-tc106 Check for CPU_TC.106
cpu-tc108 Workaround for CPU_TC.108
Ccpu-tc109 Workaround for CPU_TC.109
dmu-tc001 Workaround for DMU_TC.001
pmi-tc003 Workaround for PMI_TC.003
pmu-tc004 Workaround for PMU_TC.004
Description

With this option you specify for which hardware problems the compiler should generate workarounds.
Please refer to Chapter 17, CPU Problem Bypasses and Checks for more information about the individual
problems and workarounds.

358

Tool Options

Instead of this option you can use the following pragmas:

#pragma CPU_functi onal _probl em
#pragma DMU_f uncti onal _probl em

Example

To enable workarounds for problems CPU_TC.024 and CPU_TC.030, enter:
ctc --silicon-bug=cpu-tc024,cpu-tc030 test.c

Related information

Chapter 17, CPU Problem Bypasses and Checks

Assembler option --silicon-bug

359

TASKING VX-toolset for TriCore User Guide

C compiler option: --source (-S)

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Enable the option Merge C source code with generated assembly.
Command line syntax

--source

-s

Description

With this option you tell the compiler to merge C source code with generated assembly code in the output
file. The C source lines are included as comments.

Related information

Pragmas source/nosource

360

Tool Options

C compiler option: --static

Menu entry

Command line syntax

--static

Description

With this option, the compiler treats external definitions at file scope (except for main) as if they were
declared static. As a result, unused functions will be eliminated, and the alias checking algorithm
assumes that objects with static storage cannot be referenced from functions outside the current module.

This option only makes sense when you specify all modules of an application on the command line.

To overrule this option for a specific function or variable, you can use the export attribute. For example,
when a variable is accessed from assembly:

int i __attribute__((export)); /* "i" has external linkage */

With the export attribute the compiler will not perform optimizations that affect the unknown code.
Example

ctc --static modulel.c module2.c module3.c ...

Related information

361

TASKING VX-toolset for TriCore User Guide

C compiler option: --stdout (-n)

Menu entry

Command line syntax

- - stdout

-n

Description

With this option you tell the compiler to send the output to stdout (usually your screen). No files are
created. This option is for example useful to quickly inspect the output or to redirect the output to other

tools.

Related information

362

C compiler option: --switch

Menu entry

1. Select C/C++ Compiler » Code Generation.
2. Select an Algorithm for switch statements.
Command line syntax

--switch==arg

You can give one of the following arguments:

auto Choose most optimal code
jumptab Generate jump tables
linear Use linear jump chain code
lookup Generate lookup tables

Default: - - swi t ch=aut o

Description

Tool Options

With this option you tell the compiler which code must be generated for a switch statement: a jump chain
(linear switch), a jump table or a lookup table. By default, the compiler will automatically choose the most

efficient switch implementation based on code and data size and execution speed.

Instead of this option you can use the following pragma:

#pragma switch arg

Example

To use a table filled with target addresses for each possible switch value, enter:

ctc —--switch=jumptab test.c
Related information

Section 1.8, Switch Statement

363

TASKING VX-toolset for TriCore User Guide

C compiler option: --tradeoff (-t)

Menu entry

1. Select C/C++ Compiler » Optimization.

2. Select a trade-off level in the Trade-off between speed and size box.
Command line syntax

--tradeof f ={0]1]2]3]4}

-t{o]1]121314}

Default: - - t r adeof f =4

Description

If the compiler uses certain optimizations (option --optimize), you can use this option to specify whether
the used optimizations should optimize for more speed (regardless of code size) or for smaller code size
(regardless of speed).

By default the compiler optimizes for code size (--tradeoff=4).

If you have not specified the option --optimize, the compiler uses the default Optimize more
optimization. In this case it is still useful to specify a trade-off level.

Example
To set the trade-off level for the used optimizations:
ctc --tradeoff=2 test.c

The compiler uses the default Optimize more optimization level and balances speed and size while
optimizing.

Related information
C compiler option --optimize (Specify optimization level)

Section 4.6.3, Optimize for Size or Speed

364

C compiler option: --uchar (-u)
Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Treat "char" variables as unsigned.

Command line syntax
- -uchar
-u

Description

Tool Options

By default char is the same as specifying signed char.With this option char is the same as unsigned

char.
Related information

Section 1.1, Data Types

365

TASKING VX-toolset for TriCore User Guide

C compiler option: --undefine (-U)
Menu entry
1. Select C/C++ Compiler » Preprocessing
The Defined symbols box shows the symbols that are currently defined.

2. Toremove a defined symbol, select the symbol in the Defined symbols box and click on the Delete
button.

Command line syntax
--undefi ne=nmacr o_nane
- Uracr o_nane
Description

With this option you can undefine an earlier defined macro as with #undef¥. This option is for example
useful to undefine predefined macros.

The following predefined ISO C standard macros cannot be undefined:

__FILE current source filename

__LINE__ current source line number (int type)
__TIME__ hh:mm:ss

__ DATE___ Mmm dd yyyy

__STDC__ level of ANSI standard

Example

To undefine the predefined macro __ TASKING__:

ctc --undefine=__ TASKING__ test.c
Related information
C compiler option --define (Define preprocessor macro)

Section 1.7, Predefined Preprocessor Macros

366

Tool Options

C compiler option: --unroll-factor

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --unroll-factor to the Additional options field.

Command line syntax

--unroll-factor=val ue

Default: - -unrol | -factor=-1

Description

With this option you specify how many times eligible loops should be unrolled. When the unroll factor is
-1 (default), small loops are unrolled automatically if the loop unrolling optimization (--optimize=+unroll
/ -Ou) is enabled and the optimization trade-off is set for speed (--tradeoff=0 / -t0)).

Instead of this option you can use the following pragmas:

#pragma unroll_factor val ue

#p;’ég-]ma endunroll_factor

Example

To restrict the instructions in the assembly code to User-1 mode, enter:

ctc --user-mode=user-1 test.c

Related information

Pragma unrol 1_factor

C compiler option --optimize (Specify optimization level)

C compiler option --tradeoff (Trade off between speed and size)

367

TASKING VX-toolset for TriCore User Guide

C compiler option: --user-mode

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --user-mode to the Additional options field.
Command line syntax

- - user - node=node

You can specify the following mode arguments:

user-0 User-0 unprivileged mode
user-1 User-1 privileged mode
kernel Kernel/Supervisor mode

Default: - - user - nrode=ker nel

Description

With this option you specify the mode (I/O privilege mode) the TriCore runs in: User-0, User-1 or
Kernel/Supervisor. The availability of some instructions depends on this mode. Most instructions run in
all modes. The instructions enable and disable run in User-1 or kernel mode only. The instructions
bisr, mtcr, cachea.i and tlb instructions run in kernel mode only.

Instead of this option you can use the following pragma:

#pragma user_mode node

Example

To restrict the instructions in the assembly code to User-1 mode, enter:

ctc --user-mode=user-1 test.c

Related information

Pragma user_mode

Assembler option --user-mode (Select user mode)

368

Tool Options

C compiler option: --verbose (-v)
Menu entry

Command line syntax

--verbose

-V

Description

With this option the C compiler can generate additional informational diagnostics when available. For
example, when code is generated to circumvent functional problems in the processor.

Related information

369

TASKING VX-toolset for TriCore User Guide

C compiler option: --version (-V)

Menu entry

Command line syntax

--version

-V

Description

Display version information. The compiler ignores all other options or input files.
Example

ctc --version

The compiler does not compile any files but displays the following version information:

TASKING VX-toolset for TriCore: C compiler wvx.yrz Build nnn
Copyright 2002-year Altium BV Serial# 00000000

Related information

370

Tool Options

C compiler option: --warnings-as-errors

Menu entry

1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs- as-errors[=nunber,._.]

Description

If the compiler encounters an error, it stops compiling. When you use this option without arguments, you
tell the compiler to treat all warnings as errors. This means that the exit status of the compiler will be
non-zero after one or more compiler warnings. As a consequence, the compiler now also stops after
encountering a warning.

You can also limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

C compiler option --no-warnings (Suppress some or all warnings)

371

TASKING VX-toolset for TriCore User Guide

11.2. C++ Compiler Options

This section lists all C++ compiler options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the C++ compiler via the control program. Therefore, it uses the syntax
of the control program to pass options and files to the C++ compiler. If there is no equivalent option in
Eclipse, you can specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » Miscellaneous.
4. Inthe Additional options field, enter one or more command line options.

Because Eclipse uses the control program, you have to precede the option with -Wcp to pass the
option via the control program directly to the C++ compiler.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

If an option requires an argument, the argument may be separated from the keyword by white space, or
the keyword may be immediately followed by =option. When the second form is used there may not be
any white space on either side of the equal sign.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

cptc -Ecp test.cc
cptc --preprocess=+comments,+noline test.cc

When you do not specify an option, a default value may become active.

The priority of the options is left-to-right: when two options conflict, the first (most left) one takes effect.
The -D and -U options are not considered conflicting options, so they are processed left-to-right for each
source file. You can overrule the default output file name with the --output-file option.

372

Tool Options

C++ compiler option: --alternative-tokens

Menu entry
Command line syntax
--alternative-tokens
Description

Enable recognition of alternative tokens. This controls recognition of the digraph tokens in C++, and
controls recognition of the operator keywords (e.g., not, and, bitand, etc.).

Example
To enable operator keywords (e.g., "not", "and") and digraphs, enter:

cptc --alternative-tokens test.cc

Related information

373

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --anachronisms

Menu entry

1. Select C/C++ Compiler » Language.
2. Enable the option C++ anachronisms.
Command line syntax

- -anachroni sns

Description

Enable C++ anachronisms. This option also enables --nonconst-ref-anachronism. But you can turn this
off individually with option --no-nonconst-ref-anachronism.

Related information
C++ compiler option --nonconst-ref-anachronism (Nonconst reference anachronism)

Section 2.2.3, Anachronisms Accepted

374

Tool Options

C++ compiler option: --base-assign-op-is-default
Menu entry

Command line syntax

- - base- assi gn-op-i s-defaul t

Description

Enable the anachronism of accepting a copy assignment operator that has an input parameter that is a
reference to a base class as a default copy assignment operator for the derived class.

Related information

375

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --building-runtime

Menu entry

Command line syntax

--bui l di ng-runti ne

Description

Special option for building the C++ run-time library. Used to indicate that the C++ run-time library is being
compiled. This causes additional macros to be predefined that are used to pass configuration information

from the C++ compiler to the run-time.

Related information

376

Tool Options

C++ compiler option: --c++0x

Menu entry

Command line syntax

- - c++0x

Description

Enable the C++ extensions that are defined by the latest C++ working paper.

Related information

377

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --check
Menu entry

Command line syntax

--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application because the code will not actually be compiled.

The C++ compiler reports any warnings and/or errors.
This option is available on the command line only.
Related information

C compiler option --check (Check syntax)

Assembler option --check (Check syntax)

378

Tool Options

C++ compiler option: --context-limit

Menu entry

Command line syntax

--context-limt=nunber

Default: - - context-1imt=10

Description

Set the context limit to number. The context limit is the maximum number of template instantiation context
entries to be displayed as part of a diagnostic message. If the number of context entries exceeds the
limit, the first and last N context entries are displayed, where N is half of the context limit. A value of zero
is used to indicate that there is no limit.

Example

To set the context limit to 5, enter:

cptc --context-limit=5 test.cc

Related information

379

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --core

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --core to the Additional options field.
Command line syntax

--core=core

You can specify the following core arguments:

tcl.2 TriCore 1.2 architecture
tcl.3 TriCore 1.3 architecture
tcl1.3.1 TriCore 1.3.1 architecture

Default: derived from - - cpu, if used, otherwise tc1.3

Description

With this option you specify the core architecture for a target processor for which you create your
application. If you use Eclipse or the control program, the TriCore toolset derives the core from the
processor you selected.

If you select a valid target processor (command line option --cpu (-C)), the core is automatically set,
based on the chosen target processor.

Example

Specify a custom core:

cptc --core=tcl.3.1 test.cc
Related information

C++ compiler option --cpu (Select processor)

380

Tool Options

C++ compiler option: --cpu (-C)

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor Selection list, select a processor.

Command line syntax

- -cpu=cpu

- Ccpu

Description

With this option you define the target processor for which you create your application.

Based on this option the C++ compiler always includes the special function register file regcpu.sfr,
unless you disable the option Automatic inclusion of ".sfr' file on the Preprocessing page (option
--no-tasking-sfr).

The macro ___ CPU___is set to the name of the cpu.

Example

To compile the file test.cc for the TC1165 processor and use the SFR file regtc1165.sfr:
cptc --cpu=tcll65 test.cc

Related information

C++ compiler option --no-tasking-sfr (Do not include SFR file)

381

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --create-pch

Menu entry

1. Select C/C++ Compiler » Precompiled C++ Headers.

2. Enter a filename in the Create precompiled header file field.
Command line syntax

--create-pch=fil enane

Description

If other conditions are satisfied, create a precompiled header file with the specified name. If --pch (automatic
PCH mode) or --use-pch appears on the command line following this option, its effect is erased.

Example

To create a precompiled header file with the name test.pch, enter:
cptc --create-pch=test.pch test.cc

Related information

C++ compiler option --pch (Automatic PCH mode)

C++ compiler option --use-pch (Use precompiled header file)

Section 2.10, Precompiled Headers

382

Tool Options

C++ compiler option: --dep-file

Menu entry

Command line syntax

--dep-file[=file]

Description

With this option you tell the C++ compiler to generate dependency lines that can be used in a Makefile.
In contrast to the option --preprocess=+make, the dependency information will be generated in addition
to the normal output file.

By default, the information is written to a file with extension . d (one for every input file). When you specify
a filename, all dependencies will be combined in the specified file.

Example
cptc --dep-file=test.dep test.cc

The C++ compiler compiles the file test.cc, which results in the output file test. ic, and generates
dependency lines in the file test.dep.

Related information

C++ compiler option --preprocess=+make (Generate dependencies for make)

383

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --define (-D)
Menu entry
1. Select C/C++ Compiler » Preprocessing.
The Defined symbols box shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, demo=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

--defi ne=macro_nanme[(parmlist)]J[=macro_definition]
-Dmacro_nane(parmlist) J[=macro_definition]
Description

With this option you can define a macro and specify it to the preprocessor. If you only specify a macro
name (no macro definition), the macro expands as '1'.

Function-style macros can be defined by appending a macro parameter list to macro_name.
You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, you can use the option --define (-D) multiple times. If the command line exceeds
the limit of the operating system, you can define the macros in an option file which you then must specify
to the C++ compiler with the option --option-file (-f) file.

The definition can be tested by the preprocessor with #if, #ifdef and #ifndef, for conditional
compilations.

Example
Consider the following program with conditional code to compile a demo program and a real program:

void main(void)

{
#if DEMO

demo_func(Q; /* compile for the demo program */
#else

real_func(Q); /* compile for the real program */
#endif
}

You can now use a macro definition to set the DEMO flag:

384

Tool Options

cptc --define=DEMO test.cc
cptc --define=DEMO=1 test.cc

Note that both invocations have the same effect.

The next example shows how to define a macro with arguments. Note that the macro name and definition
are placed between double quotes because otherwise the spaces would indicate a new option.

cptc --define="MAX(A,B)=((A) > (B) ? (A) : (B))" test.cc
Related information
C++ compiler option --undefine (Remove preprocessor macro)

C++ compiler option --option-file (Specify an option file)

385

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --dollar

Menu entry

Command line syntax

--dol | ar

Default format: No dollar signs are allowed in identifiers.
Description

Accept dollar signs in identifiers. Names like A$VAR are allowed.

Related information

386

Tool Options

C++ compiler option: --embedded-c++

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Check for embedded C++ compliance.

Command line syntax

- - enbedded- c++

Description

Enable the diagnostics of non-compliance with the "Embedded C++" subset (from which templates,
exceptions, namespaces, new-style casts, RTTI, multiple inheritance, virtual base classes, and mutable

are excluded).

Related information

387

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --error-file
Menu entry

Command line syntax
--error-file[=file]

Description

With this option the C++ compiler redirects error messages to a file. If you do not specify a filename, the
error file will be named after the input file with extension .ecp.

Example
To write errors to errors.ecp instead of stderr, enter:

cptc --error-file=errors.ecp test.cc

Related information

388

Tool Options

C++ compiler option: --error-limit (-e)
Menu entry

Command line syntax
--error-limt=nunber

- enumnber

Default: - -error-1imt=100

Description

Set the error limit to number. The C++ compiler will abandon compilation after this number of errors
(remarks and warnings are not counted). By default, the limit is 100.

Example
When you want compilation to stop when 10 errors occurred, enter:

cptc --error-limit=10 test.cc

Related information

389

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --exceptions (-x)

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Support for C++ exception handling.

Command line syntax

--exceptions

- X

Description

With this option you enable support for exception handling in the C++ compiler.
The macro __EXCEPTIONS is defined when exception handling support is enabled.

Related information

390

Tool Options

C++ compiler option: --exported-template-file
Menu entry

Command line syntax
--exported-tenplate-file=file

Description

This option specifies the name to be used for the exported template file used for processing of exported
templates.

This option is supplied for use by the control program that invokes the C++ compiler and is not intended
to be used by end-users.

Related information

391

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --extended-variadic-macros
Menu entry

Command line syntax

- - ext ended- vari adi c- macr os

Default: macros with a variable number of arguments are not allowed.
Description

Allow macros with a variable number of arguments (implies --variadic-macros) and allow the naming of
the variable argument list.

Related information

C++ compiler option --variadic-macros (Allow variadic macros)

392

Tool Options

C++ compiler option: --force-vtbl

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Enable the option Force definition of virtual function tables (C++).
Command line syntax

--force-vthbl

Description

Force definition of virtual function tables in cases where the heuristic used by the C++ compiler to decide
on definition of virtual function tables provides no guidance.

Related information

C++ compiler option --suppress-vtbl (Suppress definition of virtual function tables)

393

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --fpu-present

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor Selection list, select a processor that has an FPU.
Command line syntax

- -f pu- present

Description

With this option the C++ compiler can generate single precision floating-point instructions in the assembly
file. When you select this option, the macro __FPU___is defined in the C++ source file.

If you select a valid target processor (command line option --cpu (-C)), this option is automatically set,
based on the chosen target processor.

Example

To allow the use of floating-point unit (FPU) instructions in the assembly code, enter:
cptc --fpu-present test.cc

Related information

C++ compiler option --core (Select TriCore architecture)

C++ compiler option --cpu (Select processor)

394

Tool Options

C++ compiler option: --friend-injection

Menu entry

Command line syntax

--friend-injection

Default: friend names are not injected.

Description

Controls whether the name of a class or function that is declared only in friend declarations is visible
when using the normal lookup mechanisms. When friend names are injected, they are visible to such

lookups. When friend names are not injected (as required by the standard), function names are visible
only when using argument-dependent lookup, and class names are never visible.

Related information

C++ compiler option --no-arg-dep-lookup (Disable argument dependent lookup)

395

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --g++

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Allow GNU C++ extensions.
Command line syntax

-- g+

Description

Enable GNU C++ compiler language extensions.
Related information

Section 2.3, GNU Extensions

396

Tool Options

C++ compiler option: --gnu-version

Menu entry

Command line syntax

--gnu-versi on=versi on

Default: 30300 (version 3.3.0)

Description

It depends on the GNU C++ compiler version if a particular GNU extension is supported or not. With this
option you set the GNU C++ compiler version that should be emulated in GNU C++ mode. Version x.y.z
of the GNU C++ compiler is represented by the value x*10000+y*100+z.

Example

To specify version 3.4.1 of the GNU C++ compiler, enter:

cptc --g++ --gnu-version=30401 test.cc

Related information

Section 2.3, GNU Extensions

397

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --guiding-decls

Menu entry

Command line syntax

--gui di ng-decl s

Description

Enable recognition of "guiding declarations" of template functions. A guiding declaration is a function
declaration that matches an instance of a function template but has no explicit definition (since its definition
derives from the function template). For example:

template <class T> void f(T) { ... }
void F(int);

When regarded as a guiding declaration, F(int) is an instance of the template; otherwise, it is an
independent function for which a definition must be supplied.

Related information

C++ compiler option --old-specializations (Old-style template specializations)

398

Tool Options

C++ compiler option: --help (-?)
Menu entry

Command line syntax

--hel p[=item]

-?

You can specify the following arguments:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify an argument you can list extended
information such as a list of option descriptions.

Example

The following invocations all display a list of the available command line options:
cptc -?

cptc --help

cptc

The following invocation displays an extended list of the available options:

cptc --help=options

Related information

399

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --implicit-extern-c-type-conversion

Menu entry

Command line syntax

--inmplicit-extern-c-type-conversion

Description

Enable the implicit type conversion between pointers to extern ''C' and extern "C++" function types.

Related information

400

Tool Options

C++ compiler option: --implicit-include

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Enable the option Implicit inclusion of source files for finding templates.
Command line syntax

--implicit-include

Description

Enable implicit inclusion of source files as a method of finding definitions of template entities to be
instantiated.

Related information

C++ compiler option --instantiate (Instantiation mode)

Section 2.5, Template Instantiation

401

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --incl-suffixes

Menu entry

Command line syntax

--incl-suffixes=suffixes

Default: no extension and . stdh.

Description

Specifies the list of suffixes to be used when searching for an include file whose name was specified
without a suffix. If a null suffix is to be allowed, it must be included in the suffix list. suffixes is a
colon-separated list of suffixes (e.g., "z :stdh").

Example

To allow only the suffixes .h and .stdh as include file extensions, enter:

cptc --incl-suffixes=h:stdh test.cc

Related information

C++ compiler option --include-file (Include file at the start of a compilation)

Section 5.2, How the C++ Compiler Searches Include Files

402

Tool Options

C++ compiler option: --include-directory (-)
Menu entry
1. Select C/C++ Compiler » Include Paths.
The Include paths box shows the directories that are added to the search path for include files.
2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax
--include-directory=path,...
-lpath,...

Description

Add path to the list of directories searched for #include files whose names do not have an absolute
pathname. You can specify multiple directories separated by commas.

Example

To add the directory /proj/include to the include file search path, enter:

cptc --include-directory=/proj/include test.cc

Related information

C++ compiler option --include-file (Include file at the start of a compilation)

C++ compiler option --sys-include (Add directory to system include file search path)

Section 5.2, How the C++ Compiler Searches Include Files

403

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --include-file (-H)
Menu entry
1. Select C/C++ Compiler » Preprocessing.
The Pre-include files box shows the files that are currently included before the compilation starts.
2. To define a new file, click on the Add button in the Include files at start of compilation box.

3. Type the full path and file name or select a file.

Use the Edit and Delete button to change a file name or to remove a file from the list.

Command line syntax
--include-file=file
-Hfile

Description

Include the source code of the indicated file at the beginning of the compilation. This is the same as
specifying #include "file'" at the beginning of each of your C++ sources.

All files included with --include-file are processed after any of the files included with --include-macros-file.
The filename is searched for in the directories on the include search list.

Example

cptc --include-file=extra.h testl.cc test2.cc

The file extra.his included at the beginning of both testl.cc and test2.cc.

Related information

C++ compiler option --include-directory (Add directory to include file search path)

Section 5.2, How the C++ Compiler Searches Include Files

404

Tool Options

C++ compiler option: --include-macros-file

Menu entry

Command line syntax

--include-macros-file=file

Description

Include the macros of the indicated file at the beginning of the compilation. Only the preprocessing
directives from the file are evaluated. All of the actual code is discarded. The effect of this option is that
any macro definitions from the specified file will be in effect when the primary source file is compiled. All
of the macro-only files are processed before any of the normal includes (--include-file). Within each
group, the files are processed in the order in which they were specified.

Related information

C++ compiler option --include-file (Include file at the start of a compilation)

Section 5.2, How the C++ Compiler Searches Include Files

405

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --init-priority

Menu entry

Command line syntax

--init-priority=nunber

Default: 0

Description

Normally, the C++ compiler assigns no priority to the global initialization functions and the exact order is
determined by the linker. This option sets the default priority for global initialization functions. Default
value is "0". You can also set the default priority with the #pragma Init_priority.

Values from 1 to 100 are for internal use only and should not be used. Values 101 to 65535 are available
for user code. A lower number means a higher priority.

Example
cptc --init-priority=101 test.cc

Related information

406

Tool Options

C++ compiler option: --instantiate (-t)

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Select an instantiation mode in the Instantiation mode of external template entities box.

Command line syntax

--instanti at e=node

-t node

You can specify the following modes:

used
all
local

Default: --instantiate=used

Description

Control instantiation of external template entities. External template entities are external (that is, non-inline
and non-static) template functions and template static data members. The instantiation mode determines
the template entities for which code should be generated based on the template definition. Normally,
when a file is compiled, template entities are instantiated wherever they are used (the linker will discard
duplicate definitions). The overall instantiation mode can, however, be changed with this option. You can
specify the following modes:

used

all

local

Instantiate those template entities that were used in the compilation. This will include
all static data members for which there are template definitions. This is the default.

Instantiate all template entities declared or referenced in the compilation unit. For
each fully instantiated template class, all of its member functions and static data
members will be instantiated whether or not they were used. Non-member template
functions will be instantiated even if the only reference was a declaration.

Similar to --instantiate=used except that the functions are given internal linkage.
This is intended to provide a very simple mechanism for those getting started with
templates. The compiler will instantiate the functions that are used in each
compilation unit as local functions, and the program will link and run correctly (barring
problems due to multiple copies of local static variables). However, one may end
up with many copies of the instantiated functions, so this is not suitable for production
use.

You cannot use --instantiate=local in conjunction with automatic template instantiation.

407

TASKING VX-toolset for TriCore User Guide

Related information
C++ compiler option --no-auto-instantiation (Disable automatic C++ instantiation)

Section 2.5, Template Instantiation

408

Tool Options

C++ compiler option: --integer-enumeration

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Always use 32-bit integers for enumeration.

Command line syntax

--integer-enuneration

Description

Normally the C++ compiler treats enumerated types as the smallest data type possible (char or short
instead of int). This reduces code size. With this option the C++ compiler always treats enum-types as
int as defined in the ISO C99 standard.

Related information

Section 1.1, Data Types

409

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --io-streams
Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Support for C++ 1/O streams.
Command line syntax

--i0-streans

Description

As /0O streams require substantial resources they are disabled by default. Use this option to enable 1/0
streams support in the C++ library.

This option also enables exception handling.

Related information

410

Tool Options

C++ compiler option: --late-tiebreaker

Menu entry

Command line syntax
--late-tiebreaker

Default: early tiebreaker processing.
Description

Select the way that tie-breakers (e.g., cv-qualifier differences) apply in overload resolution. In "early"
tie-breaker processing, the tie-breakers are considered at the same time as other measures of the
goodness of the match of an argument value and the corresponding parameter type (this is the standard
approach).

In "late" tie-breaker processing, tie-breakers are ignored during the initial comparison, and considered
only if two functions are otherwise equally good on all arguments; the tie-breakers can then be used to
choose one function over another.

Related information

411

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --list-file (-L)

Menu entry

Command line syntax

--list-file=file

-Lfile

Default: -1

Description

Generate raw listing information in the file. This information is likely to be used to generate a formatted
listing. The raw listing file contains raw source lines, information on transitions into and out of include
files, and diagnostics generated by the C++ compiler.

Each line of the listing file begins with a key character that identifies the type of line, as follows:

N
X

412

A normal line of source; the rest of the line is the text of the line.

The expanded form of a normal line of source; the rest of the line is the text of the line.
This line appears following the N line, and only if the line contains non-trivial modifications
(comments are considered trivial modifications; macro expansions, line splices, and
trigraphs are considered non-trivial modifications). Comments are replaced by a single
space in the expanded-form line.

A line of source skipped by an #i T or the like; the rest of the line is text. Note that the
#else, #elif, or #endi T that ends a skip is marked with an N.

An indication of a change in source position. The line has a format similar to the #
line-identifying directive output by the C preprocessor, that is to say

L line_nunber "file-name™ [key]

where key is, 1 for entry into an include file, or 2 for exit from an include file, and omitted
otherwise.

The first line in the raw listing file is always an L line identifying the primary input file. L
lines are also output for #line directives (key is omitted). L lines indicate the source position
of the following source line in the raw listing file.

Tool Options

R, W, Anindication of a diagnostic (R for remark, W for warning, E for error, and C for catastrophic
E, or C error). The line has the form:

S "file-name" |ine_nunber col um-nunber nmessage-text

where Sis R, W, E, or C, as explained above. Errors at the end of file indicate the last line
of the primary source file and a column number of zero. Command line errors are
catastrophes with an empty file name (") and a line and column number of zero. Internal
errors are catastrophes with position information as usual, and message-text beginning
with (internal error). When a diagnostic displays a list (e.g., all the contending routines
when there is ambiguity on an overloaded call), the initial diagnostic line is followed by
one or more lines with the same overall format (code letter, file name, line number, column
number, and message text), but in which the code letter is the lower case version of the
code letter in the initial line. The source position in such lines is the same as that in the
corresponding initial line.

Example
To write raw listing information to the file test. Ist, enter:

cptc —-list-file=test.Ist test.cc

Related information

413

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --long-lifetime-temps
Menu entry

Command line syntax

--long-lifetine-tenps

Description

Select the lifetime for temporaries: short means to end of full expression; long means to the earliest of
end of scope, end of switch clause, or the next label. Short is the default.

Related information

414

Tool Options

C++ compiler option: --long-long

Menu entry

Command line syntax

--long-1ong

Description

Permit the use of long long in strict mode in dialects in which it is non-standard.

Related information

415

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --make-target

Menu entry

Command line syntax

- -make-t ar get =nane

Description

With this option you can overrule the default target name in the make dependencies generated by the
options --preprocess=+make (-Em) and --dep-file. The default target name is the basename of the input
file, with extension .o.

Example

cptc --preprocess=+make --make-target=mytarget.o test.cc

The compiler generates dependency lines with the default target name mytarget.o instead of test.o.
Related information

C++ compiler option --preprocess=+make (Generate dependencies for make)

C++ compiler option --dep-file (Generate dependencies in a file)

416

Tool Options

C++ compiler option: --mmu-present / --mmu-on

Menu entry
1. Expand C/C++ Build and select Processor.

2. From the Processor Selection list, select a processor that has an MMU or select a user defined
processor.

3. (Optional) Select C/C++ Compiler » Miscellaneous.
4. (Optional) Add the option --mmu-present to the Additional options field.
5. Select C/C++ Compiler » Code Generation.
6. Enable the option Use the MMU if present.
For predefined TriCore processors, the option --mmu-present is set automatically, so you only

need to enable the option Use the MMU if present. For user defined processors you need to
enable them both.

Command line syntax

- - mmu- pr esent
- - mmu- on

Description

If the processor you are using has an MMU which is activated, you can tell the C++ compiler to use the
MMU. The C++ compiler then will align data naturally. To instruct the C++ compiler to use the MMU, you
must set both the option --mmu-present and the option --mmu-on.

With the option --mmu-present you tell the C++ compiler that an MMU is physically present. With the
option --mmu-on you tell the C++ compiler the MMU is activated. In this case the C++ compiler needs
to align data naturally. Both options are necessary.

If you select a valid target processor (command line option --cpu (-C)), the option --mmu-present is set
automatically, based on the chosen target processor. If you are using a target processor with MMU that
is not predefined, you need to set this option manually.

Example

To instruct the C++ compiler to use the activated MMU:

cptc --mmu-present --mmu-on test.cc

Related information

C++ compiler option --fpu-present (FPU present)

C++ compiler option --cpu (Select processor)

417

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --multibyte-chars
Menu entry
Command line syntax

--mul ti byte-chars

Default: multibyte character sequences are not allowed.
Description

Enable processing for multibyte character sequences in comments, string literals, and character constants.
Multibyte encodings are used for character sets like the Japanese SJIS.

Related information

418

Tool Options

C++ compiler option: --namespaces

Menu entry

Command line syntax

- -nanespaces

- - no- nanespaces

Default: namespaces are supported.
Description

When you used option --embedded-c++ namespaces are disabled. With option --namespaces you can
enable support for namespaces in this case.

The macro ___NAMESPACES is defined when namespace support is enabled.
Related information

C++ compiler option --embedded-c++ (Embedded C++ compliancy tests)
C++ compiler option --using-std (Implicit use of the std namespace)

Section 2.4, Namespace Support

419

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --no-arg-dep-lookup

Menu entry

Command line syntax

--no- ar g- dep- | ookup

Default: argument dependent lookup of unqualified function names is performed.
Description

With this option you disable argument dependent lookup of unqualified function names.

Related information

420

Tool Options

C++ compiler option: --no-array-new-and-delete
Menu entry
Command line syntax

--no-array-new and- del et e

Default: array new and delete are supported.
Description

Disable support for array new and delete.

The macro __ARRAY_OPERATORS is defined when array new and delete is enabled.

Related information

421

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --no-auto-instantiation
Menu entry

Command line syntax

--no-auto-instantiation

Default: the C++ compiler automatically instantiates templates.
Description

With this option automatic instantiation of templates is disabled.
Related information

C++ compiler option --instantiate (Set instantiation mode)

Section 2.5, Template Instantiation

422

Tool Options

C++ compiler option: --no-bool

Menu entry

Command line syntax

- - no- bool

Default: bool is recognized as a keyword.

Description

Disable recognition of the bool keyword.

The macro _BOOL is defined when bool is recognized as a keyword.

Related information

423

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --no-class-name-injection

Menu entry

Command line syntax

--no-cl ass-nane-injection

Default: the name of a class is injected into the scope of the class (as required by the standard).
Description

Do not inject the name of a class into the scope of the class (as was true in earlier versions of the C++
language).

Related information

424

Tool Options

C++ compiler option: --no-const-string-literals

Menu entry

Command line syntax

--no-const-string-literals

Default: C++ string literals and wide string literals are const (as required by the standard).
Description

With this option C++ string literals and wide string literals are non-const (as was true in earlier versions
of the C++ language).

Related information

425

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --no-dep-name
Menu entry

Command line syntax

- -no- dep- nane

Default: dependent name processing is enabled.
Description

Disable dependent name processing; i.e., the special lookup of names used in templates as required by
the C++ standard. This option implies the use of --no-parse-templates.

Related information

C++ compiler option --no-parse-templates (Disable parsing of nonclass templates)

426

Tool Options

C++ compiler option: --no-distinct-template-signatures

Menu entry

Command line syntax

--no-di stinct-tenpl ate-si gnatures

Description

Control whether the signatures for template functions can match those for non-template functions when
the functions appear in different compilation units. By default a normal function cannot be used to satisfy
the need for a template instance; e.g., a function "void F(int)" could not be used to satisfy the need
for an instantiation of a template "void f(T)" with T setto int.

--no-distinct-template-signatures provides the older language behavior, under which a non-template

function can match a template function. Also controls whether function templates may have template
parameters that are not used in the function signature of the function template.

Related information

427

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --no-double (-F)

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Treat double as float.

Command line syntax

--no-doubl e

-F

Description

With this option you tell the C++ compiler to treat variables of the type double as Float. Because the
float_t)_/pe takes less space, execution speed increases and code size decreases, both at the cost of less
precision.

Example

cptc --no-double test.cc

The file test.cc is compiled where variables of the type double are treated as float.

Related information

428

Tool Options

C++ compiler option: --no-enum-overloading

Menu entry

Command line syntax

--no-enum over | oadi ng

Description

Disable support for using operator functions to overload built-in operations on enum-typed operands.

Related information

429

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --no-explicit

Menu entry

Command line syntax

--no-explicit

Default: the explicit specifier is allowed.

Description

Disable support for the expl icit specifier on constructor declarations.

Related information

430

Tool Options

C++ compiler option: --no-export

Menu entry

Command line syntax

- - no- export

Default: exported templates (declared with the keyword export) are allowed.
Description

Disable recognition of exported templates. This option requires that dependent name processing be done,
and cannot be used with implicit inclusion of template definitions.

Related information

Section 2.5.5, Exported Templates

431

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --no-extern-inline

Menu entry

Command line syntax
--no-extern-inline

Default: inline functions are allowed to have external linkage.

Description

Disable support for inline functions with external linkage in C++. When inl ine functions are allowed
to have external linkage (as required by the standard), then extern and inl ine are compatible specifiers
on a non-member function declaration; the default linkage when inline appears alone is external (that
is, inline means extern inline on non-member functions); and an inl ine member function takes
on the linkage of its class (which is usually external). However, when inl ine functions have only internal
linkage (using --no-extern-inline), then extern and inline are incompatible; the default linkage when
inline appears alone is internal (that is, inline means static inline on non-member functions);
and inline member functions have internal linkage no matter what the linkage of their class.

Related information

Section 2.7, Extern Inline Functions

432

Tool Options

C++ compiler option: --no-for-init-diff-warning
Menu entry

Command line syntax

--no-for-init-diff-warning

Description

Disable a warning that is issued when programs compiled without the --old-for-init option would have
had different behavior under the old rules.

Related information

C++ compiler option --old-for-init (Use old for scoping rules)

433

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --no-implicit-typename
Menu entry

Command line syntax

--no-inplicit-typenane

Default: implicit typename determination is enabled.
Description

Disable implicit determination, from context, whether a template parameter dependent name is a type or
nontype.

Related information

C++ compiler option --no-typename (Disable the typename keyword)

434

Tool Options

C++ compiler option: --no-inlining
Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Disable the option Minimal inlining of function calls (C++).
Command line syntax

--no-inlining

Description

Disable minimal inlining of function calls.

Related information

435

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --nonconst-ref-anachronism

Menu entry

Command line syntax

--nonconst - r ef - anachr oni sm

- -no- nonconst - r ef - anachr oni sm
Default: - - no- nonconst - r ef - anachr oni sm
Description

Enable or disable the anachronism of allowing a reference to nonconst to bind to a class rvalue of the
right type. This anachronism is also enabled by the --anachronisms option.

Related information

C++ compiler option --anachronisms (Enable C++ anachronisms)

Section 2.2.3, Anachronisms Accepted

436

Tool Options

C++ compiler option: --nonstd-qualifier-deduction

Menu entry

Command line syntax

--nonstd-qualifier-deduction

Description

Controls whether non-standard template argument deduction should be performed in the qualifier portion
of a qualified name. With this feature enabled, a template argument for the template parameter T can be
deduced in contexts like A<T>: =B or T: :B. The standard deduction mechanism treats these as

non-deduced contexts that use the values of template parameters that were either explicitly specified or
deduced elsewhere.

Related information

437

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --nonstd-using-decl

Menu entry

Command line syntax

- -nonst d- usi ng- decl

Default: non-standard using declarations are not allowed.

Description

Allow a non-member using declaration that specifies an unqualified name.

Related information

438

Tool Options

C++ compiler option: --no-parse-templates
Menu entry

Command line syntax

--no- parse-tenpl ates

Default: parsing of nonclass templates is enabled.
Description

Disable the parsing of nonclass templates in their generic form (i.e., even if they are not really instantiated).
It is done by default if dependent name processing is enabled.

Related information

C++ compiler option --no-dep-name (Disable dependent name processing)

439

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --no-pch-messages

Menu entry

Command line syntax
--no- pch- nessages

Default: a message is displayed indicating that a precompiled header file was created or used in the
current compilation. For example,

"test.cc'": creating precompiled header file "test.pch"
Description

Disable the display of a message indicating that a precompiled header file was created or used in the
current compilation.

Related information

C++ compiler option --pch (Automatic PCH mode)

C++ compiler option --use-pch (Use precompiled header file)

C++ compiler option --create-pch (Create precompiled header file)

Section 2.10, Precompiled Headers

440

Tool Options

C++ compiler option: --no-preprocessing-only

Menu entry

Eclipse always does a full compilation.

Command line syntax

--no- preprocessi ng-only

Description

You can use this option in conjunction with the options that normally cause the C++ compiler to do
preprocessing only (e.g., --preprocess, etc.) to specify that a full compilation should be done (not just
preprocessing). When used with the implicit inclusion option, this makes it possible to generate a
preprocessed output file that includes any implicitly included files.

Example

cptc --preprocess —-implicit-include --no-preprocessing-only test.cc
Related information

C++ compiler option --preprocess (Preprocessing only)

C++ compiler option --implicit-include (Implicit source file inclusion)

441

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --no-stdinc / --no-stdstlinc

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --no-stdinc or --no-stdstlinc to the Additional options field.
Command line syntax

--no-stdinc

--no-stdstlinc

Description

With option --no-stdinc you tell the C++ compiler not to look in the default include directory relative to
the installation directory, when searching for standard include files.

With option --no-stdstlinc you tell the C++ compiler not to look in the default include.stl directory
relative to the installation directory, when searching for standard STL include files.

This way the C++ compiler only searches in the include file search paths you specified.
Related information

Section 5.2, How the C++ Compiler Searches Include Files

442

Tool Options

C++ compiler option: --no-tasking-sfr

Menu entry

1. Select C/C++ Compiler » Preprocessing.

2. Disable the option Automatic inclusion of *.sfr" file.

Command line syntax

- - no-tasking-sfr

Description

Normally, the C++ compiler includes a special function register (SFR) file before compiling. The C++
compiler automatically selects the SFR file belonging to the target you selected on the Processor page
(option --cpu).

With this option the C++ compiler does not include the register file regcpu . sfr as based on the selected
target processor.

Use this option if you want to use your own set of SFR files.
Related information
C++ compiler option --cpu (Select processor)

Section 1.3.3, Accessing Hardware from C

443

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --no-typename
Menu entry
Command line syntax

--no-typenane

Default: typename is recognized as a keyword.
Description

Disable recognition of the typename keyword.
Related information

C++ compiler option --no-implicit-typename (Disable implicit typename determination)

444

Tool Options

C++ compiler option: --no-use-before-set-warnings (-)
Menu entry

1. Select C/C++ Compiler » Diagnostics.

2. Enable the option Suppress C++ compiler "used before set™ warnings.
Command line syntax

- - no- use- bef or e- set - war ni ngs

-

Description

Suppress warnings on local automatic variables that are used before their values are set.
Related information

C++ compiler option --no-warnings (Suppress all warnings)

445

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --no-warnings (-w)
Menu entry

1. Select C/C++ Compiler » Diagnostics.

2. Enable the option Suppress all warnings.

Command line syntax

- - no- war ni ngs

-w

Description

With this option you suppress all warning messages. Error messages are still issued.
Related information

C++ compiler option --warnings-as-errors (Treat warnings as errors)

446

Tool Options

C++ compiler option: --old-for-init

Menu entry

Command line syntax

--old-for-init

Description

Control the scope of a declaration in a for-init-statement. The old (cfront-compatible) scoping rules
mean the declaration is in the scope to which the for statement itself belongs; the default
(standard-conforming) rules in effect wrap the entire for statement in its own implicitly generated scope.

Related information

C++ compiler option --no-for-init-diff-warning (Disable warning for old for-scoping)

447

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --old-line-commands

Menu entry

Command line syntax

--ol d-1ine-commands

Description

When generating source output, put out #line directives in the form # nnn instead of #line nnn.
Example

To do preprocessing only, without comments and with old style line control information, enter:

cptc --preprocess --old-line-commands test.cc
Related information

C++ compiler option --preprocess (Preprocessing only)

448

Tool Options

C++ compiler option: --old-specializations
Menu entry

Command line syntax

--ol d-speci al i zati ons

Description

Enable acceptance of old-style template specializations (that is, specializations that do not use the
template<> syntax).

Related information

449

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --option-file (-f)

Menu entry

Command line syntax
--option-file=file

-f file

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the C++ compiler.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file

» Multiple arguments on one line in the option file are allowed.

» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote " embedded"
"This has a double quote " embedded®
"This has a double quote " and a single quote """ embedded"
» When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

-> "This is a continuation line"

* Itis possible to nest command line files up to 25 levels.

450

Tool Options

Example

Suppose the file myoptions contains the following lines:
--embedded-c++

--define=DEMO=1

test.cc

Specify the option file to the C++ compiler:

cptc --option-file=myoptions

This is equivalent to the following command line:

cptc --embedded-c++ --define=DEMO=1 test.cc

Related information

451

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --output (-0)

Menu entry

Eclipse names the output file always after the C++ source file.
Command line syntax

--output-file=file

-o file

Default: module name with . i c suffix.

Description

With this option you can specify another filename for the output file of the C++ compiler. Without this
option the basename of the C++ source file is used with extension _ic.

You can also use this option in combination with the option --preprocess (-E) to redirect the preprocessing
output to a file.

Example

To create the file output. ic instead of test. ic, enter:
cptc --output=output.ic test.cc

To use the file my . pre as the preprocessing output file, enter:
cptc --preprocess --output=my.pre test.cc
Related information

C++ compiler option --preprocess (Preprocessing)

452

Tool Options

C++ compiler option: --pch

Menu entry

1. Select C/C++ Compiler » Precompiled C++ Headers.

2. Enable the option Automatically use/create precompiled header file.
Command line syntax

--pch

Description

Automatically use and/or create a precompiled header file. If --use-pch or --create-pch (manual PCH
mode) appears on the command line following this option, its effect is erased.

Related information
C++ compiler option --use-pch (Use precompiled header file)
C++ compiler option --create-pch (Create precompiled header file)

Section 2.10, Precompiled Headers

453

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --pch-dir

Menu entry

1. Select C/C++ Compiler » Precompiled C++ Headers.
2. Enter a path in the Precompiled header file directory.
Command line syntax
--pch-dir=directory-nanme

Description

Specify the directory in which to search for and/or create a precompiled header file. This option may be
used with automatic PCH mode (--pch) or manual PCH mode (--create-pch or --use-pch).

Example

To use the directory Zusr/include/pch to automatically create precompiled header files, enter:
cptc --pch-dir=/usr/include/pch --pch test.cc

Related information

C++ compiler option --pch (Automatic PCH mode)

C++ compiler option --use-pch (Use precompiled header file)

C++ compiler option --create-pch (Create precompiled header file)

Section 2.10, Precompiled Headers

454

Tool Options

C++ compiler option: --pch-verbose
Menu entry

Command line syntax

--pch-verbose

Description

In automatic PCH mode, for each precompiled header file that cannot be used for the current compilation,
a message is displayed giving the reason that the file cannot be used.

Example

cptc --pch --pch-verbose test.cc
Related information

C++ compiler option --pch (Automatic PCH mode)

Section 2.10, Precompiled Headers

455

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --pending-instantiations

Menu entry

Command line syntax

--pendi ng-instantiati ons=n

where n is the maximum number of instantiations of a single template.

Default: 64

Description

Specifies the maximum number of instantiations of a given template that may be in process of being
instantiated at a given time. This is used to detect runaway recursive instantiations. If n is zero, there is
no limit.

Example

To specify a maximum of 32 pending instantiations, enter:

cptc --pending-instantiations=32 test.cc

Related information

Section 2.5, Template Instantiation

456

Tool Options

C++ compiler option: --preprocess (-E)

Menu entry

1. Select C/C++ Compiler » Preprocessing.

2. Enable the option Store preprocessor output in <file>.pre.

3. (Optional) Enable the option Keep comments in preprocessor output.
4. (Optional) Enable the option Keep #line info in preprocessor output.
Command line syntax

--preprocess[=fl ags]

-E[fl ags]

You can set the following flags:

+/-comments c/C keep comments
+/-make m/M generate dependencies for make
+/-noline p/P strip #line source position information
Default: - ECVP
Description

With this option you tell the C++ compiler to preprocess the C++ source. Under Eclipse the C++ compiler
sends the preprocessed output to the file name . pre (where name is the name of the C++ source file to
compile). Eclipse also compiles the C++ source.

On the command line, the C++ compiler sends the preprocessed file to stdout. To capture the information
in a file, specify an output file with the option --output.

With --preprocess=+comments you tell the preprocessor to keep the comments from the C++ source
file in the preprocessed output.

With --preprocess=+make the C++ compiler will generate dependency lines that can be used in a
Makefile. The preprocessor output is discarded. The default target name is the basename of the input
file, with the extension .o. With the option --make-target you can specify a target name which overrules
the default target name.

When implicit inclusion of templates is enabled, the output may indicate false (but safe)
dependencies unless --no-preprocessing-only is also used.

With --preprocess=+noline you tell the preprocessor to strip the #line source position information (lines
starting with #1 ine). These lines are normally processed by the assembler and not needed in the
preprocessed output. When you leave these lines out, the output is easier to read.

457

TASKING VX-toolset for TriCore User Guide

Example
cptc --preprocess=+comments,-make,-noline test.cc --output=test.pre

The C++ compiler preprocesses the file test.cc and sends the output to the file test.pre. Comments
are included but no dependencies are generated and the line source position information is not stripped
from the output file.

Related information
C++ compiler option --no-preprocessing-only (Force full compilation)
C++ compiler option --dep-file (Generate dependencies in a file)

C++ compiler option --make-target (Specify target name for -Em output)

458

C++ compiler option: --remarks (-r)
Menu entry

1. Select C/C++ Compiler » Diagnostics.

2. Enable the option Issue remarks on C++ code.
Command line syntax

--remarks

-r

Description

Issue remarks, which are diagnostic messages even milder than warnings.

Related information

Section 5.3, C++ Compiler Error Messages

Tool Options

459

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --remove-unneeded-entities

Menu entry

Command line syntax

--renove- unneeded-entities

Description

Enable an optimization to remove types, variables, routines, and related constructs that are not really
needed. Something may be referenced but unneeded if it is referenced only by something that is itself
unneeded; certain entities, such as global variables and routines defined in the translation unit, are always

considered to be needed.

Related information

460

Tool Options

C++ compiler option: --rtti

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Support for C++ RTTI (run-time type information).
Command line syntax

--rtti

Default: RTTI (run-time type information) features are disabled.

Description

Enable support for RTTI (run-time type information) features: dynamic_cast, typeid.
The macro ___RTTI1 is defined when RTTI support is enabled.

Related information

461

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --schar (-s)

Menu entry

1. Select C/C++ Compiler » Language.

2. Disable the option Treat "char" variables as unsigned.
Command line syntax

--schar

-s

Description

With this option char is the same as signed char.

When plain char is signed, the macro __ SIGNED_CHARS___is defined.
Related information

C++ compiler option --uchar (Plain char is unsigned)

Section 1.1, Data Types

462

Tool Options

C++ compiler option: --special-subscript-cost

Menu entry

Command line syntax
--speci al -subscri pt - cost
Description

Enable a special nonstandard weighting of the conversion to the integral operand of the [] operator in
overload resolution.

This is a compatibility feature that may be useful with some existing code. With this feature enabled, the
following code compiles without error:

struct A {
AQ;
operator int *();
int operator[](unsigned);

};
void main(Q) {
A a;
a[0]; // Ambiguous, but allowed with this option
// operator[] is chosen
3

Related information

463

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --strict (-A)

Menu entry

1. Select C/C++ Compiler » Language.

2. Disable the option Allow non-ANSI/ISO C++ features.
Command line syntax

--strict

-A

Default: non-ANSI/ISO C++ features are enabled.
Description

Enable strict ANSI/ISO mode, which provides diagnostic messages when non-standard features are used,
and disables features that conflict with ANSI/ISO C or C++. All ANSI/ISO violations are issued as errors.

Example
To enable strict ANSI mode, with error diagnostic messages, enter:

cptc --strict test.cc
Related information

C++ compiler option --strict-warnings (Strict ANSI/ISO mode with warnings)

464

Tool Options

C++ compiler option: --strict-warnings (-a)

Menu entry

Command line syntax

--strict-warnings

-a

Default: non-ANSI/ISO C++ features are enabled.

Description

This option is similar to the option --strict, but all violations are issued as warnings instead of errors.
Example

To enable strict ANSI mode, with warning diagnostic messages, enter:
cptc --strict-warnings test.cc

Related information

C++ compiler option --strict (Strict ANSI/ISO mode with errors)

465

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --suppress-vtbl

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Enable the option Suppress definition of virtual function tables (C++).

Command line syntax

- - suppress- vt bl

Description

Suppress definition of virtual function tables in cases where the heuristic used by the C++ compiler to
decide on definition of virtual function tables provides no guidance. The virtual function table for a class
is defined in a compilation if the compilation contains a definition of the first non-inline non-pure virtual
function of the class. For classes that contain no such function, the default behavior is to define the virtual
function table (but to define it as a local static entity). The --suppress-vtbl option suppresses the definition
of the virtual function tables for such classes, and the --force-vtbl option forces the definition of the virtual

function table for such classes. --force-vtbl differs from the default behavior in that it does not force the
definition to be local.

Related information

C++ compiler option --force-vtbl (Force definition of virtual function tables)

466

Tool Options

C++ compiler option: --sys-include
Menu entry

Command line syntax
--sys-include=directory, ...
Description

Change the algorithm for searching system include files whose names do not have an absolute pathname
to look in directory.

Example

To add the directory /proj/include to the system include file search path, enter:
cptc --sys-include=/proj/include test.cc

Related information

C++ compiler option --include-directory (Add directory to include file search path)

Section 5.2, How the C++ Compiler Searches Include Files

467

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --template-directory

Menu entry

Command line syntax

--tenplate-directory=directory, ...

Description

Specifies a directory name to be placed on the exported template search path. The directories are used
to find the definitions of exported templates (. et files) and are searched in the order in which they are
specified on the command line. The current directory is always the first entry on the search path.
Example

To add the directory export to the exported template search path, enter:

cptc --template-directory=export test.cc

Related information

Section 2.5.5, Exported Templates

468

Tool Options

C++ compiler option: --timing
Menu entry

Command line syntax

--timng

Default: no timing information is generated.
Description

Generate compilation timing information. This option causes the C++ compiler to display the amount of
CPU time and elapsed time used by each phase of the compilation and a total for the entire compilation.

Example
cptc --timing test.cc
processed 180 lines at 8102 lines/min

Related information

469

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --trace-includes
Menu entry

Command line syntax

--trace-incl udes

Description

Output a list of the names of files #included to the error output file. The source file is compiled normally
(i.e. it is not just preprocessed) unless another option that causes preprocessing only is specified.

Example
cptc --trace-includes test.cc

iostream.h
string.h

Related information

C++ compiler option --preprocess (Preprocessing only)

470

Tool Options

C++ compiler option: --type-traits-helpers
Menu entry

Command line syntax

--type-traits-hel pers

--no-type-traits-hel pers

Default: in C++ mode type traits helpers are enabled by default. In GNU C++ mode, type traits helpers
are never enabled by default.

Description

Enable or disable type traits helpers (like __is_unionand __has_virtual_destructor). Type traits
helpers are meant to ease the implementation of ISO/IEC TR 19768.

The macro ___TYPE_TRAITS_ENABLED is defined when type traits pseudo-functions are enabled.

Related information

471

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --uchar (-u)

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Treat "char" variables as unsigned.
Command line syntax

--uchar

-u

Description

By default char is the same as specifying signed char.With this option char is the same as unsigned
char.

Related information
C++ compiler option --schar (Plain char is signed)

Section 1.1, Data Types

472

Tool Options

C++ compiler option: --undefine (-U)
Menu entry
1. Select C/C++ Compiler » Preprocessing
The Defined symbols box shows the symbols that are currently defined.

2. Toremove a defined symbol, select the symbol in the Defined symbols box and click on the Delete
button.

Command line syntax
- -undefi ne=macr o_nane
- Uracr o_nane
Description

Remove any initial definition of macro_name as in #unde¥. --undefine options are processed after all
--define options have been processed.

You cannot undefine a predefined macro as specified in Section 2.9, Predefined Macros, except for:

__STDC__
__cplusplus
__SIGNED_CHARS___

Example

To undefine the predefined macro __cplusplus:

cptc --undefine=__cplusplus test.cc
Related information

C++ compiler option --define (Define preprocessor macro)

Section 2.9, Predefined Macros

473

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --use-pch

Menu entry

1. Select C/C++ Compiler » Precompiled C++ Headers.

2. Enter a filename in the Use precompiled header file field.
Command line syntax

--use-pch=fil enane

Description

Use a precompiled header file of the specified name as part of the current compilation. If --pch (automatic
PCH mode) or --create-pch appears on the command line following this option, its effect is erased.

Example

To use the precompiled header file with the name test.pch, enter:
cptc --use-pch=test.pch test.cc

Related information

C++ compiler option --pch (Automatic PCH mode)

C++ compiler option --create-pch (Create precompiled header file)

Section 2.10, Precompiled Headers

474

Tool Options

C++ compiler option: --using-std

Menu entry

Command line syntax

--using-std

Default: implicit use of the std namespace is disabled.

Description

Enable implicit use of the std namespace when standard header files are included. Note that this does
not do the equivalent of putting a "using namespace std;"in the program to allow old programs to
be compiled with new header files; it has a special and localized meaning related to the TASKING versions
of certain header files, and is unlikely to be of much use to end-users of the TASKING C++ compiler.
Related information

C++ compiler option --namespaces (Support for namespaces)

Section 2.4, Namespace Support

475

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --variadic-macros

Menu entry

Command line syntax

--vari adi c- macr os

Default: macros with a variable number of arguments are not allowed.
Description

Allow macros with a variable number of arguments.

Related information

C++ compiler option --extended-variadic-macros (Allow extended variadic macros)

476

Tool Options

C++ compiler option: --version (-V)

Menu entry

Command line syntax

--version

-V

Description

Display version information. The C++ compiler ignores all other options or input files.
Example

cptc --version

The C++ compiler does not compile any files but displays the following version information:

TASKING VX-toolset for TriCore: C++ compiler wvx.yrz Build nnn
Copyright 2002-year Altium BV Serial# 00000000

Related information

477

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --warnings-as-errors

Menu entry

1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs-as-errors[=nunber,...]

Description

If the C++ compiler encounters an error, it stops compiling. When you use this option without arguments,
you tell the C++ compiler to treat all warnings as errors. This means that the exit status of the C++ compiler
will be non-zero after one or more compiler warnings. As a consequence, the C++ compiler now also
stops after encountering a warning.

You can also limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

C++ compiler option --no-warnings (Suppress all warnings)

478

C++ compiler option: --wchar_t-keyword
Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Allow the ‘'wchar_t' keyword (C++).
Command line syntax

--wchar _t - keyword

Default: wchar_t is not recognized as a keyword.
Description

Enable recognition of wchar_t as a keyword.

The macro _WCHAR_T is defined when wchar_t is recognized as a keyword.

Related information

Tool Options

479

TASKING VX-toolset for TriCore User Guide

C++ compiler option: --xref-file (-X)

Menu entry

Command line syntax
--xref-file=file
-Xfile

Description

Generate cross-reference information in a file. For each reference to an identifier in the source program,
a line of the form

synbol _id nane X file-nane |ine-nunber col um-nunber

is written, where X is

for definition;

for declaration (that is, a declaration that is not a definition);
for modification;

for address taken;

for used,;

O C >» 20

for changed (but actually meaning used and modified in a single operation, such as an
increment);

Py

for any other kind of reference, or
E for an error in which the kind of reference is indeterminate.

symbol-id is a unique decimal nhumber for the symbol. The fields of the above line are separated by tab
characters.

Related information

480

Tool Options

11.3. Assembler Options

This section lists all assembler options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the assembler via the control program. Therefore, it uses the syntax
of the control program to pass options and files to the assembler. If there is no equivalent option in Eclipse,
you can specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Assembler » Miscellaneous.
4. Inthe Additional options field, enter one or more command line options.

Because Eclipse uses the control program, Eclipse automatically precedes the option with -Wa to
pass the option via the control program directly to the assembler.

Note that the options you enter in the Assembler page are not only used for hand-coded assembly
files, but also for the assembly files generated by the compiler.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option -V displays version header information and has no effect in Eclipse.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

astc -0Ogs test.src
astc --optimize=+generics,+instr-size test.src

When you do not specify an option, a default value may become active.

481

TASKING VX-toolset for TriCore User Guide

Assembler option: --case-insensitive (-C)

Menu entry

1. Select Assembler » Symbols.

2. Enable the option Case insensitive identifiers.
Command line syntax
--case-insensitive

-C

Default: case sensitive

Description

With this option you tell the assembler not to distinguish between upper and lower case characters. By
default the assembler considers upper and lower case characters as different characters.

Assembly source files that are generated by the compiler must always be assembled case sensitive.
When you are writing your own assembly code, you may want to specify the case insensitive mode.

Example

When assembling case insensitive, the label Labe IName is the same label as labelname.
astc --case-insensitive test.src

Related information

Assembler control $CASE

482

Tool Options

Assembler option: --check

Menu entry
Command line syntax
--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application.

The assembler reports any warnings and/or errors.
This option is available on the command line only.
Related information

C compiler option --check (Check syntax)

483

TASKING VX-toolset for TriCore User Guide

Assembler option: --core

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --core to the Additional options field.
Command line syntax

--core=core

You can specify the following core arguments:

tcl.2 TriCore 1.2 architecture
tcl.3 TriCore 1.3 architecture
tcl1.3.1 TriCore 1.3.1 architecture, TriCore 1.3.1 instructions are allowed

Default: derived from - - cpu, if used, otherwise tc1.3
Description

With this option you specify the core architecture for a target processor for which you create your
application. If you use Eclipse or the control program, the TriCore toolset derives the core from the
processor you selected.

With --core=tc1.3.1, you can use TriCore 1.3.1 instructions in the assembly code. The define __ TC131___
is setto 1.

If you select a valid target processor (command line option --cpu (-C)), the core is automatically set,
based on the chosen target processor.

Example

To allow the use of TriCore 1.3.1 instructions in the assembly code, enter:
astc --core=tcl.3.1 test.src

Related information

Assembler option --cpu (Select processor)

Assembler option --fpu-present (FPU present)

Assembler option --mmu-present (MMU present)

484

Tool Options

Assembler option: --cpu (-C)

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor Selection list, select a processor.

Command line syntax

--cpu=cpu

- Ccpu

Description

With this option you define the target processor for which you create your application.

Based on this option the assembler always includes the special function register file regcpu . deT, unless
you disable the option Automatic inclusion of ".def' file on the Preprocessing page (option
--no-tasking-sfr).

Based on the target processor the assembler automatically detects whether a MMU or FPU-unit is present.
This means you do not have to specify the assembler options --mmu-present and --fpu-present explicitly
when one of the supported derivatives is selected.

To avoid conflicts, make sure you specify the same target processor as you did for the compiler (Eclipse
and the control program do this automatically).

Example

To assemble the file test.src for the TC1165 processor and use the register file regtcl1165.def:
astc --cpu=tcll65 test.src

Related information

Assembler option --no-tasking-sfr (Do not include .def file)

C compiler option --cpu (Select processor)

Section 3.5.1, Special Function Registers

485

TASKING VX-toolset for TriCore User Guide

Assembler option: --debug-info (-g)

Menu entry

1. Select Assembler » Symbols.

2. Select an option from the Generate symbolic debug list.
Command line syntax

--debug-i nfo[=fl ags]

-g[fl ags]

You can set the following flags:

+/-asm a/A Assembly source line information

+/-hll h/H Pass high level language debug information (HLL)
+/-local /L Assembler local symbols debug information
+/-smart sIS Smart debug information

Default: - - debug- i nf o=+hl |

Default (without flags): - - debug- i nf o=+smart

Description

With this option you tell the assembler which kind of debug information to emit in the object file.

You cannot specify --debug-info=+asm,+hll. Either the assembler generates assembly source line
information, or it passes HLL debug information.

When you specify --debug-info=+smart, the assembler selects which flags to use. If high level language
information is available in the source file, the assembler passes this information (same as
--debug-info=-asm,+hll,-local). If not, the assembler generates assembly source line information (same
as --debug-info=+asm,-hll,+local).

With --debug-info=AHLS the assembler does not generate any debug information.
Related information

Assembler control $DEBUG

486

Tool Options

Assembler option: --define (-D)

Menu entry
1. Select Assembler » Preprocessing.

The Defined symbols box right-below shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, demo=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

- -defi ne=macr o_name[=macr o_definition]
- Dmacr o_nanme[=nmacro_definition]
Description

With this option you can define a macro and specify it to the assembler preprocessor. If you only specify
a macro name (no macro definition), the macro expands as '1".

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, use the option --define (-D) multiple times. If the command line exceeds the limit
of the operating system, you can define the macros in an option file which you then must specify to the
assembler with the option --option-file (-f) file.

Defining macros with this option (instead of in the assembly source) is, for example, useful in combination
with conditional assembly as shown in the example below.

This option has the same effect as defining symbols via the .DEFINE, .SET, and . EQU directives.
(similar to #define in the C language). With the .MACRO directive you can define more complex
macros.

Example

Consider the following assembly program with conditional code to assemble a demo program and a real
program:

.IF DEMO ==

instructions for demo application
-ELSE

instructions for the real application
-ENDIF

487

TASKING VX-toolset for TriCore User Guide

You can now use a macro definition to set the DEMO flag:

astc --define=DEMO test.src
astc --define=DEMO=1 test.src

Note that both invocations have the same effect.
Related information

Assembler option --option-file (Specify an option file)

488

Assembler option: --diag

Menu entry

1. From the Window menu, select Show View » Other » Basic » Problems.

The Problems view is added to the current perspective.
2. Inthe Problems view right-click on a message.

A popup menu appears.
3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.
Command line syntax
--diag=[format :]{all | nr,...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

Tool Options

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the

output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

Example

To display an explanation of message number 244, enter:
astc --diag=244

This results in the following message and explanation:

W244: additional input files will be ignored

The assembler supports only a single input file.
All other input files are ignored.

489

TASKING VX-toolset for TriCore User Guide

To write an explanation of all errors and warnings in HTML format to file aserrors. html, use redirection
and enter:

astc --diag=html:all > aserrors._html
Related information

Section 7.6, Assembler Error Messages

490

Tool Options

Assembler option: --emit-locals

Menu entry

1. Select Assembler » Symbols.

2. Enable or disable one or both of the following options:
» Emit local EQU symbols

* Emit local non-EQU symbols

Command line syntax
--emt-locals[=flag,...]
You can set the following flags:

+/-equs e/lE emit local EQU symbols
+/-symbols s/S emit local non-EQU symbols

Default: - -eni t -1 ocal s=ES

Default (without flags): - - eni t - | ocal s=+synbol s

Description

With the option --emit-locals=+equs the assembler also emits local EQU symbols to the object file.
Normally, only global symbols and non-EQU local symbols are emitted. Having local symbols in the object
file can be useful for debugging.

Related information

Assembler directive .EQU

491

TASKING VX-toolset for TriCore User Guide

Assembler option: --error-file
Menu entry

Command line syntax
--error-file[=file]
Description

With this option the assembler redirects error messages to a file. If you do not specify a filename, the
error file will be named after the input file with extension .ers.

Example
To write errors to errors.ers instead of stderr, enter:

astc --error-file=errors.ers test.src
Related information

Section 7.6, Assembler Error Messages

492

Tool Options

Assembler option: --error-limit

Menu entry

1. Select Assembler » Diagnostics.

2. Enter a value in the Maximum number of emitted errors field.

Command line syntax

--error-1limt=nunber

Default: 42

Description

With this option you tell the assembler to only emit the specified maximum number of errors. When 0
(null) is specified, the assembler emits all errors. Without this option the maximum number of errors is
42.

Related information

Section 7.6, Assembler Error Messages

493

TASKING VX-toolset for TriCore User Guide

Assembler option: --fpu-present

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor Selection list, select a processor that has an FPU.
Command line syntax

- -f pu- present

Description

With this option you can use single precision floating-point instructions in the assembly code. When you
select this option, the define __ FPU__ is setto 1.

If you select a valid target processor (command line option --cpu (-C)), this option is automatically set,
based on the chosen target processor.

Example

To allow the use of floating-point unit (FPU) instructions in the assembly code, enter:
astc --fpu-present test.src

Related information

Assembler control $FPU

Assembler option --cpu (Select processor)

Assembler option --core (Select TriCore architecture)

494

Tool Options

Assembler option: --help (-?)

Menu entry

Command line syntax

--hel p[=item]

-?

You can specify the following arguments:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example
The following invocations all display a list of the available command line options:

astc -?
astc --help
astc

To see a detailed description of the available options, enter:
astc --help=options

Related information

495

TASKING VX-toolset for TriCore User Guide

Assembler option: --include-directory (-I)

Menu entry
1. Select Assembler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.
2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax
--include-directory=path,...
-lpath,...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory,

The order in which the assembler searches for include files is:

1. The pathname in the assembly file and the directory of the assembly source.

2. The path that is specified with this option.

3. The path that is specified in the environment variable ASTCINC when the product was installed.
4. The default directory $(PRODDIR)\include.

Example

Suppose that the assembly source file test.src contains the following lines:

-INCLUDE "myinc.inc*

You can call the assembler as follows:

astc --include-directory=c:\proj\include test.src

First the assembler looks for the file myinc. inc in the directory where test.src is located. If it does
not find the file, it looks in the directory c:\proj\include (this option). If the file is still not found, the
assembler searches in the environment variable and then in the default include directory.

496

Tool Options

Related information

Assembler option --include-file (Include file at the start of the input file)

497

TASKING VX-toolset for TriCore User Guide

Assembler option: --include-file (-H)

Menu entry
1. Select Assembler » Preprocessing.
The upper box shows the files that are currently included before the assembling starts.
2. To define a new file, click on the Add button in the Include files at start of input file box.

3. Type the full path and file name or select a file.

Use the Edit and Delete button to change a file name or to remove a file from the list.

Command line syntax

--include-file=file,...

-Hile,...

Description

With this option (set at project level) you include one extra file at the beginning of the assembly source
file. The specified include file is included before all other includes. This is the same as specifying . INCLUDE
"file" at the beginning of your assembly source.

Example

astc --include-file=myinc.inc test.src

The file myinc. inc is included at the beginning of test.src before it is assembled.

Related information

Assembler option --include-directory (Add directory to include file search path)

498

Tool Options

Assembler option: --keep-output-files (-k)

Menu entry

Eclipse always removes the object file when errors occur during assembling.
Command line syntax

--keep-output-files

-k

Description

If an error occurs during assembling, the resulting object file (. 0) may be incomplete or incorrect. With
this option you keep the generated object file when an error occurs.

By default the assembler removes the generated object file when an error occurs. This is useful when
you use the make utility. If the erroneous files are not removed, the make utility may process corrupt files
on a subsequent invocation.

Use this option when you still want to use the generated object. For example when you know that a
particular error does not result in a corrupt object file.

Related information

Assembler option --warnings-as-errors (Treat warnings as errors)

499

TASKING VX-toolset for TriCore User Guide

Assembler option: --list-file (-1)

Menu entry

1. Select Assembler » List File.

2. Enable the option Generate list file.

3. Enable or disable the types of information to be included.

Command line syntax

--list-file[=file]

-l [file]

Default: no list file is generated

Description

With this option you tell the assembler to generate a list file. A list file shows the generated object code
and the relative addresses. Note that the assembler generates a relocatable object file with relative
addresses.

With the optional file you can specify an alternative name for the list file. By default, the name of the list
file is the basename of the source file with the extension . Ist.

Related information

Assembler option --list-format (Format list file)

500

Assembler option: --list-format (-L)

Menu entry

1. Select Assembler » List File.

2. Enable the option Generate list file.

3. Enable or disable the types of information to be included.
Command line syntax

--list-format=flag,.-.

-Lfl ags

You can set the following flags:

+/-section d/D List section directives (. SDECL, .SECT)
+/-symbol e/E List symbol definition directives
+/-generic-expansion g/G List expansion of generic instructions
+/-generic i/l List generic instructions

+/-macro m/M List macro definitions

+/-empty-line n/N List empty source lines (newline)
+/-conditional p/P List conditional assembly

+/-equate g/Q List equate and set directives (.EQU, .SET)
+/-relocations r/R List relocations characters 'r'
+/-equate-values v/V List equate and set values
+/-wrap-lines w/W Wrap source lines
+/-macro-expansion X/X List macro expansions

+/-cycle-count y/Y List cycle counts

+/-define-expansion z/Z List define expansions

Use the following options for predefined sets of flags:

--list-format=0 -LO All options disabled

Alias for --list-format=DEGIMNPQRVWXYZ

--list-format=1 -L1 All options enabled

Alias for --list-format=degimnpqrvwxyz

Default: - - | i st - f or mat =dEG MhPqr VinXyZ

Description

With this option you specify which information you want to include in the list file.

Tool Options

501

TASKING VX-toolset for TriCore User Guide

On the command line you must use this option in combination with the option --list-file (-1).
Related information
Assembler option --list-file (Generate list file)

Assembler option --section-info=+list (Display section information in list file)

502

Tool Options

Assembler option: --mmu-present

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor Selection list, select a processor that has an MMU.
Command line syntax

- - mu- pr esent

Description

With this option you can use memory management instructions in the assembly code. When you select
this option, the define _ MMU___is setto 1.

If you select a valid target processor (command line option --cpu (-C)), this option is automatically set,
based on the chosen target processor.

Example

To allow the use of memory management unit (MMU) instructions in the assembly code, enter:
astc --mmu-present test.src

Related information

Assembler control $MMU

Assembler option --cpu (Select processor)

Assembler option --fpu-present (FPU present)

Assembler option --core (Select TriCore architecture)

503

TASKING VX-toolset for TriCore User Guide

Assembler option: --no-tasking-sfr

Menu entry

1. Select Assembler » Preprocessing.

2. Disable the option Automatic inclusion of '.def file.
Command line syntax

- - no-tasking-sfr

Description

Normally, the assembler includes a special function register (SFR) file before assembling. The assembler
automatically selects the SFR file belonging to the target you select on the Processor page (assembler
option --cpu).

With this option the assembler does not include the register file regcpu.def as based on the selected
target processor.

Use this option if you want to use your own set of SFR files.
Example
astc --cpu=tcll65 --no-tasking-sfr test.src

The register file regtc1165.def is not included, but the assembler allows the use of MMU instructions
due to --cpu.

Related information

Assembler option --cpu (Select processor)

504

Tool Options

Assembler option: --no-warnings (-w)

Menu entry
1. Select Assembler » Diagnostics.

The Suppress warnings box shows the warnings that are currently suppressed.
2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas, of the warnings you want to suppress (for example
201,202). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.

Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

- -no-war ni ngs[=nunber ,...]

-wlnunber ,...]

Description

With this option you can suppresses all warning messages or specific warning messages.
On the command line this option works as follows:

« If you do not specify this option, all warnings are reported.

* If you specify this option but without numbers, all warnings are suppressed.

« If you specify this option with a number, only the specified warning is suppressed. You can specify the
option --no-warnings=number multiple times.

Example

To suppress warnings 201 and 202, enter:

astc test.src --no-warnings=201,202
Related information

Assembler option --warnings-as-errors (Treat warnings as errors)

505

TASKING VX-toolset for TriCore User Guide

Assembler option: --optimize (-O)

Menu entry

1. Select Assembler » Optimization.

2. Select one or more of the following options:
» Optimize generic instructions

» Optimize instruction size

Command line syntax
--optimze=flag,...

-Of I ags

You can set the following flags:

+/-generics g/G Allow generic instructions
+/-instr-size SIS Optimize instruction size

Default: - - opti m ze=gs
Description

With this option you can control the level of optimization. For details about each optimization see
Section 7.4, Assembler Optimizations.

Related information
Assembler control $HW_ONLY

Section 7.4, Assembler Optimizations

506

Tool Options

Assembler option: --option-file (-f)

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the assembler options you have set in the
other pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax
--option-file=file,...
-f file,...
Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the assembler.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

Option files can also be generated on the fly, for example by the make utility. You can specify the option
--option-file multiple times.

Format of an option file
» Multiple arguments on one line in the option file are allowed.
» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote " embedded"
"This has a double quote " embedded*
"This has a double quote " and a single quote """ embedded"
* When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

-> "This is a continuation line"

507

TASKING VX-toolset for TriCore User Guide

* Itis possible to nest command line files up to 25 levels.
Example

Suppose the file myoptions contains the following lines:

--debug=+asm, -local
test.src

Specify the option file to the assembler:
astc --option-file=myoptions
This is equivalent to the following command line:

astc --debug=+asm,-local test.src

Related information

508

Tool Options

Assembler option: --output (-0)

Menu entry

Eclipse names the output file always after the input file.
Command line syntax

--output=file

-o file

Description

With this option you can specify another filename for the output file of the assembler. Without this option,
the basename of the assembly source file is used with extension .o.

Example
To create the file relobj .o instead of asm. o, enter:

astc --output=relobj.o asm.src

Related information

509

TASKING VX-toolset for TriCore User Guide

Assembler option: --page-length

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --page-length to the Additional options field.

Command line syntax

- - page- | engt h=nunber

Default: 72

Description

If you generate a list file with the assembler option --list-file, this option sets the number of lines in a page
in the list file. The default is 72, the minimum is 10. As a special case, a page length of 0 turns off page
breaks.

Related information

Assembler option --list-file (Generate list file)

Assembler control $PAGE

510

Tool Options

Assembler option: --page-width

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --page-width to the Additional options field.
Command line syntax

- - page-w dt h=numnber

Default: 132

Description

If you generate a list file with the assembler option --list-file, this option sets the number of columns per
line on a page in the list file. The default is 132, the minimum is 40.

Related information
Assembler option --list-file (Generate list file)

Assembler control $PAGE

511

TASKING VX-toolset for TriCore User Guide

Assembler option: --preprocess (-E)
Menu entry

Command line syntax

- - preprocess

-E

Description

With this option the assembler will only preprocess the assembly source file. The assembler sends the
preprocessed file to stdout.

Related information

512

Assembler option: --preprocessor-type (-m)
Menu entry

Command line syntax

- - preprocessor-type=type

- ype

You can set the following preprocessor types:

none n No preprocessor
tasking t TASKING preprocessor

Default: - - pr epr ocessor - t ype=t aski ng

Description

Tool Options

With this option you select the preprocessor that the assembler will use. By default, the assembler uses

the TASKING preprocessor.

When the assembly source file does not contain any preprocessor symbols, you can specify to the

assembler not to use a preprocessor.

Related information

513

TASKING VX-toolset for TriCore User Guide

Assembler option: --section-info (-t)

Menu entry

1. Select Assembler » List File.

2. Enable the option Generate list file.

3. Enable the option List section summary.
and/or

1. Select Assembler » Diagnostics.

2. Enable the option Display section summary.
Command line syntax
--section-info[=flag,---]

-t [flags]

You can set the following flags:

+/-console c/C Display section summary on console
+/-list I/L List section summary in list file

Default: - - sect i on-i nf o=CL
Default (without flags): - - sect i on-i nf o=cl
Description

With this option you tell the assembiler to display section information. For each section its memory space,
size, total cycle counts and name is listed on stdout and/or in the list file.

The cycle count consists of two parts: the total accumulated count for the section and the total accumulated
count for all repeated instructions. In the case of nested loops it is possible that the total supersedes the
section total.

Example

To writes the section information to the list file and also display the section information on stdout, enter:
astc --list-file --section-info asm.src

Related information

Assembler option --list-file (Generate list file)

514

Tool Options

Assembler option: --silicon-bug

Menu entry
1. Expand C/C++ Build and select Processor.
2. From the Processor Selection list, select a processor.

The CPU Problem Bypasses and Checks box shows the available workarounds/checks available
for the selected processor.

3. (Optional) Select Show all CPU problem bypasses and checks.
4. Click Select All or select one or more individual options.
Command line syntax

--silicon-bug=arg,...

You can give one or more of the following arguments:

all-tc1lib All TriCore TC11IB checks
all-tc1100 All TriCore TC1100 checks
all-tc1115 All TriCore TC1115 checks
all-tc1130 All TriCore TC1130 checks
all-tc1161 All TriCore TC1161 checks
all-tc1162 All TriCore TC1162 checks
all-tc1163 All TriCore TC1163 checks
all-tc1164 All TriCore TC1164 checks
all-tc1165 All TriCore TC1165 checks
all-tc1166 All TriCore TC1166 checks
all-tc1736 All TriCore TC1736 checks
all-tc1762 All TriCore TC1762 checks
all-tc1764 All TriCore TC1764 checks
all-tc1765 All TriCore TC1765 checks
all-tc1766 All TriCore TC1766 checks
all-tc1767 All TriCore TC1767 checks
all-tc1775 All TriCore TC1775 checks
all-tc1792 All TriCore TC1792 checks
all-tc1796 All TriCore TC1796 checks
all-tc1797 All TriCore TC1797 checks
cpu-tc013 Check for CPU_TC.013

515

TASKING VX-toolset for TriCore User Guide

cpu-tc018 Check for CPU_TC.018
cpu-tc021 Check for CPU_TC.021
cpu-tc023 Check for CPU_TC.023
cpu-tc024 Check for CPU_TC.024
cpu-tc030 Check for CPU_TC.030
cpu-tc031 Check for CPU_TC.031
cpu-tc033 Workaround for CPU_TC.033
cpu-tc034 Check for CPU_TC.034
cpu-tc048 Check for CPU_TC.048
cpu-tc050 Check for CPU_TC.050
Ccpu-tc051 Workaround for CPU_TC.051
cpu-tc060 Check for CPU_TC.060
cpu-tc065 Check for CPU_TC.065
cpu-tc068 Check for CPU_TC.068
cpu-tc069 Check for CPU_TC.069
cpu-tc070 Check for CPU_TC.070
cpu-tc071 Check for CPU_TC.071
cpu-tc072 Check for CPU_TC.072
cpu-tc074 Workaround for CPU_TC.082
cpu-tc081 Check for CPU_TC.082
cpu-tc082 Check for CPU_TC.082
cpu-tc083 Check for CPU_TC.083
cpu-tc094 Check for CPU_TC.094
cpu-tc095 Check for CPU_TC.095
cpu-tc096 Check for CPU_TC.096
cpu-tc104 Check for CPU_TC.104
cpu-tc105 Check for CPU_TC.105
cpu-tc106 Check for CPU_TC.106
cpu-tc108 Check for CPU_TC.108
cpu-tc109 Check for CPU_TC.109
dmu-tc001 Check for DMU_TC.001
pmi-tc003 Workaround for PMI_TC.003
pmu-tc004 Workaround for PMU_TC.004

516

Tool Options

Description

With this option you specify for which hardware problems the assembler should check or generate
workarounds. Please refer to Chapter 17, CPU Problem Bypasses and Checks for more information about
the individual problems and workarounds.

Instead of this option you can use the following assembler controls:

$CPU_TCnum {ON|OFF}

$DMU_TCnum {ON|OFF}

$PMI1_TCnum {ON|OFF}

$PMU_TCnum {ON|OFF}

When you use this option or control, the define __defect_ TChum___is set to 1.
Example

To check for problems CPU_TC.024 and CPU_TC.030, enter:

astc --silicon-bug=cpu-tc024,cpu-tc030 test.src

Related information

Chapter 17, CPU Problem Bypasses and Checks

Assembler controls $defect_TCnum

C compiler option --silicon-bug

517

TASKING VX-toolset for TriCore User Guide

Assembler option: --symbol-scope (-i)

Menu entry

1. Select Assembler » Symbols.

2. Enable or disable the option Set default symbol scope to global.
Command line syntax

- - synbol - scope=scope

-i scope

You can set the following scope:

global g Default symbol scope is global
local | Default symbol scope is local

Default: - - synbol - scope=I ocal

Description

With this option you tell the assembler how to treat symbols that you have not specified explicitly as global
or local. By default the assembler treats all symbols as local symbols unless you have defined them
explicitly as global.

Related information
Assembler directive .GLOBAL
Assembler directive .LOCAL

Assembler control $IDENT

518

Tool Options

Assembler option: --user-mode

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --user-mode to the Additional options field.
Command line syntax

- - user - node=node

You can specify the following mode arguments:

user-0 User-0 unprivileged mode
user-1 User-1 privileged mode
kernel Kernel/Supervisor mode

Default: - - user - node=ker nel

Description
With this option you specify the mode (I/O privilege mode) the TriCore runs in: User-0, User-1 or
Kernel/Supervisor. The availability of some instructions depends on this mode. Most instructions run in

all modes. The instructions enable and disable run in User-1 or kernel mode only. The instructions
bisr, mtcr, cachea.i and tlb instructions run in kernel mode only.

The define __UM_KERNEL__or _ UM_USER_1__ is setto 1, depending on the mode.
Example
To restrict the instructions in the assembly code to User-1 mode, enter:

astc --user-mode=user-1 test.src

Related information

C compiler option --user-mode (Select user mode)

519

TASKING VX-toolset for TriCore User Guide

Assembler option: --version (-V)
Menu entry

Command line syntax

--version

-V

Description

Display version information. The assembler ignores all other options or input files.
Example

astc --version

The assembler does not assemble any files but displays the following version information:

TASKING VX-toolset for TriCore: assembler vx.yrz Build nnn
Copyright 2002-year Altium BV Serial# 00000000

Related information

520

Tool Options

Assembler option: --warnings-as-errors

Menu entry

1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs- as-errors[=nunber,._.]

Description

If the assembler encounters an error, it stops assembling. When you use this option without arguments,
you tell the assembler to treat all warnings as errors. This means that the exit status of the assembler will

be non-zero after one or more assembler warnings. As a consequence, the assembler now also stops
after encountering a warning.

You can also limit this option to specific warnings by specifying a comma-separated list of warning numbers.
Related information

Assembler option --no-warnings (Suppress some or all warnings)

521

TASKING VX-toolset for TriCore User Guide

11.4. Linker Options

This section lists all linker options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the linker via the control program. Therefore, it uses the syntax of the
control program to pass options and files to the linker. If there is no equivalent option in Eclipse, you can
specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Linker » Miscellaneous.
4. Inthe Additional options field, enter one or more command line options.

Because Eclipse uses the control program, Eclipse automatically precedes the option with -WI to
pass the option via the control program directly to the linker.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option --keep-output-files keeps files after an error occurred. When you specify this option
in Eclipse, it will have no effect because Eclipse always removes the output file after an error had occurred.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

Itc -mfkl test.o
Itc --map-Ffile-format=+files,+link,+locate test.o

When you do not specify an option, a default value may become active.

522

Tool Options

Linker option: --case-insensitive

Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Link case insensitive.
Command line syntax
--case-insensitive

Default: case sensitive

Description

With this option you tell the linker not to distinguish between upper and lower case characters in symbols.
By default the linker considers upper and lower case characters as different characters.

Assembly source files that are generated by the compiler must always be assembled and thus linked
case sensitive. When you have written your own assembly code and specified to assemble it case
insensitive, you must also link the .o file case insensitive.

Related information

Assembler option --case-insensitive

523

TASKING VX-toolset for TriCore User Guide

Linker option: --chip-output (-c)
Menu entry
1. Select Linker » Output Format.
2. Enable the option Generate Intel Hex format file and/or Generate S-records file.
3. Enable the option Create file for each memory chip.
4. Optionally, specify the Size of addresses.
Eclipse always uses the project name as the basename for the output file.
Command line syntax
--chi p- out put =[basenane]: f or mat [: addr _si ze], - - -
- c[basenane]: f or mat [: addr _si ze], - - -
You can specify the following formats:

IHEX Intel Hex
SREC Motorola S-records

The addr_size specifies the size of the addresses in bytes (record length). For Intel Hex you can use the
values 1, 2 or 4 bytes (default). For Motorola-S you can specify: 2 (S1 records), 3 (S2 records) or 4 bytes
(S3 records, default).

Description

With this option you specify the Intel Hex or Motorola S-record output format for loading into a
PROM-programmer. The linker generates a file for each ROM memory defined in the LSL file, where
sections are located:

memory menmane
{ type=rom; }

The name of the file is the name of the Eclipse project or, on the command line, the name of the memory
device that was emitted with extension .hex or . sre. Optionally, you can specify a basename which
prepends the generated file name.

The linker always outputs a debugging file in ELF/DWARF format and optionally an absolute
object file in Intel Hex-format and/or Motorola S-record format.

Example
To generate Intel Hex output files for each defined memory, enter the following on the command line:

Itc --chip-output=myfile:IHEX testl.o

524

Tool Options

In this case, this generates the file myfi le_memname.hex.
Related information

Linker option --output (Output file)

525

TASKING VX-toolset for TriCore User Guide

Linker option: --define (-D)
Menu entry
1. Select Linker » Script File.
The Defined symbols box shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, demo=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

- -defi ne=macr o_name[=macro_definition]
- Dmacr o_nane[=nmacro_definition]
Description

With this option you can define a macro and specify it to the linker LSL file preprocessor. If you only
specify a macro hame (no macro definition), the macro expands as '1".

You can specify as many macros as you like; just use the option --define (-D) multiple times. If the
command line exceeds the limit of the operating system, you can define the macros in an option file which
you then must specify to the linker with the option --option-file (-f) file.

The definition can be tested by the preprocessor with #i F, #i fdef and #ifndef, for conditional locating.
Example

To define the RESET vector, which is used in the linker script file tclvl_3.1Isl, enter:

Itc test.o -otest.elf —-Isl-file=tclvl 3.Isl --define=RESET=0xa0000000
Related information

Linker option --option-file (Specify an option file)

526

Tool Options

Linker option: --diag

Menu entry

1. From the Window menu, select Show View » Other » Basic » Problems.
The Problems view is added to the current perspective.

2. Inthe Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

Command line syntax

--diag=[format :]{all | nr,...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

With this option the linker does not link/locate any files.
Example

To display an explanation of message number 106, enter:
Itc --diag=106

This results in the following message and explanation:
E106: unresolved external: <message>

The linker could not resolve all external symbols.

527

TASKING VX-toolset for TriCore User Guide

This is an error when the incremental linking option is disabled.
The <message> indicates the symbol that is unresolved.

To write an explanation of all errors and warnings in HTML format to file Ikerrors._html, use redirection
and enter:

Itc --diag=html:all > lkerrors._html
Related information

Section 8.10, Linker Error Messages

528

Tool Options

Linker option: --error-file

Menu entry
Command line syntax
--error-file[=file]
Description

With this option the linker redirects error messages to a file. If you do not specify a filename, the error file
is Itc.elk.

Example
To write errors to errors.elk instead of stderr, enter:

Itc --error-file=errors.elk test.o

Related information

Section 8.10, Linker Error Messages

529

TASKING VX-toolset for TriCore User Guide

Linker option: --error-limit

Menu entry

1. Select Linker » Diagnostics.

2. Enter a value in the Maximum number of emitted errors field.
Command line syntax

--error-1limt=nunber

Default: 42

Description

With this option you tell the linker to only emit the specified maximum number of errors. When 0 (null) is
specified, the linker emits all errors. Without this option the maximum number of errors is 42.

Related information

Section 8.10, Linker Error Messages

530

Tool Options

Linker option: --extern (-e)

Menu entry

Command line syntax
--extern=synbol ,...
-esynbol , ...
Description

With this option you force the linker to consider the given symbol as an undefined reference. The linker
tries to resolve this symbol, either the symbol is defined in an object file or the linker extracts the
corresponding symbol definition from a library.

This option is, for example, useful if the startup code is part of a library. Because your own application
does not refer to the startup code, you can force the startup code to be extracted by specifying the symbol
_START as an unresolved external.

Example
Consider the following invocation:
Itc mylib.a

Nothing is linked and no output file will be produced, because there are no unresolved symbols when the
linker searches through mylib_a.

Itc --extern=_START mylib.a

In this case the linker searches for the symbol _START in the library and (if found) extracts the object that
contains _START, the startup code. If this module contains new unresolved symbols, the linker looks
again in mylib_a. This process repeats until no new unresolved symbols are found.

Related information

Section 8.3, Linking with Libraries

531

TASKING VX-toolset for TriCore User Guide

Linker option: --first-library-first

Menu entry

Command line syntax
--first-library-first
Description

When the linker processes a library it searches for symbols that are referenced by the objects and libraries
processed so far. If the library contains a definition for an unresolved reference the linker extracts the
object that contains the definition from the library.

By default the linker processes object files and libraries in the order in which they appear on the command
line. If you specify the option --first-library-first the linker always tries to take the symbol definition from
the library that appears first on the command line before scanning subsequent libraries.

This is for example useful when you are working with a newer version of a library that partially overlaps
the older version. Because they do not contain exactly the same functions, you have to link them both.

However, when a function is present in both libraries, you may want the linker to extract the most recent
function.

Example
Consider the following example:
Itc --Ffirst-library-first a.a test.o b.a

If the file test. o calls a function which is both present in a.a and b.a, normally the functioninb.a
would be extracted. With this option the linker first tries to extract the symbol from the first library a.a.

Note that routines in b . a that call other routines that are present in both a.a and b.a are now
also resolved from a.a.

Related information

Linker option --no-rescan (Rescan libraries to solve unresolved externals)

532

Tool Options

Linker option: --global-type-checking
Menu entry

Command line syntax

--gl obal -t ype-checki ng

Description

Use this option when you want the linker to check the types of variable and function references against
their definitions, using DWARF 2 or DWARF 3 debug information.

This check should give the same result as the C compiler when you use MIL linking.

Related information

533

TASKING VX-toolset for TriCore User Guide

Linker option: --help (-?)
Menu entry

Command line syntax

--hel p[=item]

-?

You can specify the following arguments:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:
Itc -7

Itc --help

Itc

To see a detailed description of the available options, enter:

Itc --help=options

Related information

534

Tool Options

Linker option: --hex-format

Menu entry
1. Select Linker » Output Format.
2. Enable the option Generate Intel Hex format file.
3. Enable or disable the optionEmit start address record.
Command line syntax
--hex-format=fl ag, ...
You can set the following flag:
+/-start-address s/S Emit start address record
Default: - - hex- f or mat =s
Description
With this option you can specify to emit or omit the start address record from the hex file.
Related information
Linker option --output (Output file)

Section 14.2, Intel Hex Record Format

535

TASKING VX-toolset for TriCore User Guide

Linker option: --hex-record-size

Menu entry

1. Select Linker » Output Format.

2. Enable the option Generate Intel Hex format file.

3. Select Linker » Miscellaneous.

4. Add the option --hex-record-size to the Additional options field.
Command line syntax

--hex-record-si ze=si ze

Default: 32

Description

With this option you can set the size (width) of the Intel Hex data records.
Related information

Linker option --output (Output file)

Section 14.2, Intel Hex Record Format

536

Tool Options

Linker option: --import-object
Menu entry
1. Select Linker » Data Objects.
The Data objects box shows the list of object files that are imported.
2. To add a data object, click on the Add button in the Data objects box.

3. Type or select a binary file (including its path).

Use the Edit and Delete button to change a filename or to remove a data object from the list.

Command line syntax

--import-object=file,...

Description

With this option the linker imports a binary file containing raw data and places it in a section. The section
name is derived from the filename, in which dots are replaced by an underscore. So, when importing a
file called my . jpg, a section with the name my_jpg is created. In your application you can refer to the
created section by using linker labels.

Related information

Section 8.5, Importing Binary Files

537

TASKING VX-toolset for TriCore User Guide

Linker option: --include-directory (-1)

Menu entry

Command line syntax
--include-directory=path,...
-lpath, ...

Description

With this option you can specify the path where your LSL include files are located. A relative path will be
relative to the current directory.

The order in which the linker searches for LSL include files is:

1. The pathname in the LSL file and the directory where the LSL file is located (only for #include files that
are enclosed in ™)

2. The path that is specified with this option.

3. The default directory $(PRODDIR)\include.Isl.

Example

Suppose that your linker script file myIsl . Isl contains the following line:

#include "myinc.inc"

You can call the linker as follows:

Itc --include-directory=c:\proj\include --Isl-file=mylsl_Isl test.o

First the linker looks for the file myinc. inc in the directory where mylsl _Isl is located. If it does not
find the file, it looks in the directory c:\proj\include (this option). Finally it looks in the directory
$(PRODDIR)\include.lsl.

Related information

Linker option --Isl-file (Specify linker script file)

538

Tool Options

Linker option: --incremental (-r)

Menu entry

Command line syntax
--increnental

-r

Description

Normally the linker links and locates the specified object files. With this option you tell the linker only to
link the specified files. The linker creates a linker output file . out. You then can link this file again with
other object files until you have reached the final linker output file that is ready for locating.

In the last pass, you call the linker without this option with the final linker output file .out. The linker will
now locate the file.

Example
In this example, the files testl.o, test2.0 and test3.o are incrementally linked:
1. Itc --incremental testl.o test2.0 --output=test.out
testl.o and test2.0 are linked
2. Itc --incremental test3.o0 test.out
test3.0 and test.out are linked, taskl.out is created
3. Itc taskl.out
taskl.out is located
Related information

Section 8.4, Incremental Linking

539

TASKING VX-toolset for TriCore User Guide

Linker option: --keep-output-files (-k)

Menu entry

Eclipse always removes the output files when errors occurred.
Command line syntax

--keep-output-files

-k

Description

If an error occurs during linking, the resulting output file may be incomplete or incorrect. With this option
you keep the generated output files when an error occurs.

By default the linker removes the generated output file when an error occurs. This is useful when you use
the make utility. If the erroneous files are not removed, the make utility may process corrupt files on a
subsequent invocation.

Use this option when you still want to use the generated file. For example when you know that a particular
error does not result in a corrupt object file, or when you want to inspect the output file, or send it to Altium
support.

Related information

Linker option --warnings-as-errors (Treat warnings as errors)

540

Tool Options

Linker option: --library (-I)
Menu entry
1. Select Linker » Libraries.
The Libraries box shows the list of libraries that are linked with the project.
2. To add a library, click on the Add button in the Libraries box.
3. Type or select a library (including its path).

4. Optionally, disable the option Link default libraries.

Use the Edit and Delete button to change a library name or to remove a library from the list.

Command line syntax

--library=nane
-l nane
Description

With this option you tell the linker to use system library Iibname.a, where name is a string. The linker

first searches for system libraries in any directories specified with --library-directory, then in the directories
specified with the environment variables LIBTC1V1 2 / LIBTC1vV1 3 / LIBTC1V1_3 1, unlessyou
used the option --ignore-default-library-path.

Example
To search in the system library Libc.a (C library):
Itc test.o mylib.a --library=c

The linker links the file test.o and first looks in library mylib.a (in the current directory only), then in
the system library ibc.a to resolve unresolved symbols.

Related information

Linker option --library-directory (Additional search path for system libraries)

Section 8.3, Linking with Libraries

541

TASKING VX-toolset for TriCore User Guide

Linker option: --library-directory (-L) / --ignore-default-library-path
Menu entry
1. Select Linker » Libraries.
The Library search path box shows the directories that are added to the search path for library files.

2. To define a new directory for the search path, click on the Add button in the Library search path
box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--library-directory=path, ...
-Lpath, ...

--ignore-default-library-path
-L

Description

With this option you can specify the path(s) where your system libraries, specified with the option --library
(-), are located. If you want to specify multiple paths, use the option --library-directory for each separate
path.

The default path is $(PRODDIR)\Tib\[tc12][tc13][tc131][tc13_mmu].

If you specify only -L (without a pathname) or the long option --ignore-default-library-path, the linker
will not search the default path and also not in the paths specified in the environment variables
LIBTC1V1_2 / LIBTC1V1_3 / LIBTC1V1_3_1. So, the linker ignores steps 2 and 3 as listed below.

The priority order in which the linker searches for system libraries specified with the option --library (-1)
is:

1. The path that is specified with the option --library-directory.

2. The path that is specified in the environment variables LIBTC1V1_2 / LIBTC1V1_3 /
LIBTC1Vl_3_1.

3. The default directory $(PRODDIR)\1ib\[tc12][tc13][tc131][tc13_mmu].
Example
Suppose you call the linker as follows:

Itc test.o --library-directory=c:\mylibs --library=c

542

Tool Options

First the linker looks in the directory c:\myl ibs for library Libc.a (this option). If it does not find the
requested libraries, it looks in the directory that is set with the environment variables LIBTC1V1_2 /
LIBTC1V1_3 / LIBTC1V1_3_1.Then the linker looks in the default directory
$(PRODDIR)\INib\[tc12][tc13][tc131][tc13_mmu] for libraries.

Related information

Linker option --library (Link system library)

Section 8.3.1, How the Linker Searches Libraries

543

TASKING VX-toolset for TriCore User Guide

Linker option: --link-only
Menu entry

Command line syntax
--link-only

Description

With this option you suppress the locating phase. The linker stops after linking and informs you about
unresolved references.

Related information

Control program option --create=relocatable (-cl) (Stop after linking)

544

Tool Options

Linker option: --Isl-check

Menu entry
Command line syntax
--1sl-check
Description

With this option the linker just checks the syntax of the LSL file(s) and exits. No linking or locating is
performed. Use the option --Isl-file to specify the name of the Linker Script File you want to test.

Related information
Linker option --Isl-file (Linker script file)
Linker option --Isl-dump (Dump LSL info)

Section 8.7, Controlling the Linker with a Script

545

TASKING VX-toolset for TriCore User Guide

Linker option: --Isl-dump
Menu entry

Command line syntax
--1sl-dunp[=file]
Description

With this option you tell the linker to dump the LSL part of the map file in a separate file, independent of
the option --map-file (generate map file). If you do not specify a filename, the file 1tc. 1df is used.

Related information

Linker option --map-file-format (Map file formatting)

546

Tool Options

Linker option: --Isl-file (-d)
Menu entry

An LSL file can be generated when you create your project in Eclipse:

1. From the File menu, select File » New » Other... » TASKING C/C++ » TASKING VX-toolset for
TriCore C/C++ Project.

The New C/C++ Project wizard appears.
2. Fillin the project settings in each dialog and click Next > until the TriCore Project Settings appear.
3. Enable the optionAdd Linker script file to the project and click Finish.
Eclipse creates your project and the file project. | sl in the project directory.
The LSL file can be specified in the Properties dialog:
1. Select Linker » Script File.

2. Specify a LSL file in the Linker script file (.Isl) field (default . . /${PR0J} . Isl).
Command line syntax

--Isl-file=file

-dfile

Description

A linker script file contains vital information about the core for the locating phase of the linker. A linker
script file is coded in LSL and contains the following types of information:

« the architecture definition describes the core's hardware architecture.
» the memory definition describes the physical memory available in the system.
« the section layout definition describes how to locate sections in memory.

With this option you specify a linker script file to the linker. If you do not specify this option, the linker uses
a default script file. You can specify the existing file target. Isl or the name of a manually written linker
script file. You can use this option multiple times. The linker processes the LSL files in the order in which
they appear on the command line.

Related information

Linker option --Isl-check (Check LSL file(s) and exit)

Section 8.7, Controlling the Linker with a Script

547

TASKING VX-toolset for TriCore User Guide

Linker option: --map-file (-M)

Menu entry

1. Select Linker » Map File.

2. Enable the option Generate map file.

3. Enable or disable the types of information to be included.

Command line syntax

--map-file[=file]

-Mfile]

Default: no map file is generated

Description

With this option you tell the linker to generate a linker map file. If you do not specify a flename and you
specified the option --output, the linker uses the same basename as the output file with the extension

-map. If you did not specify the option --output, the linker uses the file taskl.map. Eclipse names the
-map file after the project.

A linker map file is a text file that shows how the linker has mapped the sections and symbols from the
various object files (. 0) to the linked object file. A locate part shows the absolute position of each section.
External symbols are listed per space with their absolute address, both sorted on symbol and sorted on
address.

Related information

Linker option --map-file-format (Format map file)

Section 13.2, Linker Map File Format

548

Tool Options

Linker option: --map-file-format (-m)

Menu entry

1. Select Linker » Map File.

2. Enable the option Generate map file.

3. Enable or disable the types of information to be included.

Command line syntax
--map-file-format=flag,...
-nfl ags

You can set the following flags:

+/-callgraph c/C
+/-removed d/D
+/-files fIF
+/-invocation i/l
+/-link k/IK
+/-locate L
+/-memory m/M
+/-nonalloc n/N
+/-overlay 0/O
+/-statics a/Q
+/-crossref r’R
+/-Isl s/S
+/-rules u/U

Include call graph information

Include information on removed sections
Include processed files information

Include information on invocation and tools
Include link result information

Include locate result information

Include memory usage information

Include information of non-alloc sections
Include overlay information

Include module local symbols information
Include cross references information
Include processor and memory information
Include locate rules

Use the following options for predefined sets of flags:

--map-file-format=0 -mO0
--map-file-format=1 -ml
--map-file-format=2 -m2

Default: - - map-fil e-f or mat =2

Description

Link information
Alias for -mcDfikLMNoQrSuU

Locate information
Alias for -mCDfiKIMNoQRSU

Most information
Alias for -mcdfikimNoQrSu

With this option you specify which information you want to include in the map file.

549

TASKING VX-toolset for TriCore User Guide

On the command line you must use this option in combination with the option --map-file (-M).
Related information
Linker option --map-file (Generate map file)

Section 13.2, Linker Map File Format

550

Tool Options

Linker option: --misra-c-report

Menu entry

Command line syntax

--msra-c-report [=file]

Description

With this option you tell the linker to create a MISRA-C Quality Assurance report. This report lists the
various modules in the project with the respective MISRA-C settings at the time of compilation. If you do

not specify a filename, the file basename.mcr is used.

Related information

C compiler option --misrac (MISRA-C checking)

551

TASKING VX-toolset for TriCore User Guide

Linker option: --munch

Menu entry

Command line syntax

--munch

Description

With this option you tell the linker to activate the muncher in the pre-locate phase.

The muncher phase is a special part of the linker that creates sections containing a list of pointers to the
initialization and termination routines. The list of pointers is consulted at run-time by startup code invoked

from main, and the routines on the list are invoked at the appropriate times.

Related information

552

Tool Options

Linker option: --non-romable

Menu entry

Command line syntax

--non-romabl e

Description

With this option you tell the linker that the application must not be located in ROM. The linker will locate
all ROM sections, including a copy table if present, in RAM. When the application is started, the data

sections are re-initialized and the BSS sections are cleared as usual.

This option is, for example, useful when you want to test the application in RAM before you put the final
application in ROM. This saves you the time of flashing the application in ROM over and over again.

Related information

553

TASKING VX-toolset for TriCore User Guide

Linker option: --no-rescan

Menu entry
1. Select Linker » Libraries.

2. Disable the option Rescan libraries to solve unresolved externals.
Command line syntax

--Nno-rescan
Description

When the linker processes a library it searches for symbol definitions that are referenced by the objects
and libraries processed so far. If the library contains a definition for an unresolved reference the linker
extracts the object that contains the definition from the library. The linker processes object files and
libraries in the order in which they appear on the command line.

When all objects and libraries are processed the linker checks if there are unresolved symbols left. If so,
the default behavior of the linker is to rescan all libraries in the order given at the command line. The
linker stops rescanning the libraries when all symbols are resolved, or when the linker could not resolve
any symbol(s) during the rescan of all libraries. Notice that resolving one symbol may introduce new
unresolved symbols.

With this option, you tell the linker to scan the object files and libraries only once. When the linker has
not resolved all symbols after the first scan, it reports which symbols are still unresolved. This option is
useful if you are building your own libraries. The libraries are most efficiently organized if the linker needs
only one pass to resolve all symbols.

Related information

Linker option --first-library-first (Scan libraries in given order)

554

Linker option: --no-rom-copy (-N)

Menu entry

Command line syntax
--no-rom copy
-N

Description

Tool Options

With this option the linker will not generate a ROM copy for data sections. A copy table is generated and
contains entries to clear BSS sections. However, no entries to copy data sections from ROM to RAM are

placed in the copy table.

The data sections are initialized when the application is downloaded. The data sections are not re-initialized

when the application is restarted.

Related information

555

TASKING VX-toolset for TriCore User Guide

Linker option: --no-warnings (-w)
Menu entry
1. Select Linker » Diagnostics.
The Suppress warnings box shows the warnings that are currently suppressed.
2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas, of the warnings you want to suppress (for example
135,136). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.

Use the Edit and Delete button to change a warning number or to remove a humber from the list.

Command line syntax

- -no-war ni ngs[=nunber ,...]

-w[nunber ,...]

Description

With this option you can suppresses all warning messages or specific warning messages.
On the command line this option works as follows:

« If you do not specify this option, all warnings are reported.

* If you specify this option but without numbers, all warnings are suppressed.

« If you specify this option with a number, only the specified warning is suppressed. You can specify the
option --no-warnings=number multiple times.

Example
To suppress warnings 135 and 136, enter:

Itc --no-warnings=135,136 test.o
Related information

Linker option --warnings-as-errors (Treat warnings as errors)

556

Tool Options

Linker option: --optimize (-O)
Menu entry
1. Select Linker » Optimization.
2. Select one or more of the following options:
 Delete unreferenced sections
» Use a "first-fit decreasing' algorithm
» Compress copy table
* Delete duplicate code

» Delete duplicate data

Command line syntax
--optinmze=flag,---
-Ofl ags

You can set the following flags:

+/-delete-unreferenced-sections c/C Delete unreferenced sections from the output
file

+/-first-fit-decreasing /L Use a 'first-fit decreasing' algorithm to locate
unrestricted sections in memory

+/-copytable-compression t/T Emit smart restrictions to reduce copy table size

+/-delete-duplicate-code X/X Delete duplicate code sections from the output
file

+/-delete-duplicate-data y/Y Delete duplicate constant data from the output
file

Use the following options for predefined sets of flags:

--optimize=0 -O0 No optimization
Alias for -OCLTXY
--optimize=1 -O1 Default optimization

Alias for -OcLtxy

--optimize=2 -02 All optimizations
Alias for -Ocltxy

Default: - - opti m ze=1

557

TASKING VX-toolset for TriCore User Guide

Description
With this option you can control the level of optimization.
Related information

For details about each optimization see Section 8.6, Linker Optimizations.

558

Tool Options

Linker option: --option-file (-f)

Menu entry

1. Select Linker » Miscellaneous.

2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the linker options you have set in the other
pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax
--option-file=file,...
-f file,...
Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the linker.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

Option files can also be generated on the fly, for example by the make utility. You can specify the option
--option-file multiple times.

Format of an option file
» Multiple arguments on one line in the option file are allowed.
» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote " embedded"
"This has a double quote " embedded*
"This has a double quote " and a single quote """ embedded"
* When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This 1Is a continuation \
line"

-> "This is a continuation line"

559

TASKING VX-toolset for TriCore User Guide

* Itis possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

—--map-File=my.map (generate a map file)

test.o (input Ffile)

—--library-directory=c:\mylibs (additional search path for system libraries)
Specify the option file to the linker:

Itc --option-file=myoptions

This is equivalent to the following command line:

Itc --map-file=my._.map test.o --library-directory=c:\mylibs

Related information

560

Tool Options

Linker option: --output (-0)
Menu entry
1. Select Linker » Output Format.
2. Enable one or more output formats.
For some output formats you can specify a number of suboptions.
Eclipse always uses the project name as the basename for the output file.
Command line syntax
--output=[fil enane][: format [: addr_si ze][, space_nane]]---
-o[filenane][: format [: addr_si ze][, space_nane]]---

You can specify the following formats:

ELF ELF/DWARF

IHEX Intel Hex

SREC Motorola S-records
Description

By default, the linker generates an output file in ELF/DWARF format, with the name taskl.elf.

With this option you can specify an alternative filename, and an alternative output format. The default
output format is the format of the first input file.

You can use the --output option multiple times. This is useful to generate multiple output formats. With
the first occurrence of the --output option you specify the basename (the filename without extension),
which is used for subsequent --output options with no filename specified. If you do not specify a filename,
or you do not specify the --output option at all, the linker uses the default basename taskn.

IHEX and SREC formats

If you specify the Intel Hex format or the Motorola S-records format, you can use the argument addr_size
to specify the size of addresses in bytes (record length). For Intel Hex you can use the values: 1, 2, and
4 (default). For Motorola S-records you can specify: 2 (S1 records), 3 (S2 records, default) or 4 bytes (S3
records).

With the argument space_name you can specify the name of the address space. The name of the output
file will be filename with the extension . hex or .sre and contains the code and data allocated in the
specified space. If they exist, any other address spaces are also emitted whereas their output files are
named filename_spacename with the extension .hex or _sre.

If you do not specify space_name, or you specify a non-existing space, the default address space is filled
in.

561

TASKING VX-toolset for TriCore User Guide

Use option --chip-output (-c) to create Intel Hex or Motorola S-record output files for each chip defined
in the LSL file (suitable for loading into a PROM-programmer).

Example

To create the output file myFi le_hex of the address space named linear, enter:

Itc test.o --output=myfile_hex:IHEX:2,linear

If they exist, any other address spaces are emitted as well and are named myfi le_spacename . hex.
Related information

Linker option --chip-output (Generate an output file for each chip)

Linker option --hex-format (Specify Hex file format settings)

562

Tool Options

Linker option: --print-mangled-symbols (-P)

Menu entry

Command line syntax

--print-nmangl ed- synbol s

-P

Description

C++ compilers generate unreadable symbol names. These symbols cannot easily be related to your C++
source file anymore. Therefore the linker will by default decode these symbols conform the I1A64 ABI
when printed to stdout. With this option you can override this default setting and print the mangled

names instead.

Related information

563

TASKING VX-toolset for TriCore User Guide

Linker option: --strip-debug (-S)
Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Strip symbolic debug information.

Command line syntax

--strip-debug

-S

Description

With this option you specify not to include symbolic debug information in the resulting output file.

Related information

564

Tool Options

Linker option: --user-provided-initialization-code (-i)

Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Do not use standard copy table for initialization.

Command line syntax

--user-provided-initialization-code

-i

Description

It is possible to use your own initialization code, for example, to save ROM space. With this option you
tell the linker not to generate a copy table for initialize/clear sections. Use linker labels in your source
code to access the positions of the sections when located.

If the linker detects references to the TASKING initialization code, an error is emitted: it is either the
TASKING initialization routine or your own, not both.

Note that the options --no-rom-copy and --non-romable, may vary independently. The
‘copytable-compression’ optimization (--optimize=t) is automatically disabled when you enable this option.

Related information
Linker option --no-rom-copy (Do not generate ROM copy)
Linker option --non-romable (Application is not romable)

Linker option --optimize (Specify optimization)

565

TASKING VX-toolset for TriCore User Guide

Linker option: --verbose (-v) / --extra-verbose (-vv)

Menu entry
1. Select Linker » Miscellaneous.
2. Enable the option Show link phases during processing.
The verbose output is displayed in the Problems view and the Console view.
Command line syntax
--verbose / --extra-verbose
-v [-vv
Description
With this option you put the linker in verbose mode. The linker prints the link phases while it processes
the files. In the extra verbose mode, the linker also prints the filenames and it shows which objects are

extracted from libraries. With this option you can monitor the current status of the linker.

Related information

566

Tool Options

Linker option: --version (-V)

Menu entry

Command line syntax

--version

-V

Description

Display version information. The linker ignores all other options or input files.
Example

Itc --version

The linker does not link any files but displays the following version information:

TASKING VX-toolset for TriCore: object linker vx.yrz Build nnn
Copyright 2002-year Altium BV Serial# 00000000

Related information

567

TASKING VX-toolset for TriCore User Guide

Linker option: --warnings-as-errors

Menu entry

1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs-as-errors[=nunber,...]

Description

When the linker detects an error or warning, it tries to continue the link process and reports other errors
and warnings. When you use this option without arguments, you tell the linker to treat all warnings as
errors. This means that the exit status of the linker will be non-zero after the detection of one or more
linker warnings. As a consequence, the linker will not produce any output files.

You can also limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

Linker option --no-warnings (Suppress some or all warnings)

568

Tool Options

11.5. Control Program Options

The control program cctc facilitates the invocation of the various components of the TriCore toolset from
a single command line.

Options in Eclipse versus options on the command line

Eclipse invokes the compiler, assembler and linker via the control program. Therefore, it uses the syntax
of the control program to pass options and files to the tools. The control program processes command
line options either by itself, or, when the option is unknown to the control program, it looks whether it can
pass the option to one of the other tools. However, for directly passing an option to the C++ compiler, C
compiler, assembler or linker, it is recommended to use the control program options --pass-c++, --pass-c,
--pass-assembler, --pass-linker.

See the previous sections for details on the options of the tools.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

cctc -Wc-Oac test.c
cctc --pass-c=--optimize=+coalesce,+cse test.c

When you do not specify an option, a default value may become active.

569

TASKING VX-toolset for TriCore User Guide

Control program option: --address-size

Menu entry
1. Select Linker » Output Format.
2. Enable the option Generate Intel Hex format file and/or Generate S-records file.
3. Specify the Size of addresses.
Eclipse always uses the project name as the basename for the output file.
Command line syntax
- - addr ess-si ze=addr _si ze
Description

If you specify IHEX or SREC with the control option --format, you can additionally specify the record
length to be emitted in the output files.

With this option you can specify the size of the addresses in bytes (record length). For Intel Hex you can
use the values 1, 2 or 4 bytes (default). For Motorola-S you can specify: 2 (S1 records), 3 (S2 records)
or 4 bytes (S3 records, default).

If you do not specify addr_size, the default address size is generated.

Example

To create the SREC file test.sre with S1 records, type:

cctc --format=SREC --address-size=2 test.c

Related information

Control program option --format (Set linker output format)

Control program option --output (Output file)

570

Tool Options

Control program option: --case-insensitive

Menu entry

1. Select Assembler » Symbols.

2. Enable the option Case insensitive identifiers.
Command line syntax
--case-insensitive

Default: case sensitive

Description

With this option you tell the assembler not to distinguish between upper and lower case characters. By
default the assembler considers upper and lower case characters as different characters.

Assembly source files that are generated by the compiler must always be assembled case sensitive.
When you are writing your own assembly code, you may want to specify the case insensitive mode.

Example

When assembling case insensitive, the label Labe IName is the same label as 1abelname.
cctc --case-insensitive test.src

Related information

Assembler option --case-insensitive

Assembler control $CASE

571

TASKING VX-toolset for TriCore User Guide

Control program option: --check

Menu entry
Command line syntax
--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application because the code will not actually be compiled.

The compiler/assembler reports any warnings and/or errors.
This option is available on the command line only.
Related information

C compiler option --check (Check syntax)

Assembler option --check (Check syntax)

572

Tool Options

Control program option: --core

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --core to the Additional options field.
Command line syntax

--core=core

You can specify the following core arguments:

tcl.2 TriCore 1.2 architecture
tcl.3 TriCore 1.3 architecture
tcl.3.1 TriCore 1.3.1 architecture, TriCore 1.3.1 instructions may be generated

Default: derived from - - cpu, if used, otherwise tc1.3
Description

With this option you specify the core architecture for a target processor for which you create your
application. By default the TriCore toolset derives the core from the processor you selected.

With --core=tc1.3.1, the compiler can generate TriCore 1.3.1 instructions in the assembly file. The macro
__TC131__ is defined in the C source file.

If you select a valid target processor (command line option --cpu (-C)), the core is automatically set,
based on the chosen target processor.

Example

To allow the use of TriCore 1.3.1 instructions in the assembly code, enter:
cctc --core=tcl.3.1 test.c

Related information

Control program option --cpu (Select processor)

Control program option --fpu-present (FPU present)

Control program option --mmu-present (MMU present)

573

TASKING VX-toolset for TriCore User Guide

Control program option: --cpu (-C)
Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor Selection list, select a processor.
Command line syntax

- -cpu=cpu

- Ccpu

Description

With this option you define the target processor for which you create your application. The cpu can be a
full processor name, like TC1165, or a base CPU name, like tc1165.

Based on this option the compiler always includes the special function register file regcpu.sfr, and the
assembler includes the file regcpu.deT, unless you specifyoption --no-tasking-sfr.

Based on the target processor it is automatically detected whether a MMU or FPU-unit is present. This
means you do not have to specify the options --mmu-present and --fpu-present explicitly when one of
the supported derivatives is selected.

The standard list of supported processors is defined in the file processors.xml. This file defines for
each processor its full name (for example, TC1165), the base CPU name (for example, tc1165), the core
settings (for example, tc1.3), the MMU and FPU settings and the list of silicon bugs for that processor.

The preferred use of the option --cpu, is to specify the full processor name. For example, --cpu=TC1165.
The control program will lookup this processor name in the file processors.xml. The control program
passes the options to the underlaying tools. For example, --cpu=tc1165 --core=tc1.3 --fpu-present to
the C compiler, or -D__CPU__=tc1165 -dtc1165.Isl to the linker.

The control program also supports the use of the base CPU name as argument of --cpu. In that case the
control program will lookup the first processor in the file processors.xml that has this base CPU, and
issues a warning. If multiple processors exist with the same base CPU, a warning will be issued and the
first is selected.

cctc W603: processor tcll65 does not exist, but processor TC1165
is based on a cpu with this name

Example
To generate the file test.elf for the TC1165 processor, enter:

cctc --cpu=TC1l165 test.c
Related information

Control program option --processors (Read additional processor definitions)

574

Tool Options

Control program option --no-tasking-sfr (Do not include SFR file)

Section 1.3.3, Accessing Hardware from C

575

TASKING VX-toolset for TriCore User Guide

Control program option: --create (-C)

Menu entry

Command line syntax
--creat e[=st age]
-c[stage]

You can specify the following stages:

intermediate-c c Stop after C++ files are compiled to intermediate C files (- ic)
relocatable | Stop after the files are linked to a linker object file (. out)

mil m Stop after C++ files or C files are compiled to MIL (-mil)
object o] Stop after the files are assembled to objects (- 0)

assembly s Stop after C++ files or C files are compiled to assembly (.src)

Default (without flags): - - cr eat e=obj ect
Description

Normally the control program generates an absolute object file of the specified output format from the file
you supplied as input. With this option you tell the control program to stop after a certain number of phases.

Example

To generate the object file test.o:

cctc --create test.c

The control program stops after the file is assembled. It does not link nor locate the generated output.
Related information

Control program option --link-only (Link only, no locating)

576

Tool Options

Control program option: --debug-info (-g)

Menu entry
1. Select C/C++ Compiler » Debugging.

2. To generate symbolic debug information, select Default, Small set or Full.
To disable the generation of debug information, select None.

Command line syntax

--debug-info

-9

Description

With this option you tell the control program to include debug information in the generated object file.

The control program passes the option --debug-info (-g) to the C compiler and calls the assembler with
--debug-info=+smart,+local (-gsl).

Related information
C compiler option --debug-info (Generate symbolic debug information)

Assembler option --debug-info (Generate symbolic debug information)

577

TASKING VX-toolset for TriCore User Guide

Control program option: --define (-D)

Menu entry

1. Select C/C++ Compiler » Preprocessing and/or Assembler » Preprocessing.
The Defined symbols box right-below shows the symbols that are currently defined.

2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, demo=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

- -defi ne=macr o_name[=macro_definition]
- Dmacr o_nane[=nmacro_definition]
Description

With this option you can define a macro and specify it to the preprocessor. If you only specify a macro
name (no macro definition), the macro expands as '1'.

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, use the option --define (-D) multiple times. If the command line exceeds the limit
of the operating system, you can define the macros in an option file which you then must specify to the
compiler with the option --option-file (-f) file.

Defining macros with this option (instead of in the C source) is, for example, useful to compile conditional
C source as shown in the example below.

The control program passes the option --define (-D) to the compiler and the assembler.
Example
Consider the following C program with conditional code to compile a demo program and a real program:

void main(void)

{
#if DEMO

demo_func(Q); /* compile for the demo program */
#else

real_func(Q; /* compile for the real program */
#endif
}

You can now use a macro definition to set the DEMO flag:

578

Tool Options

cctc --define=DEMO test.c
cctc --define=DEMO=1 test.c

Note that both invocations have the same effect.

The next example shows how to define a macro with arguments. Note that the macro name and definition
are placed between double quotes because otherwise the spaces would indicate a new option.

cctc --define="MAX(A,B)=((A) > (B) ? (A) : (B))" test.c
Related information
Control program option --undefine (Remove preprocessor macro)

Control program option --option-file (Specify an option file)

579

TASKING VX-toolset for TriCore User Guide

Control program option: --diag

Menu entry

1. From the Window menu, select Show View » Other » General » Problems.
The Problems view is added to the current perspective.

2. Inthe Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

Command line syntax

--diag=[format :]{all | nr,...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

Example

To display an explanation of message number 103, enter:
cctc --diag=103

This results in message 103 with explanation.

To write an explanation of all errors and warnings in HTML format to file ccerrors.html, use redirection
and enter:

cctc --diag=html:all > ccerrors.html

580

Tool Options

Related information

Section 4.9, C Compiler Error Messages

581

TASKING VX-toolset for TriCore User Guide

Control program option: --dry-run (-n)
Menu entry

Command line syntax

--dry-run

-Nn

Description

With this option you put the control program in verbose mode. The control program prints the invocations
of the tools it would use to process the files without actually performing the steps.

Related information

Control program option --verbose (Verbose output)

582

Tool Options

Control program option: --error-file

Menu entry
Command line syntax
--error-file
Description

With this option the control program tells the compiler, assembler and linker to redirect error messages
to a file.

Example
To write errors to error files instead of stderr, enter:

cctc —--error-file test.c

Related information

Control Program option --warnings-as-errors (Treat warnings as errors)

583

TASKING VX-toolset for TriCore User Guide

Control program option: --exceptions

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Support for C++ exception handling.

Command line syntax

--exceptions

Description

With this option you enable support for exception handling in the C++ compiler.

Related information

584

Tool Options

Control program option: --force-c
Menu entry

Command line syntax

--force-c

Description

With this option you tell the control program to treat all . cc files as C files instead of C++ files. This means
that the control program does not call the C++ compiler and forces the linker to link C libraries.

Related information

Control program option --force-c++ (Force C++ compilation and linking)

585

TASKING VX-toolset for TriCore User Guide

Control program option: --force-c++

Menu entry

Eclipse always uses this option for a C++ project.

Command line syntax

--force-c++

Description

With this option you tell the control program to treat all . c files as C++ files instead of C files. This means
that the control program calls the C++ compiler prior to the C compiler and forces the linker to link C++
libraries.

Related information

Control program option --force-c (Treat C++ files as C files)

586

Tool Options

Control program option: --force-munch

Menu entry

Eclipse always uses this option for a C++ project.

Command line syntax

--force-munch

Description

With this option you force the control program to activate the muncher in the pre-locate phase.

Related information

587

TASKING VX-toolset for TriCore User Guide

Control program option: --format

Menu entry
1. Select Linker » Output Format.
2. Enable the option Generate Intel Hex format file and/or Generate S-records file.
3. Optionally, specify the Size of addresses.

Eclipse always uses the project name as the basename for the output file.
Command line syntax
- - for mat =f or mat

You can specify the following formats:

ELF ELF/DWARF

IHEX Intel Hex

SREC Motorola S-records
Description

With this option you specify the output format for the resulting (absolute) object file. The default output
format is ELF/DWAREF, which can directly be used by the debugger.

If you choose IHEX or SREC, you can additionally specify the address size of the chosen format (option
--address-size).

Example

To generate a Motorola S-record output file:

cctc --format=SREC testl.c test2.c --output=test._sre

Related information

Control program option --address-size (Set address size for linker IHEX/SREC files)
Control program option --output (Output file)

Linker option --chip-output (Generate an output file for each chip)

588

Tool Options

Control program option: --fp-trap

Menu entry

1. Select Linker » Libraries.

2. Enable the option Use trapped floating-point library.
Command line syntax

--fp-trap

Description

By default the control program uses the non-trapping floating-point library (I ibfp.a). With this option
you tell the control program to use the trapping floating-point library (L ibfpt.a).

If you use the trapping floating-point library, exceptional floating-point cases are intercepted and can be
handled separately by an application defined exception handler. Using this library decreases the execution
speed of your application.
Related information

C compiler option --fp-trap (Allow trapping of floating-point exceptions)

Section 8.3, Linking with Libraries

589

TASKING VX-toolset for TriCore User Guide

Control program option: --fpu-present

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor Selection list, select a processor that has an FPU.
Command line syntax

- -f pu- present

Description

With this option the compiler can generate single precision floating-point instructions in the assembly file.
When you select this option, the macro __FPU___is defined in the C source file.

This option automatically sets the option --no-double, which treats 'double’ as 'float’, unless you overrule
it with option --use-double-precision-fp.

If you select a valid target processor (command line option --cpu (-C)), this option is automatically set,
based on the chosen target processor.

Example

To allow the use of floating-point unit (FPU) instructions in the assembly code and treat 'double’ as 'float’,
enter:

cctc --fpu-present test.c
Related information
Control program option --use-double-precision-fp (Do not replace doubles with floats)

Control program option --cpu (Select processor)

590

Tool Options

Control program option: --help (-?)

Menu entry

Command line syntax

--hel p[=item]

-?

You can specify the following argument:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example
The following invocations all display a list of the available command line options:

cctc -?
cctc --help
cctc

To see a detailed description of the available options, enter:
cctc --help=options

Related information

591

TASKING VX-toolset for TriCore User Guide

Control program option: --include-directory (-I)

Menu entry
1. Select C/C++ Compiler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.
2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax
--include-directory=path,...
-lpath,...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory.

The control program passes this option to the compiler and the assembler.
Example
Suppose that the C source file test. c contains the following lines:

#include <stdio.h>
#include "myinc.h"

You can call the control program as follows:
cctc --include-directory=myinclude test.c

First the compiler looks for the file stdio.h in the directory myinclude relative to the current directory.
If it was not found, the compiler searches in the environment variable and then in the default include
directory.

The compiler now looks for the file myinc.h in the directory where test.c is located. If the file is not
there the compiler searches in the directory myinclude. If it was still not found, the compiler searches
in the environment variable and then in the default include directory.

Related information

C compiler option --include-directory (Add directory to include file search path)

C compiler option --include-file (Include file at the start of a compilation)

592

Tool Options

Control program option: --instantiate

Menu entry
1. Select C/C++ Compiler » Miscellaneous.

2. Select an instantiation mode in the Instantiation mode of external template entities box.

Command line syntax
--instanti at e=node

You can specify the following modes:

used
all
local

Default; --instantiate=used

Description

Control instantiation of external template entities. External template entities are external (that is, non-inline
and non-static) template functions and template static data members. The instantiation mode determines
the template entities for which code should be generated based on the template definition. Normally,
when a file is compiled, template entities are instantiated wherever they are used (the linker will discard
duplicate definitions). The overall instantiation mode can, however, be changed with this option. You can
specify the following modes:

used Instantiate those template entities that were used in the compilation. This will include
all static data members for which there are template definitions. This is the default.

all Instantiate all template entities declared or referenced in the compilation unit. For
each fully instantiated template class, all of its member functions and static data
members will be instantiated whether or not they were used. Non-member template
functions will be instantiated even if the only reference was a declaration.

local Similar to --instantiate=used except that the functions are given internal linkage.
This is intended to provide a very simple mechanism for those getting started with
templates. The compiler will instantiate the functions that are used in each
compilation unit as local functions, and the program will link and run correctly (barring
problems due to multiple copies of local static variables). However, one may end
up with many copies of the instantiated functions, so this is not suitable for production
use.

You cannot use --instantiate=local in conjunction with automatic template instantiation.
Related information

Control program option --no-auto-instantiation (Disable automatic C++ instantiation)

593

TASKING VX-toolset for TriCore User Guide

Section 2.5, Template Instantiation

594

Tool Options

Control program option: --integer-enumeration

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Always use 32-bit integers for enumeration.

Command line syntax

--integer-enuneration

Description

Normally the compiler treats enumerated types as the smallest data type possible (char or short instead
of int). This reduces code size. With this option the compiler always treats enum-types as int as defined
in the ISO C99 standard.

Related information

Section 1.1, Data Types

595

TASKING VX-toolset for TriCore User Guide

Control program option: --io-streams
Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Support for C++ 1/O streams.
Command line syntax

--i0-streans

Description

As /0O streams require substantial resources they are disabled by default. Use this option to enable 1/0
streams support in the C++ library.

This option also enables exception handling.

Related information

596

Tool Options

Control program option: --iso

Menu entry

1. Select C/C++ Compiler » Language.

2. From the Comply to C standard list, select ISO C99 or ISO C90.
Command line syntax

--is0={90]99}

Default: - - i s0=99

Description

With this option you select the ISO C standard. C90 is also referred to as the "ANSI C standard". C99
refers to the newer ISO/IEC 9899:1999 (E) standard. C99 is the default.

Independent of the chosen ISO standard, the control program always links libraries with C99 support.
Example

To select the ISO C90 standard on the command line:

cctc --is0=90 test.c

Related information

C compiler option --iso (ISO C standard)

597

TASKING VX-toolset for TriCore User Guide

Control program option: --keep-output-files (-k)
Menu entry

Eclipse always removes generated output files when an error occurs.
Command line syntax

--keep-output-files

-k

Description

If an error occurs during the compilation, assembling or linking process, the resulting output file may be
incomplete or incorrect. With this option you keep the generated output files when an error occurs.

By default the control program removes generated output files when an error occurs. This is useful when
you use the make utility. If the erroneous files are not removed, the make utility may process corrupt files
on a subsequent invocation.

Use this option when you still want to use the generated files. For example when you know that a particular
error does not result in a corrupt file, or when you want to inspect the output file, or send it to Altium
support.

The control program passes this option to the compiler, assembler and linker.
Example
cctc --keep-output-files test.c

When an error occurs during compiling, assembling or linking, the erroneous generated output files will
not be removed.

Related information
C compiler option --keep-output-files
Assembler option --keep-output-files

Linker option --keep-output-files

598

Tool Options

Control program option: --keep-temporary-files (-t)
Menu entry

1. Select Global Options.

2. Enable the option Keep temporary files.

Command line syntax

--keep-tenporary-files

-t

Description

By default, the control program removes intermediate files like the . src file (result of the compiler phase)
and the .o file (result of the assembler phase).

With this option you tell the control program to keep temporary files it generates during the creation of
the absolute object file.

Example
cctc --keep-temporary-files test.c

The control program keeps all intermediate files it generates while creating the absolute object file
test.elf.

Related information

599

TASKING VX-toolset for TriCore User Guide

Control program option: --library (-I)

Menu entry
1. Select Linker » Libraries.
The Libraries box shows the list of libraries that are linked with the project.
2. To add a library, click on the Add button in the Libraries box.
3. Type or select a library (including its path).

4. Optionally, disable the option Link default libraries.

Use the Edit and Delete button to change a library name or to remove a library from the list.

Command line syntax

--library=nane
-l nane
Description

With this option you tell the linker via the control program to use system library Iibname .a, where name
is a string. The linker first searches for system libraries in any directories specified with --library-directory,
then in the directories specified with the environment variables LIBTC1V1 2 / LIBTC1vVl1 3 /
LIBTC1V1_3_1, unless you used the option --ignore-default-library-path.

Example
To search in the system library libc.a (C library):
cctc test.o mylib.a --library=c

The linker links the file test.o and first looks in library mylib_a (in the current directory only), then in
the system library libc.a to resolve unresolved symbols.

Related information
Control program option --no-default-libraries (Do not link default libraries)
Control program option --library-directory (Additional search path for system libraries)

Section 8.3, Linking with Libraries

600

Tool Options

Control program option: --library-directory (-L) /
--ignore-default-library-path

Menu entry
1. Select Linker » Libraries.
The Library search path box shows the directories that are added to the search path for library files.

2. To define a new directory for the search path, click on the Add button in the Library search path
box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--library-directory=path,...
-Lpath, ...

--ignore-default-library-path
-L

Description

With this option you can specify the path(s) where your system libraries, specified with the option --library
(-1), are located. If you want to specify multiple paths, use the option --library-directory for each separate
path.

The default path is $(PRODDIR)\Iib\[tc12][tc13][tc131][tc13_mmu].

If you specify only -L (without a pathname) or the long option --ignore-default-library-path, the linker
will not search the default path and also not in the paths specified in the environment variables
LIBTC1V1_2 / LIBTC1V1_3 / LIBTC1V1_3_1. So, the linker ignores steps 2 and 3 as listed below.

The priority order in which the linker searches for system libraries specified with the option --library (-1)
is:

1. The path that is specified with the option --library-directory.

2. The path that is specified in the environment variables LIBTC1V1_2 / LIBTC1V1_3 /
LIBTC1V1_3_1 / LIBTC1V1_3_1.

3. The default directory $(PRODDIR)\1ib\[tc12][tc13][tc131][tcl13_mmu].
Example

Suppose you call the control program as follows:

601

TASKING VX-toolset for TriCore User Guide

cctc test.c —--library-directory=c:\mylibs --library=c

First the linker looks in the directory c:\myl ibs for library Fibc.a (this option). If it does not find the
requested libraries, it looks in the directory that is set with the environment variables LIBTC1V1 2 /
LIBTC1V1_3 / LIBTC1V1_3_1.Then the linker looks in the default directory
$(PRODDIR)\Iib\[tc12][tc13][tc131][tc13_mmu] for libraries.

Related information

Control program option --library (Link system library)

Section 8.3.1, How the Linker Searches Libraries

602

Tool Options

Control program option: --link-only
Menu entry

Command line syntax

--link-only

Description

With this option you suppress the locating phase. The linker stops after linking and informs you about
unresolved references.

Related information
Control program option --create=relocatable (-cl) (Stop after linking)

Linker option --link-only (Link only, no locating)

603

TASKING VX-toolset for TriCore User Guide

Control program option: --list-files

Menu entry

Command line syntax
--list-files[=file]
Default: no list files are generated
Description

With this option you tell the assembler via the control program to generate a list file for each specified
input file. A list file shows the generated object code and the relative addresses. Note that the assembler
generates a relocatable object file with relative addresses.

With the optional file you can specify a name for the list file. This is only possible if you specify only one
input file to the control program. If you do not specify a file name, or you specify more than one input file,
the control program names the generated list file(s) after the specified input file(s) with extension . Ist.
Note that object files and library files are not counted as input files.

Related information

Assembler option --list-file (Generate list file)

Assembler option --list-format (Format list file)

604

Tool Options

Control program option: --Isl-file (-d)
Menu entry

An LSL file can be generated when you create your project in Eclipse:

1. From the File menu, select File » New » Other... » TASKING C/C++ » TASKING VX-toolset for
TriCore C/C++ Project.

The New C/C++ Project wizard appears.
2. Fillin the project settings in each dialog and click Next > until the TriCore Project Settings appear.
3. Enable the option Add Linker script file to the project and click Finish.
Eclipse creates your project and the file project. | sl in the project directory.
The LSL file can be specified in the Properties dialog:
1. Select Linker » Script File.
2. Specify a LSL file in the Linker script file (.Isl) field (default . . /${PR0J} . Isl).
Command line syntax
--Isl-file=file
-dfile
Description

A linker script file contains vital information about the core for the locating phase of the linker. A linker
script file is coded in LSL and contains the following types of information:

« the architecture definition describes the core's hardware architecture.
» the memory definition describes the physical memory available in the system.
« the section layout definition describes how to locate sections in memory.

With this option you specify a linker script file via the control program to the linker. If you do not specify
this option, the linker uses a default script file. You can specify the existing file target. sl or the name
of a manually written linker script file. You can use this option multiple times. The linker processes the
LSL files in the order in which they appear on the command line.

Related information

Section 8.7, Controlling the Linker with a Script

605

TASKING VX-toolset for TriCore User Guide

Control program option: --mil-link / --mil-split

Menu entry

1. Select Global Options.

2. Enable the option Build for application wide optimizations (MIL linking).
3. (Optional) Enable the option Build for application wide code compaction.
Command line syntax

—-mil-link
—-mil-split[=file,...]

Description

With option --mil-link the C compiler links the optimized intermediate representation (MIL) of all input
files and MIL libraries specified on the command line in the compiler. The result is one single module that
is optimized another time.

Option --mil-split does the same as option --mil-link, but in addition, the resulting MIL representation is
written to a file with the suffix .mi 1l and the C compiler also splits the MIL representation and writes it to
separate files with suffix .ms. One file is written for each input file or MIL library specified on the command
line. The .ms files are only updated on a change.

With option --mil-split you can perform application-wide optimizations during the frontend phase by
specifying all modules at once, and still invoke the backend phase one module at a time to reduce the
total compilation time.

Optionally, you can specify another filename for the .ms file the C compiler generates. Without an
argument, the basename of the C source file is used to create the .ms filename. Note that if you specify
a filename, you have to specify one filename for every input file.

Related information

Section 4.1, Compilation Process

C compiler option --mil / --mil-split

606

Tool Options

Control program option: --mmu-present

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor Selection list, select a processor that has an MMU.
Command line syntax

- - mu- pr esent

Description

With this option you can use memory management instructions in the assembly code. When you select
this option, the define _ MMU___is setto 1.

If you select a valid target processor (command line option --cpu (-C)), this option is set automatically,
based on the chosen target processor.

Example

To allow the use of memory management unit (MMU) instructions in the assembly code, enter:
cctc --mmu-present test.c

Related information

Control program option --fpu-present (FPU present)

Control program option --cpu (Select processor)

607

TASKING VX-toolset for TriCore User Guide

Control program option: --no-auto-instantiation

Menu entry

Command line syntax

--no-auto-instantiation

Default: the C++ compiler automatically instantiates templates.
Description

With this option automatic instantiation of templates is disabled.
Related information

Control program option --instantiate (Set instantiation mode)

Section 2.5, Template Instantiation

608

Tool Options

Control program option: --no-default-libraries

Menu entry

1. Select Linker » Libraries.

2. Disable the option Link default libraries.
Command line syntax

--no-default-libraries
Description

By default the control program specifies the standard C libraries (C99) and run-time library to the linker.
With this option you tell the control program not to specify the standard C libraries and run-time library to
the linker.

In this case you must specify the libraries you want to link to the linker with the option --library=library_name

or pass the libraries as files on the command line. The control program recognizes the option --library
(-) as an option for the linker and passes it as such.

Example
cctc --no-default-libraries test.c

The control program does not specify any libraries to the linker. In normal cases this would result in
unresolved externals.

To specify your own libraries (1 ibc.a) and avoid unresolved externals:
cctc --no-default-libraries --library=c test.c
Related information

Control program option --library (Link system library)

Section 8.3.1, How the Linker Searches Libraries

609

TASKING VX-toolset for TriCore User Guide

Control program option: --no-double (-F)

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Treat double as float.
Command line syntax

--no-doubl e

-F

Description

With this option you tell the compiler to treat variables of the type double as Float. Because the float
type takes less space, execution speed increases and code size decreases, both at the cost of less
precision.

The control program also tells the linker to link the single-precision C library.
Related information

Control program option --use-double-precision-fp (Do not replace doubles with floats)

610

Tool Options

Control program option: --no-map-file

Menu entry

1. Select Linker » Map File.

2. Disable the option Generate map file.

Command line syntax

--no-map-file

Description

By default the control program tells the linker to generate a linker map file.

A linker map file is a text file that shows how the linker has mapped the sections and symbols from the
various object files (. 0) to the linked object file. A locate part shows the absolute position of each section.
External symbols are listed per space with their absolute address, both sorted on symbol and sorted on

address.

With this option you prevent the generation of a map file.

Related information

611

TASKING VX-toolset for TriCore User Guide

Control program option: --no-tasking-sfr

Menu entry

1. Select C/C++ Compiler » Preprocessing.

2. Disable the option Automatic inclusion of *.sfr" file.
3. Select Assembler » Preprocessing.

4. Disable the option Automatic inclusion of '.def" file.
Command line syntax

- - no-tasking-sfr

Description

Normally, the C compiler and assembler includes a special function register (SFR) file before
compiling/assembling. The compiler and assembler automatically select the SFR file belonging to the
target you selected on the Processor page (control program option --cpu).

With this option the compiler and assembler do not include the register file regcpu.sfr as based on the
selected target processor.

Use this option if you want to use your own set of SFR files.
Related information
Control program option --cpu (Select processor)

Section 1.3.3, Accessing Hardware from C

612

Tool Options

Control program option: --no-warnings (-w)
Menu entry
1. Select C/C++ Compiler » Diagnostics.
The Suppress C compiler warnings box shows the warnings that are currently suppressed.
2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas, of the warnings you want to suppress (for example
537,538). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.

Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

- -no-war ni ngs[=nunber ,...]
-wlnunber ,...]

Description

With this option you can suppresses all warning messages for the various tools or specific compiler
warning messages.

On the command line this option works as follows:
« If you do not specify this option, all warnings are reported.
* If you specify this option but without numbers, all warnings of all tools are suppressed.

« If you specify this option with a number, only the specified (compiler) warning is suppressed. You can
specify the option --no-warnings=number multiple times.

Example

To suppress all warnings for all tools, enter:

cctc test.c --no-warnings
Related information

Control program option --warnings-as-errors (Treat warnings as errors)

613

TASKING VX-toolset for TriCore User Guide

Control program option: --option-file (-f)

Menu entry

Command line syntax
--option-file=file,...
-f file,...
Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the control program.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file

» Multiple arguments on one line in the option file are allowed.

» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote " embedded"
"This has a double quote " embedded®
"This has a double quote " and a single quote """ embedded"
» When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

-> "This is a continuation line"

* Itis possible to nest command line files up to 25 levels.

614

Tool Options

Example

Suppose the file myoptions contains the following lines:

--debug-info
--define=DEMO=1
test.c

Specify the option file to the control program:
cctc --option-file=myoptions
This is equivalent to the following command line:

cctc —debug-info --define=DEMO=1 test.c

Related information

615

TASKING VX-toolset for TriCore User Guide

Control program option: --output (-0)

Menu entry

Eclipse always uses the project name as the basename for the output file.
Command line syntax

--output=file

-o file

Description

By default, the control program generates a file with the same basename as the first specified input file.
With this option you specify another name for the resulting absolute object file.

The default output format is ELF/DWARF, but you can specify another output format with option --format.
Example

cctc test.c prog.c

The control program generates an ELF/DWARF object file (default) with the name test.elf.

To generate the file result_elT:

cctc --output=result.elf test.c prog.c

Related information

Control program option --format (Set linker output format)

Linker option --output (Output file)

Linker option --chip-output (Generate an output file for each chip)

616

Tool Options

Control program option: --pass (-W)
Menu entry
1. Select C/C++ Compiler » Miscellaneous or Assembler » Miscellaneous or Linker » Miscellaneous.
2. Add an option to the Additional options field.
Be aware that the options in the option file are added to the options you have set in the other pages.
Only in extraordinary cases you may want to use them in combination. The assembler options are

preceded by -Wa and the linker options are preceded by -WI. For the C/C++ options you have to do
this manually.

Command line syntax

--pass-assembler=option -Waoption Pass option directly to the assembler

--pass-c=option -Wcoption Pass option directly to the C compiler

--pass-c++=option -Wcpoption Pass option directly to the C++ compiler

--pass-linker=option -Wloption Pass option directly to the linker
Description

With this option you tell the control program to call a tool with the specified option. The control program
does not use or interpret the option itself, but specifies it directly to the tool which it calls.

Example
To pass the option --verbose directly to the linker, enter:

cctc --pass-linker=--verbose test.c

Related information

617

TASKING VX-toolset for TriCore User Guide

Control program option: --preprocess (-E) / --no-preprocessing-only
Menu entry

1. Select C/C++ Compiler » Preprocessing.

2. Enable the option Store preprocessor output in <file>.pre.

3. (Optional) Enable the option Keep comments in preprocessor output.

4. (Optional) Enable the option Keep #line info in preprocessor output.

Command line syntax

--preprocess[=fl ags]

-E[f1 ags]

- - no- preprocessi ng-only

You can set the following flags:

+/-comments c/C keep comments
+/-make m/M generate dependencies for make
+/-noline p/P strip #line source position information
Default: - ECMP
Description

With this option you tell the compiler to preprocess the C source. The C compiler sends the preprocessed
output to the file name _pre (where name is the name of the C source file to compile). Eclipse also
compiles the C source.

On the command line, the control program stops after preprocessing. If you also want to compile the C
source you can specify the option --no-preprocessing-only. In this case the control program calls the
compiler twice, once with option --preprocess and once for a regular compilation.

With --preprocess=+comments you tell the preprocessor to keep the comments from the C source file
in the preprocessed output.

With --preprocess=+make the compiler will generate dependency lines that can be used in a Makefile.
The preprocessor output is discarded.

With --preprocess=+noline you tell the preprocessor to strip the #line source position information (lines
starting with #1 ine). These lines are normally processed by the assembler and not needed in the
preprocessed output. When you leave these lines out, the output is easier to read.

Example

cctc --preprocess=+comments,-make,-noline --no-preprocessing-only test.c

618

Tool Options

The compiler preprocesses the file test. c and sends the output to the file test.pre. Comments are
included but no dependencies are generated and the line source position information is not stripped from
the output file. Next, the control program calls the compiler, assembler and linker to create the final object
file test.elf

Related information

619

TASKING VX-toolset for TriCore User Guide

Control program option: --processors

Menu entry
1. From the Window menu, select Preferences.
The Preferences dialog appears.
2. Select TASKING TriCore Preferences.
3. Click the Add button to add additional processor definition files.
Command line syntax
--processors=file
Description
With this option you can specify an additional XML file with processor definitions.

The standard list of supported processors is defined in the file processors.xml. This file defines for
each processor its full name (for example, TC1165), the base CPU name (for example, tc1165), the core
settings (for example, tc1.3), the MMU and FPU settings and the list of silicon bugs for that processor.

The control program reads the specified file after the processors.xml in the product's etc directory.
Additional XML files can override processor definitions made in XML files that are read before.

Multiple --processors options are allowed.
Eclipse generates a --processors option in the makefiles for each specified XML file.
Example

Specify an additional processor definition file (suppose processors-new.xml contains a new processor
TCNEW):

cctc --processors=processors-new.xml --cpu=TCNEW test.c
Related information
Control program option --cpu (Select processor)

Control program option --core (Select the core)

620

Tool Options

Control program option: --profile (-p)

Menu entry
1. Select C/C++ Compiler » Debugging.
2. Enable or disable Static profiling.

3. Enable or disable one or more of the following Generate profiling information options (dynamic
profiling):

« for block counters (not in combination with Call graph or Function timers)
* to build a call graph
« for function counters

» for function timers

Note that the more detailed information you request, the larger the overhead in terms of execution
time, code size and heap space needed. The option --debug does not affect profiling, execution
time or code size.

Command line syntax
--profile[=flag,..-]

-p[flags]

Use the following option for a predefined set of flags:

--profile=g -pg Profiling with call graph and function timers.
Alias for: -pBcFSt

You can set the following flags:

+/-block b/B block counters
+/-callgraph c/C call graph

+/-function fIF function counters
+/-static s/S static profile generation
+/-time uT function timers

Default (without flags): - pBCf ST

Description

Profiling is the process of collecting statistical data about a running application. With these data you can
analyze which functions are called, how often they are called and what their execution time is.

621

TASKING VX-toolset for TriCore User Guide

Several methods of profiling exist. One method is code instrumentation which adds code to your application
that takes care of the profiling process when the application is executed. Another method is static profiling.
For an extensive description of profiling refer to Chapter 6, Profiling.

You can obtain the following profiling data (see flags above):

Block counters (not in combination with Call graph or Function timers)

This will instrument the code to perform basic block counting. As the program runs, it counts the number
of executions of each branch in an if statement, each iteration of a for loop, and so on. Note that though
you can combine Block counters with Function counters, this has no effect because Function counters
is only a subset of Block counters.

Call graph (not in combination with Block counters)

This will instrument the code to reconstruct the run-time call graph. As the program runs it associates the
caller with the gathered profiling data.

Function counters
This will instrument the code to perform function call counting. This is a subset of the basic Block counters.
Function timers (not in combination with Block counters/Function counters)

This will instrument the code to measure the time spent in a function. This includes the time spent in all
sub functions (callees).

Static profiling
With this option you do not need to run the application to get profiling results. The compiler generates

profiling information at compile time, without adding extra code to your application.

Note that the more detailed information you request, the larger the overhead in terms of execution
time, code size and heap space needed. The option Generate symbolic debug information
(--debug) does not affect profiling, execution time or code size.

The control program automatically specifies the corresponding profiling libraries to the linker.
Example

To generate block count information for the module test. c during execution, compile as follows:
cctc --profile=+block test.c

In this case the control program tells the linker to link the library 1ibpb.a.

Related information

Chapter 6, Profiling

622

Tool Options

Control program option: --show-c++-warnings

Menu entry

Command line syntax

- - show c++- war ni ngs

Description

The C++ compiler may generate a compiled C++ file (. ic) that causes warnings during compilation or
assembling. With this option you tell the control program to show these warnings. By default C++ warnings

are suppressed.

Related information

623

TASKING VX-toolset for TriCore User Guide

Control program option: --silicon-bug

Menu entry
1. Expand C/C++ Build and select Processor.
2. From the Processor Selection list, select a processor.

The CPU Problem Bypasses and Checks box shows the available workarounds/checks available
for the selected processor.

3. (Optional) Select Show all CPU problem bypasses and checks.
4. Click Select All or select one or more individual options.
Command line syntax

--silicon-bug=arg,...

For a list of available arguments refer to the description of option --silicon-bug of the compiler and
assembler. Depending on the available arguments this option is passed to the compiler and/or assembler.

Description

With this option the control program tells the compiler/assembiler/linker to use software workarounds for
some CPU functional problems. Please refer to Chapter 17, CPU Problem Bypasses and Checks for
more information about the individual problems and workarounds.

Example

To enable workarounds for problems CPU_TC.024 and CPU_TC.030, enter:

cctc --silicon-bug=cpu-tc024,cpu-tc030 test.c

Related information

Chapter 17, CPU Problem Bypasses and Checks

C compiler option --silicon-bug

Assembler option --silicon-bug

624

Tool Options

Control program option: --static

Menu entry

Command line syntax

--static

Description

This option is directly passed to the compiler.

With this option, the compiler treats external definitions at file scope (except for main) as if they were
declared static. As a result, unused functions will be eliminated, and the alias checking algorithm
assumes that objects with static storage cannot be referenced from functions outside the current module.
This option only makes sense when you specify all modules of an application on the command line.
Example

cctc --static modulel.c module2.c module3.c ...

Related information

625

TASKING VX-toolset for TriCore User Guide

Control program option: --uchar (-u)

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Treat "char" variables as unsigned.
Command line syntax

- -uchar

-u

Description

By default char is the same as specifying signed char.With this option char is the same as unsigned
char. This option is passed to both the C++ compiler and the C compiler.

Related information

Section 1.1, Data Types

626

Tool Options

Control program option: --undefine (-U)

Menu entry
1. Select C/C++ Compiler » Preprocessing
The Defined symbols box shows the symbols that are currently defined.

2. Toremove a defined symbol, select the symbol in the Defined symbols box and click on the Delete
button.

Command line syntax
- -undefi ne=macr o_nane
- Uracr o_nane
Description

With this option you can undefine an earlier defined macro as with #undetf. This option is for example
useful to undefine predefined macros.

The following predefined ISO C standard macros cannot be undefined:

__FILE current source filename

__LINE__ current source line number (int type)
__TIME__ hh:mm:ss

_ DATE___ Mmm dd yyyy

__STDC__ level of ANSI standard

The control program passes the option --undefine (-U) to the compiler.

Example

To undefine the predefined macro __ TASKING__:

cctc --undefine=__ TASKING__ test.c

Related information

Control program option --define (Define preprocessor macro)

Section 1.7, Predefined Preprocessor Macros

627

TASKING VX-toolset for TriCore User Guide

Control program option: --use-double-precision-fp

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Double precision floating-point.
Command line syntax

- -use-doubl e- preci sion-fp

Description

When an FPU is present the control program will by default compile all doubles as floats to make full use
of the FPU. When you do not want this, use the option --use-double-precision-fp.

Example

To allow the use of floating-point unit (FPU) instructions in the assembly code and treat 'double’ as ‘double’,
enter:

cctc --fpu-present --use-double-precision-fp test.c
Related information
Control program option --no-double (Treat double as float)

Control program option --fpu-present (FPU present)

628

Tool Options

Control program option: --user-mode

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --user-mode to the Additional options field.
Command line syntax

- - user - nrode=node

You can specify the following mode arguments:

user-0 User-0 unprivileged mode
user-1 User-1 privileged mode
kernel Kernel/Supervisor mode

Default: - - user - nrode=ker nel

Description

With this option you specify the mode (I/O privilege mode) the TriCore runs in: User-0, User-1 or
Kernel/Supervisor. The availability of some instructions depends on this mode. Most instructions run in
all modes. The instructions enable and disable run in User-1 or kernel mode only. The instructions
bisr, mtcr, cachea.i and tlb instructions run in kernel mode only.

Example

To restrict the instructions in the assembly code to User-1 mode, enter:

cctc --user-mode=user-1 test.c

Related information

C compiler option --user-mode (Select user mode)

Assembler option --user-mode (Select user mode)

629

TASKING VX-toolset for TriCore User Guide

Control program option: --verbose (-v)
Menu entry

1. Select Global Options.

2. Enable the option Verbose mode of control program.
Command line syntax

--verbose

-v

Description

With this option you put the control program in verbose mode. The control program performs it tasks while
it prints the steps it performs to stdout.

Related information

Control program option --dry-run (Verbose output and suppress execution)

630

Tool Options

Control program option: --version (-V)

Menu entry

Command line syntax

--version

-V

Description

Display version information. The control program ignores all other options or input files.

Related information

631

TASKING VX-toolset for TriCore User Guide

Control program option: --warnings-as-errors

Menu entry

1. Select Global Options.

2. Enable the option Treat warnings as errors.
Command line syntax

- -war ni ngs-as-errors[=nunber,...]
Description

If one of the tools encounters an error, it stops processing the file(s). With this option you tell the tools to
treat warnings as errors or treat specific C compiler warning messages as errors:

* If you specify this option but without numbers, all warnings are treated as errors.

* If you specify this option with a number, only the specified C compiler warning is treated as an error.
You can specify the option --warnings-as-errors=number multiple times.

Related information

Control program option --no-warnings (Suppress some or all warnings)

632

Tool Options

11.6. Make Utility Options

When you build a project in Eclipse, Eclipse generates a makefile and uses the make utility mktc to build
all your files. However, you can also use the make utility directly from the command line to build your
project.

The invocation syntax is:
nktc [option...] [target...] [macro=def]

This section describes all options for the make utility. The make utility is a command line tool so there
are no equivalent options in Eclipse.

For detailed information about the make utility and using makefiles see Section 9.2, Make Utility mktc.

633

TASKING VX-toolset for TriCore User Guide

Defining Macros

Command line syntax

nmacr o_nane[=nacr o_definition]

Description

With this argument you can define a macro and specify it to the make utility.

A macro definition remains in existence during the execution of the makefile, even when the makefile
recursively calls the make utility again. In the recursive call, the macro acts as an environment variable.
This means that it is overruled by definitions in the recursive call. Use the option -e to prevent this.

You can specify as many macros as you like. If the command line exceeds the limit of the operating
system, you can define the macros in an option file which you then must specify to the make utility with
the option -m) file.

Defining macros on the command line is, for example, useful in combination with conditional processing
as shown in the example below.

Example

Consider the following makefile with conditional rules to build a demo program and a real program:

i fdef DEMO # the value of DEMO is of no importance
real .elf : demo.o main.o
Itc demo.o main.o -Ic -Ifp -Irt
el se
real .elf : real.o main.o
Itc real.o main.o -Ic -Ifp -Irt
endi f

You can now use a macro definition to set the DEMO flag:
mktc real.elf DEMO=1

In both cases the absolute object file real .elT is created but depending on the DEMO flag it is linked
with demo. o or with real .o.

Related information
Make utility option -e (Environment variables override macro definitions)

Make utility option -m (Name of invocation file)

634

Tool Options

Make utility option: -?

Command line syntax

-?

Description

Displays an overview of all command line options.

Example
The following invocation displays a list of the available command line options:

mktc -?

Related information

635

TASKING VX-toolset for TriCore User Guide

Make utility option: -a
Command line syntax
-a

Description

Normally the make utility rebuilds only those files that are out of date. With this option you tell the make
utility to rebuild all files, without checking whether they are out of date.

Example
mktc -a

Rebuilds all your files, regardless of whether they are out of date or not.

Related information

636

Tool Options

Make utility option: -c

Command line syntax

-C

Description

Eclipse uses this option when you create sub-projects. In this case the make utility calls another instance
of the make utility for the sub-project. With the option -c, the make utility runs as a child process of the
current make.

The option -c overrules the option -err.

Example

mktc -c

The make utility runs its commands as a child processes.

Related information

Make utility option -err (Redirect error message to file)

637

TASKING VX-toolset for TriCore User Guide

Make utility option: -D / -DD
Command line syntax

-D
- DD

Description

With the option -D the make utility prints every line of the makefile to standard output as it is read by mktc.

With the option -DD not only the lines of the makefile are printed but also the lines of the mktc .mk file
(implicit rules).

Example
mktc -D
Each line of the makefile that is read by the make utility is printed to standard output (usually your screen).

Related information

638

Tool Options

Make utility option: -d/ -dd
Command line syntax

-d
- dd

Description

With the option -d the make utility shows which files are out of date and thus need to be rebuild. The
option -dd gives more detail than the option -d.

Example
mktc -d
Shows which files are out of date and rebuilds them.

Related information

639

TASKING VX-toolset for TriCore User Guide

Make utility option: -e
Command line syntax
-e

Description

If you use macro definitions, they may overrule the settings of the environment variables. With the option
-e, the settings of the environment variables are used even if macros define otherwise.

Example
mktc -e

The make utility uses the settings of the environment variables regardless of macro definitions.

Related information

640

Tool Options

Make utility option: -err

Command line syntax

-err file

Description

With this option the make utility redirects error messages and verbose messages to a specified file.
With the option -s the make utility only displays error messages.
Example

mktc -err error.txt

The make utility writes messages to the file error. txt.
Related information

Make utility option -s (Do not print commands before execution)

Make utility option -¢ (Run as child process)

641

TASKING VX-toolset for TriCore User Guide

Make utility option: -f
Command line syntax
-f nmy_nakefile
Description

By default the make utility uses the file makefi le to build your files.

With this option you tell the make utility to use the specified file instead of the file makefi le. Multiple -f
options act as if all the makefiles were concatenated in a left-to-right order.

If you use '-' instead of a makefile name it means that the information is read from stdin.
Example
mktc -f mymake

The make utility uses the file mymake to build your files.

Related information

642

Tool Options

Make utility option: -G
Command line syntax
-G path

Description

Normally you must call the make utility from the directory where your makefile and other files are stored.

With the option -G you can call the make utility from within another directory. The path is the path to the
directory where your makefile and other files are stored and can be absolute or relative to your current
directory.

Example

Suppose your makefile and other files are stored in the directory . .\myfi les. You can call the make
utility, for example, as follows:

mktc -G .._.\myTFfiles

Related information

643

TASKING VX-toolset for TriCore User Guide

Make utility option: -i

Command line syntax

-i

Description

When an error occurs during the make process, the make utility exits with a certain exit code.
With the option -i, the make utility exits without an error code, even when errors occurred.
Example

mktc -i

The make utility exits without an error code, even when an error occurs.

Related information

644

Tool Options

Make utility option: -K

Command line syntax

-K

Description

With this option the make utility keeps temporary files it creates during the make process. The make utility
stores temporary files in the directory that you have specified with the environment variable TMPDIR or
in the default 'temp' directory of your system when the TMPDIR environment variable is not specified.
Example

mktc -K

The make utility preserves all temporary files.

Related information

645

TASKING VX-toolset for TriCore User Guide

Make utility option: -k
Command line syntax
-k

Description

When during the make process the make utility encounters an error, it stops rebuilding your files.

With the option -k, the make utility only stops building the target that produced the error. All other targets
defined in the makefile are built.

Example
mktc -k

If the make utility encounters an error, it stops building the current target but proceeds with the other
targets that are defined in the makefile.

Related information

Make utility option -S (Undo the effect of -k)

646

Tool Options

Make utility option: -m
Command line syntax
-mfile

Description

Instead of typing all options on the command line, you can create an option file which contains all options
and flags you want to specify. With this option you specify the option file to the make utility.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option -m multiple times.

If you use '-' instead of a filename it means that the options are read from stdin.

Format of an option file

» Multiple arguments on one line in the option file are allowed.

» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote " embedded"
"This has a double quote " embedded*

"This has a double quote and a single quote """ embedded"
Note that adjacent strings are concatenated.

* When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

-> "This is a continuation line"

* Itis possible to nest command line files up to 25 levels.
Example

Suppose the file myoptions contains the following lines:
-k

-err errors.txt
test.elf

647

TASKING VX-toolset for TriCore User Guide

Specify the option file to the make utility:
mktc -m myoptions
This is equivalent to the following command line:

mktc -k -err errors.txt test.elf

Related information

648

Tool Options

Make utility option: -n
Command line syntax
-n

Description

With this option you tell the make utility to perform a dry run. The make utility shows what it would do but
does not actually perform these tasks.

This option is for example useful to quickly inspect what would happen if you call the make utility.
Example

mktc -n

The make utility does not perform any tasks but displays what it would do if called without the option -n.
Related information

Make utility option -s (Do not print commands before execution)

649

TASKING VX-toolset for TriCore User Guide

Make utility option: -p

Command line syntax

-p

Description

Normally, if a command in a target rule in a makefile returns an error or when the target construction is
interrupted, the make utility removes that target file. With this option you tell the make utility to make all
target files precious. This means that all dependency files are never removed.

Example

mktc -p

The make utility never removes target dependency files.

Related information

Special target .PRECIOUS in Section 9.2.2.1, Targets and Dependencies

650

Tool Options

Make utility option: -q

Command line syntax

-q

Description

With this option the make utility does not perform any tasks but only returns an exit code. A zero status
indicates that all target files are up to date, a non-zero status indicates that some or all target files are
out of date.

Example

mktc -q

The make utility only returns an error code that indicates whether all target files are up to date or not. It
does not rebuild any files.

Related information

651

TASKING VX-toolset for TriCore User Guide

Make utility option: -r
Command line syntax
-r

Description

When you call the make utility, it first reads the implicit rules from the file mktc . mk, then it reads the
makefile with the rules to build your files. (The file mktc . mk is located in the \etc directory of the toolset.)

With this option you tell the make utility not to read mktc.mk and to rely fully on the make rules in the
makefile.

Example
mktc -r
The make utility does not read the implicit make rules in mktc.mk.

Related information

652

Tool Options

Make utility option: -S

Command line syntax

-S

Description

With this option you cancel the effect of the option -k. This is only necessary in a recursive make where
the option -k might be inherited from the top-level make via MAKEFLAGS or if you set the option -k in
the environment variable MAKEFLAGS.

With this option you tell the make utility not to read mktc.mk and to rely fully on the make rules in the
makefile.

Example
mktc -S

The effect of the option -k is cancelled so the make utility stops with the make process after it encounters
an error.

The option -k in this example may have been set with the environment variable MAKEFLAGS or in a
recursive call to mktc in the makefile.

Related information

Make utility option -k (On error, abandon the work for the current target only)

653

TASKING VX-toolset for TriCore User Guide

Make utility option: -s
Command line syntax
-s

Description

With this option you tell the make utility to perform its tasks without printing the commands it executes.
Error messages are normally printed.

Example

mktc -s

The make utility rebuilds your files but does not print the commands it executes during the make process.
Related information

Make utility option -n (Perform a dry run)

654

Tool Options

Make utility option: -t
Command line syntax
-t

Description

With this option you tell the make utility to touch the target files, bringing them up to date, rather than
performing the rules to rebuild them.

Example

mktc -t

The make utility updates out-of-date files by giving them a new date and time stamp. The files are not
actually rebuild.

Related information

655

TASKING VX-toolset for TriCore User Guide

Make utility option: -time

Command line syntax

-time

Description

With this option you tell the make utility to display the current date and time on standard output.

Example
mktc -time

The make utility displays the current date and time and updates out-of-date files.

Related information

656

Tool Options

Make utility option: -V

Command line syntax

-V

Description

Display version information. The make utility ignores all other options or input files.
Example

mktc -V

The make utility displays the version information but does not perform any tasks.

TASKING VX-toolset for TriCore: program builder vx.yrz Build nnn
Copyright 2004-year Altium BV Serial# 00000000

Related information

657

TASKING VX-toolset for TriCore User Guide

Make utility option: -W
Command line syntax
-Wtarget

Description

With this option the make utility considers the specified target file always as up to date and will not rebuild
it.

Example
mktc -W test.elf

The make utility rebuilds out of date targets in the makefile except the file test.el T which is considered
now as up to date.

Related information

658

Tool Options

Make utility option: -w
Command line syntax
-wW

Description

With this option the make utility sends error messages and verbose messages to standard output. Without
this option, the make utility sends these messages to standard error.

This option is only useful on UNIX systems.

Example
mktc -w

The make utility sends messages to standard out instead of standard error.

Related information

659

TASKING VX-toolset for TriCore User Guide

Make utility option: -x
Command line syntax

- X

Description

With this option the make utility shows extended error messages. Extended error messages give more
detailed information about the exit status of the make utility after errors.

Example
mktc -x

If errors occur, the make utility gives extended information.

Related information

660

Tool Options

11.7. Parallel Make Utility Options

When you build a project in Eclipse, Eclipse generates a makefile and uses the make utility amk to build
all your files. However, you can also use the make utility directly from the command line to build your
project.

The invocation syntax is:

ank [option...] [target ...] [macro=def]

This section describes all options for the parallel make utility.

For detailed information about the parallel make utility and using makefiles see Section 9.3, Make Utility
amk.

661

TASKING VX-toolset for TriCore User Guide

Parallel make utility option: -?
Command line syntax

-?

Description

Displays an overview of all command line options.

Example
The following invocation displays a list of the available command line options:

amk -?

Related information

662

Tool Options

Parallel make utility option: -a
Command line syntax

-a

Description

Normally the make utility rebuilds only those files that are out of date. With this option you tell the make
utility to rebuild all files, without checking whether they are out of date.

Example
amk -a
Rebuilds all your files, regardless of whether they are out of date or not.

Related information

663

TASKING VX-toolset for TriCore User Guide

Parallel make utility option: -f
Command line syntax

-f nmy_nakefile

Description

By default the make utility uses the file makefi le to build your files.

With this option you tell the make utility to use the specified file instead of the file makefi le. Multiple -f
options act as if all the makefiles were concatenated in a left-to-right order.

If you use '-' instead of a makefile name it means that the information is read from stdin.
Example
amk - mymake

The make utility uses the file mymake to build your files.

Related information

664

Tool Options

Parallel make utility option: -G

Command line syntax

-G path

Description

Normally you must call the make utility from the directory where your makefile and other files are stored.
With the option -G you can call the make utility from within another directory. The path is the path to the
directory where your makefile and other files are stored and can be absolute or relative to your current
directory.

The macro SUBDIR is defined with the value of path.

Example

Suppose your makefile and other files are stored in the directory . .\myfi les. You can call the make
utility, for example, as follows:

amk -G ..\myfiles

Related information

665

TASKING VX-toolset for TriCore User Guide

Parallel make utility option: -j / -J

Menu
1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, select C/C++ Build.
In the right pane the C/C++ Build page appears.
3. On the Behaviour tab, select Use parallel build.

4. You can specify the number of parallel jobs, or you can use an optimal number of jobs. In the last
case, amk will fork as many jobs in parallel as cores are available.

Command line syntax
-j [number]

-J[nunber]
Description

When these options you can limit the number of parallel jobs. The default is 1. Zero means no limit. When
you omit the number, amk uses the number of cores detected.

Option -J is the same as -j, except that the number of parallel jobs is limited by the number of cores
detected.

Example
amk -j3
Limit the number of parallel jobs to 3.

Related information

666

Tool Options

Parallel make utility option: -k

Command line syntax

-k

Description

When during the make process the make utility encounters an error, it stops rebuilding your files.

With the option -k, the make utility only stops building the target that produced the error. All other targets
defined in the makefile are built.

Example
amk -k

If the make utility encounters an error, it stops building the current target but proceeds with the other
targets that are defined in the makefile.

Related information

667

TASKING VX-toolset for TriCore User Guide

Parallel make utility option: -n
Command line syntax

-n

Description

With this option you tell the make utility to perform a dry run. The make utility shows what it would do but
does not actually perform these tasks.

This option is for example useful to quickly inspect what would happen if you call the make utility.
Example

amk -n

The make utility does not perform any tasks but displays what it would do if called without the option -n.
Related information

Parallel make utility option -s (Do not print commands before execution)

668

Tool Options

Parallel make utility option: -s
Command line syntax

-s

Description

With this option you tell the make utility to perform its tasks without printing the commands it executes.
Error messages are normally printed.

Example

amk -s

The make utility rebuilds your files but does not print the commands it executes during the make process.
Related information

Parallel make utility option -n (Perform a dry run)

669

TASKING VX-toolset for TriCore User Guide

Parallel make utility option: -V

Command line syntax

-V

Description

Display version information. The make utility ignores all other options or input files.

Related information

670

Tool Options

11.8. Archiver Options

The archiver and library maintainer artc is a tool to build library files and it offers the possibility to replace,
extract and remove modules from an existing library.

The invocation syntax is:
artc key_option [sub_option...] library [object_file]

This section describes all options for the archiver. Some suboptions can only be used in combination with
certain key options. They are described together. Suboptions that can always be used are described
separately.

For detailed information about the archiver, see Section 9.4, Archiver.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option

names as long as it forms a unique name. You can mix short and long option names on the command
line.

Overview of the options of the archiver utility

The following archiver options are available:

Description ‘Option Sub-option
Main functions (key options)

Replace or add an object module -r -a-b-c-u-v
Extract an object module from the library -X -0 -v
Delete object module from library -d -V

Move object module to another position -m -a-b-v
Print a table of contents of the library -t -s0 -s1
Print object module to standard output -p

Sub-options

Append or move new modules after existing module name -a name

Append or move new modules before existing module name -b name

Create library without notification if library does not exist -C

Preserve last-modified date from the library -0

Print symbols in library modules -s{0|1}

Replace only newer modules -u

Verbose -V

Miscellaneous

671

TASKING VX-toolset for TriCore User Guide

Description Option Sub-option
Display options -?

Display version header -V

Read options from file -f file

Suppress warnings above level n -wn

672

Tool Options

Archiver option: --delete (-d)

Command line syntax
--delete [--verbose]
-d [-v]

Description

Delete the specified object modules from a library. With the suboption --verbose (-v) the archiver shows
which files are removed.

--verbose -v Verbose: the archiver shows which files are removed.
Example
artc --delete mylib.a objl.o0 obj2.0
The archiver deletes obj1.0 and obj2 .o from the library mylib.a.
artc -d -v mylib.a objl.o0 obj2.0
The archiver deletes obj1.0 and obj2 .o from the library mylib_a and displays which files are removed.

Related information

673

TASKING VX-toolset for TriCore User Guide

Archiver option: --dump (-p)

Command line syntax

--dunp

-p

Description

Print the specified object module(s) in the library to standard output.

This option is only useful when you redirect or pipe the output to other files or tools that serve your own
purposes. Normally you do not need this option.

Example

artc --dump mylib.a objl.o > file.o

The archiver prints the file obj1. o to standard output where it is redirected to the file Fi le.o. The effect
of this example is very similar to extracting a file from the library but in this case the 'extracted' file gets

another name.

Related information

674

Tool Options

Archiver option: --extract (-x)

Command line syntax

--extract [--nodtine] [--verbose]
-x [-o] [-v]

Description

Extract an existing module from the library.

--modtime -0 Give the extracted object module the same date as the last-modified
date that was recorded in the library. Without this suboption it
receives the last-modified date of the moment it is extracted.

--verbose -V Verbose: the archiver shows which files are extracted.

Example

To extract the file obj 1.0 from the library mylib.a:

artc --extract mylib.a objl.o

If you do not specify an object module, all object modules are extracted:

artc -x mylib.a

Related information

675

TASKING VX-toolset for TriCore User Guide

Archiver option: --help (-?)

Command line syntax

--hel p[=item]

-?

You can specify the following argument:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:
artc -?

artc --help

artc

To see a detailed description of the available options, enter:

artc --help=options

Related information

676

Tool Options

Archiver option: --move (-m)

Command line syntax

--nove [-a posnane] [-b posnane]

-m [-a posnane] [-b posnane]

Description

Move the specified object modules to another position in the library.

The ordering of members in a library can make a difference in how programs are linked if a symbol is
defined in more than one member.

By default, the specified members are moved to the end of the archive. Use the suboptions -a or -b to
move them to a specified place instead.

--after=posname -a Move the specified object module(s) after the existing module
posname poshame.

--before=posname -b Move the specified object module(s) before the existing
posname module poshame.

Example

Suppose the library mylib.a contains the following objects (see option --print):
objl.o

obj2.0

obj3.0

To move objl.0to the end of mylib.a:

artc --move mylib.a objl.o

To move obj 3.0 just before obj2.o:

artc -m -b obj3.0 mylib.a obj2.0

The library mylib.a after these two invocations now looks like:
obj3.0

obj2.0

objl.o

Related information

Archiver option --print (-t) (Print library contents)

677

TASKING VX-toolset for TriCore User Guide

Archiver option: --option-file (-f)

Command line syntax

--option-file=file

-f file

Description

Instead of typing all options on the command line, you can create an option file which contains all options
and flags you want to specify. With this option you specify the option file to the archiver.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file (-f) multiple times.

If you use '-' instead of a filename it means that the options are read from stdin.

Format of an option file

Multiple arguments on one line in the option file are allowed.
To include whitespace in an argument, surround the argument with single or double quotes.

If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote * embedded"

"This has a double quote " embedded®

"This has a double quote ' and a single quote """ embedded"

When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

-> "This 1s a continuation line

It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

-x mylib.a objl.0
-w5

678

Specify the option file to the archiver:

artc --option-file=myoptions

This is equivalent to the following command line:

artc -x mylib.a objl.o -w5

Related information

Tool Options

679

TASKING VX-toolset for TriCore User Guide

Archiver option: --print (-t)
Command line syntax
--print [--synbol s=0]1]

-t [-sO]-s1]

Description

Print a table of contents of the library to standard output. With the suboption -s0 the archiver displays all
symbols per object file.

--symbols=0 -s0 Displays per object the name of the object itself and all symbols in
the object.
--symbols=1 -sl Displays the symbols of all object files in the library in the form

library_name:object_name:symbol_name

Example

artc --print mylib.a

The archiver prints a list of all object modules in the library mylib.a:
artc -t -sO mylib.a

The archiver prints per object all symbols in the library. For example:

cstart.o
symbols:
_START
__init_sp
_start
_endinit_clear
_endinit_set
cinit.o
symbols:
_c_init

Related information

680

Tool Options

Archiver option: --replace (-r)

Command line syntax

--replace [--after=posnane] [--before=posnane][--create] [--newer-only] [--verbose]
-r [-a posnane] [-b posname][-c] [-u] [-v]

Description

You can use the option --replace (-r) for several purposes:

» Adding new objects to the library

» Replacing objects in the library with the same object of a newer date

» Creating a new library

The option --replace (-r) normally adds a new module to the library. However, if the library already contains
a module with the specified name, the existing module is replaced. If you specify a library that does not
exist, the archiver creates a new library with the specified name.

If you add a module to the library without specifying the suboption -a or -b, the specified module is added
at the end of the archive. Use the suboptions -a or -b to insert them after/before a specified place instead.

--after=posname -a Insert the specified object module(s) after the existing module
posname poshame.

--before=posname -b Insert the specified object module(s) before the existing
posname module posnhame.

--Create -C Create a new library without checking whether it already
exists. If the library already exists, it is overwritten.

--newer-only -u Insert the specified object module only if it is newer than the
module in the library.

--verbose -v Verbose: the archiver shows which files are replaced.
The suboptions -a or -b have no effect when an object is added to the library.
Example
Suppose the library mylib.a contains the following object (see option --print):
objl.o0
To add obj 2.0 to the end of mylib.a:
artc --replace mylib.a obj2.0
To insert obj 3.0 just before obj2.o:

artc -r -b obj2.0 mylib.a obj3.0

681

TASKING VX-toolset for TriCore User Guide

The library my 1 ib.a after these two invocations now looks like:

objl.o

obj3.0

obj2.0

Creating a new library

To create a new library file, add an object file and specify a library that does not yet exist:
artc --replace objl.o newlib.a

The archiver creates the library newl ib.a and adds the object obj1.0 to it.

To create a new library file and overwrite an existing library, add an object file and specify an existing
library with the supoption -c:

artc -r -c objl.o mylib.a

The archiver overwrites the library mylib.a and adds the object obj1.0 to it. The new library mylib.a
only contains obj1.o0.

Related information

Archiver option --print (-t) (Print library contents)

682

Archiver option: --version (-V)

Command line syntax

--version

-V

Description

Display version information. The archiver ignores all other options or input files.
Example

artc -V

The archiver displays the version information but does not perform any tasks.

TASKING VX-toolset for TriCore: ELF archiver vx.yrz Build nnn
Copyright 2002-year Altium BV Serial# 00000000

Related information

Tool Options

683

TASKING VX-toolset for TriCore User Guide

Archiver option: --warning (-w)
Command line syntax

- -war ni ng=l evel

-w evel

Description

With this suboption you tell the archiver to suppress all warnings above the specified level. The level is
a number between 0 - 9.

The level of a message is printed between parentheses after the warning number. If you do not use the
-w option, the default warning level is 8.

Example

To suppress warnings above level 5:

artc --extract --warning=5 mylib.a objl.0

Related information

684

Chapter 12. Libraries

This chapter contains an overview of all library functions that you can call in your C source. This includes
all functions of the standard C library (ISO C99) and some functions of the floating-point library.

Section 12.1, Library Functions, gives an overview of all library functions you can use, grouped per header
file. A number of functions declared in wchar . h are parallel to functions in other header files. These are
discussed together.

Section 12.2, C Library Reentrancy, gives an overview of which functions are reentrant and which are
not.

The following libraries are included in the TriCore toolset. Both Eclipse and the control program cctc
automatically select the appropriate libraries depending on the specified options.

C library
Libraries Description
libc[s].a C libraries
libc[s]_fpu.a Optional letter:
s = single precision floating-point (compiler option --no-double)
_fpu = with FPU instructions (compiler option --fpu-present)
libfp[t].a Floating-point libraries
libfp[t]_fpu.a Optional letter:
t = trapping (control program option --fp-trap)
_fpu = with FPU instructions (compiler option --fpu-present)
librt.a Run-time library
libpb.a Profiling libraries
libpc.a pb = block/function counter
libpct.a pc = call graph
libpd.a pct = call graph and timing
libpt.a pd = dummy
pt = function timing
C++ Library

The TASKING C++ compiler supports the STLport C++ libraries. STLport is a multiplatform 1SO C++
Standard Library implementation. It is a free, open-source product, which is delivered with the TASKING
C++ compiler. The library supports standard templates and 1/O streams.

The include files for the STLport C++ libraries are present in directory include.stl relative to the
product installation directory.

You can find more information on the STLport library on the following site:http://stlport.sourgeforge.net/
Also read the license agreement on http://stlport.sourgeforge.net/License.shtml. This license agreement

is applicable to the STLport C++ library only. All other product components fall under the TASKING license
agreement.

685

http://stlport.sourgeforge.net/
http://stlport.sourgeforge.net/License.shtml

TASKING VX-toolset for TriCore User Guide

For an STL Programmer's Guide you can see http://www.sgi.com/tech/stl/index.html

The following C++ libraries are delivered with the product:

Libraries Description

libcp[s][x].a C++ libraries

Optional letter:

s = single precision floating-point
X = exception handling

libstl[s]x.a STLport C++ libraries (exception handling variants only)
Optional letter:
s = single precision floating-point

To build an STLport library
1. Change to the directory installdir\lib\src.stl.
2. Runthe program install-lib-sources.exe. This will extract the library sources.

3. Change to the directory [p][tcl2][tcl13][tcl13_mmu][tcl31]\libstl[s]x, depending on
the library set used by your project.

4. Run the makefile by executing installdir\bin\mktc . exe without arguments.

5. Copy the generated C++ library 1ibstl[s]x.a to the corresponding directory
installdirNlib\[p][tcl12][tc13][tc1l3_mmu][tcl31].

where,
[tc12] libraries for TriCore 1.2 architectures
[tc13] libraries for TriCore 1.3 architectures
[tcl3 _mmu] libraries for TriCore 1.3 architectures that use an MMU
[tc131] libraries for TriCore 1.3.1 architectures
el protected libraries for CPU functional problems
[s] STLport library with exception handling and single precision floating-point

12.1. Library Functions

The tables in the sections below list all library functions, grouped per header file in which they are declared.
Some functions are not completely implemented because their implementation depends on the context
where your application will run. These functions are for example all I/O related functions. Where possible,

these functions are implemented using file system simulation (FSS). This system can be used by the
debugger to simulate an I/O environment which enables you to debug your application.

12.1.1. assert.h

assert(expr) Prints a diagnostic message if NDEBUG is not defined. (Implemented as macro)

686

http://www.sgi.com/tech/stl/index.html

Libraries

12.1.2. complex.h

The complex number z is also written as x+yi where x (the real part) and y (the imaginary part) are real
numbers of types Float, double or long double.The real and imaginary part can be stored in structs
or in arrays. This implementation uses arrays because structs may have different alignments.

The header file complex_.h also defines the following macros for backward compatibility:

complex _Complex /* C99 keyword */
imaginary _Imaginary /* C99 keyword */

Parallel sets of functions are defined for double, float and long double. They are respectively named
function, functionf, functionl. All long type functions, though declared in complex_.h, are implemented
as the doubl e type variant which nearly always meets the requirement in embedded applications.

This implementation uses the obvious implementation for complex multiplication; and a more sophisticated
implementation for division and absolute value calculations which handles underflow, overflow and infinities
with more care. The ISO C99 #pragma CX_LIMITED_RANGE therefore has no effect.

Trigonometric functions

csin csinf csinl Returns the complex sine of z.

ccos ccosf ccosl Returns the complex cosine of z.

ctan ctanf ctanl Returns the complex tangent of z.

casin casinf casinl Returns the complex arc sine sin'l(z).
cacos cacosf cacosl Returns the complex arc cosine cos'l(z).
catan catanf catanl Returns the complex arc tangent tan'l(z).
csinh csinhf csinhl Returns the complex hyperbolic sine of z.
ccosh ccoshf ccoshl Returns the complex hyperbolic cosine of z.
ctanh ctanhf ctanhl Returns the complex hyperbolic tangent of z.

casinh casinhf casinhl Returnsthe complex arc hyperbolic sinus of z.
cacosh cacoshf cacoshl Returnsthe complex arc hyperbolic cosine of z.
catanh catanhf catanhl Returns the complex arc hyperbolic tangent of z.

Exponential and logarithmic functions

cexp cexpf cexpl Returns the result of the complex exponential function e”.
clog clogf clogl Returns the complex natural logarithm.

Power and absolute-value functions

cabs cabsf cabsl Returns the complex absolute value of z (also known as norm,
modulus or magnitude).

cpow cpowf cpowl Returns the complex value of x raised to the power y (x) where
both x and y are complex humbers.

687

TASKING VX-toolset for TriCore User Guide

csqgrt csqrtf csqrtl Returns the complex square root of z.

Manipulation functions

carg cargf cargl Returns the argument of z (also known as phase angle).

cimag cimagf cimagl Returns the imaginary part of z as a real (respectively as adouble,
float, long double)

conj conjf conjl Returns the complex conjugate value (the sign of its imaginary part
is reversed).

cproj cprojf cprojl Returns the value of the projection of z onto the Riemann sphere.

creal crealf creall Returns the real part of z as a real (respectively as a double,

float, long double)

12.1.3. cstart.h

The header file cstart.h controls the system startup code's general settings and register initializations.
It contains defines only, no functions.

12.1.4. ctype.h and wctype.h
The header file ctype . h declares the following functions which take a character ¢ as an integer type

argument. The header file wctype . h declares parallel wide-character functions which take a character
c of the wchar_t type as argument.

ctype.h wctype.h Description

isalnum iswalnum Returns a non-zero value when c is an alphabetic character or a
number ([A-Z][a-z][0-9]).

isalpha iswalpha Returns a non-zero value when c is an alphabetic character
([A-Z][a-2]).

isblank iswblank Returns a non-zero value when c is a blank character (tab, space...)

iscntrl iswentrl Returns a non-zero value when c is a control character.

isdigit iswditit Returns a non-zero value when c is a numeric character ([0-9]).

isgraph iswgraph Returns a non-zero value when c is printable, but not a space.

islower iswlower Returns a non-zero value when c is a lowercase character ([a-z]).

isprint iswprint Returns a non-zero value when c is printable, including spaces.

ispunct iswpunct Returns a non-zero value when c is a punctuation character (such
as', ', ").

isspace iswspace Returns a non-zero value when c is a space type character (space,
tab, vertical tab, formfeed, linefeed, carriage return).

isupper iswupper Returns a non-zero value when c is an uppercase character ([A-Z]).

isxdigit iswxdigit Returns a non-zero value when c is a hexadecimal digit
([0-9][A-F][a-f]).

688

Libraries

ctype.h wctype.h Description

tolower towlower Returns ¢ converted to a lowercase character if it is an uppercase
character, otherwise c is returned.

toupper towupper Returns c converted to an uppercase character if it is a lowercase
character, otherwise c is returned.

_tolower - Converts c to a lowercase character, does not check if ¢ really is
an uppercase character. Implemented as macro. This macro
function is not defined in ISO C99.

_toupper - Converts ¢ to an uppercase character, does not check if ¢ really
is a lowercase character. Implemented as macro. This macro
function is not defined in ISO C99.

isascil Returns a non-zero value when c is in the range of 0 and 127. This
function is not defined in ISO C99.
toascii Converts c to an ASCII value (strip highest bit). This function is

not defined in ISO C99.

12.1.5. dbg.h

The header file dbg - h contains the debugger call interface for file system simulation. It contains low level
functions. This header file is not defined in ISO C99.

_dbg_trap Low level function to trap debug events

_argcv(const char Low level function for command line argument passing
*buf ,size_t size)

12.1.6. errno.h

int errno External variable that holds implementation defined error codes.

The following error codes are defined as macros in errno.h:

EPERM 1 Operation not permitted
ENOENT 2 No such file or directory
EINTR 3 Interrupted system call
EIO 4 I/O error

EBADF 5 Bad file number
EAGAIN 6 No more processes
ENOMEM 7 Not enough core
EACCES 8 Permission denied
EFAULT 9 Bad address

EEXIST 10 File exists

ENOTDIR 11 Not a directory

EISDIR 12 Is a directory

EINVAL 13 Invalid argument
ENFILE 14 File table overflow
EMFILE 15 Too many open files
ETXTBSY 16 Text file busy

689

TASKING VX-toolset for TriCore User Guide

ENOSPC 17 No space left on device

ESPIPE 18 lllegal seek

EROFS 19 Read-only file system

EPIPE 20 Broken pipe

ELOOP 21 Too many levels of symbolic links
ENAMETOOLONG 22 File name too long

Floating-point errors

EDOM 23 Argument too large
ERANGE 24 Result too large

Errors returned by printf/scanf

ERR_FORMAT 25 lllegal format string for printf/scanf
ERR_NOFLOAT 26 Floating-point not supported
ERR_NOLONG 27 Long not supported
ERR_NOPOINT 28 Pointers not supported

Encoding errors set by functions like fgetwc, getwc, mbrtowc, etc ...
EILSEQ 29 Invalid or incomplete multibyte or wide character

Errors returned by RTOS

ECANCELED 30 Operation canceled
ENODEV 31 No such device
12.1.7. fentl.h

The header file fcntl . h contains the function open(), which calls the low level function _open(), and
definitions of flags used by the low level function _open(). This header file is not defined in ISO C99.

open Opens a file a file for reading or writing. Calls _open.
(FSS implementation)

12.1.8. fenv.h

Contains mechanisms to control the floating-point environment. The functions in this header file are not
implemented.

fegetenv Stores the current floating-point environment. (Not implemented)

feholdexept Saves the current floating-point environment and installs an environment
that ignores all floating-point exceptions. (Not implemented)

fesetenv Restores a previously saved (fegetenv or feholdexcept) floating-point
environment. (Not implemented)

feupdateenv Saves the currently raised floating-point exceptions, restores a previously
saved floating-point environment and finally raises the saved exceptions.
(Not implemented)

690

Libraries

feclearexcept Clears the current exception status flags corresponding to the flags specified
in the argument. (Not implemented)

fegetexceptflag Stores the current setting of the floating-point status flags. (Not implemented)

feraiseexcept Raises the exceptions represented in the argument. As a result, other

exceptions may be raised as well.
(Not implemented)

fesetexceptflag Sets the current floating-point status flags.
(Not implemented)

fetestexcept Returns the bitwise-OR of the exception macros corresponding to the
exception flags which are currently set and are specified in the argument.
(Not implemented)

For each supported exception, a macro is defined. The following exceptions are defined:

FE_DIVBYZERO FE_INEXACT FE_INVALID
FE_OVERFLOW FE_UNDERFLOW FE_ALL_EXCEPT
fegetround Returns the current rounding direction, represented as one of the values of

the rounding direction macros.
(Not implemented)

fesetround Sets the current rounding directions. (Not implemented)

Currently no rounding mode macros are implemented.
12.1.9. float.h

The header file Float. h defines the characteristics of the real floating-point types float, double and
long double.

float.h used to contain prototypes for the functions copysign(f), isinf(f), isfinite(f),
isnan(f) and scalb(F). These functions have accordingly to the ISO C99 standard been moved
to the header file math.h. See also Section 12.1.17, math.h and tgmath.h.

The following functions are only available for ISO C90:

copysignf(float f ,float s) Copies the sign of the second argument s to the value of the first
argument f and returns the result.

copysign(double d,double s) Copies the sign of the second argument s to the value of the first
argument d and returns the result.

isinff(float f) Test the variable f on being an infinite (IEEE-754) value.
isinf(double d); Test the variable d on being an infinite (IEEE-754) value.
isfinitef(float f) Test the variable f on being a finite (IEEE-754) value.
isfinite(double d) Test the variable d on being a finite (IEEE-754) value.
isnanf(float f) Test the variable f on being NaN (Not a Number, IEEE-754) .

691

TASKING VX-toolset for TriCore User Guide

isnan(double d)
scalbf(float f ,int p)
scalb(double d,int p)

12.1.10. fpbits.h

Test the variable d on being NaN (Not a Number, IEEE-754) .
Returns f * 27p for integral values without computing 2"*N.

Returns d * 27p for integral values without computing 2N. (See
also scalbn in Section 12.1.17, math.h and tgmath.h)

The header file fpbits.h contains definitions for the internals of the run-time floating-point library
implementation. This header file is not defined in ISO C99.

12.1.11. inttypes.h and stdint.h

The header files stdint.h and inttypes.h provide additional declarations for integer types and have
various characteristics. The stdint.h header file contains basic definitions of integer types of certain
sizes, and corresponding sets of macros. This header file clearly refers to the corresponding sections in

the ISO C99 standard.

The inttypes.h header file includes stdint.h and adds portable formatting and conversion functions.
Below the conversion functions from inttypes.h are listed.

imaxabs(intmax_t j)

imaxdiv(intmax_t numer,
intmax_t denom)

strtoimax(const char *
restrict nptr, char **
restrict endptr, int base)

strtoumax(const char *
restrict nptr, char **
restrict endptr, int base)

wcstoimax(constwchar_t *
restrict nptr, wchar_t **
restrict endptr, int base)

wcstoumax(const wchar_t *
restrict nptr, wchar_t **
restrict endptr, int base)

Returns the absolute value of j

Computes numer/denomand numer % denom.The resultis stored
in the quot and rem components of the imaxdiv_t structure type.

Convert string to maximum sized integer. (Compare strtoll)

Convert string to maximum sized unsigned integer. (Compare
strtoull)

Convert wide string to maximum sized integer. (Compare wcstol I)

Convert wide string to maximum sized unsigned integer. (Compare
wcstoull)

The header file 10.h contains prototypes for low level I/O functions. This header file is not defined in ISO

12.1.12.i0.h
C99.
_close(fd)

_Iseek(fd,of fset ,whence)

_open(fd,fl ags)
_read(fd,*buff ,cnt)

692

Used by the functions close and fclose. (FSS implementation)

Used by all file positioning functions: fgetpos, fseek, fsetpos,
ftell, rewind. (FSS implementation)

Used by the functions fopen and freopen. (FSS implementation)
Reads a sequence of characters from a file. (FSS implementation)

_unlink(*nane) Used by the function remove. (FSS implementation)

Libraries

_write(fd,*buffer,cnt) Writes a sequence of characters to a file. (FSS implementation)

12.1.13. is0646.h

The header file 150646 .h adds tokens that can be used instead of regular operator tokens.

#define and &&
#define and_eq &=
#define bitand &
#define bitor |
#define compl ~
#define not !
#define not_eq !
#define or |

|

#define or_eq
#define xor
#define xor_eq ”=
12.1.14. limits.h

Contains the sizes of integral types, defined as macros.

12.1.15. locale.h

To keep C code reasonable portable across different languages and cultures, a number of facilities are

provided in the header file local -h.

char *setl ocal e(int category, const char *locale)

The function above changes locale-specific features of the run-time library as specified by the category

to change and the name of the locale.

The following categories are defined and can be used as input for this function:

LC_ALL 0 LC_NUMERIC 3
LC_COLLATE 1 LC_TIME 4
LC_CTYPE 2 LC_MONETARY 5

struct lIconv *| ocal econv(void)

Returns a pointer to type struct Iconv with values appropriate for the formatting of numeric
guantities according to the rules of the current locale. The struct lIconv in this header file is

conforming the ISO standard.

693

TASKING VX-toolset for TriCore User Guide

12.1.16. malloc.h

The header file mal loc . h contains prototypes for memory allocation functions. This include file is not
defined in ISO C99, it is included for backwards compatibility with ISO C90. For ISO C99, the memory
allocation functions are part of stdlib.h. See Section 12.1.25, stdlib.h and wchar.h.

malloc(si ze) Allocates space for an object with size size.
The allocated space is not initialized. Returns a pointer to the
allocated space.

calloc(nobj ,si ze) Allocates space for n objects with size size.
The allocated space is initialized with zeros. Returns a pointer to
the allocated space.

free(*ptr) Deallocates the memory space pointed to by ptr which should be
a pointer earlier returned by the mal loc or cal 1oc function.

realloc(*ptr ,si ze) Deallocates the old object pointed to by ptr and returns a pointer
to a new object with size size, while preserving its contents.
If the new size is smaller than the old size, some contents at the
end of the old region will be discarded. If the new size is larger than
the old size, all of the old contents are preserved and any bytes in
the new object beyond the size of the old object will have
indeterminate values.

12.1.17. math.h and tgmath.h

The header file math.h contains the prototypes for many mathematical functions. Before ISO C99, all
functions were computed using the double type (the float was automatically converted to double, prior to
calculation). In this ISO C99 version, parallel sets of functions are defined for double, float and long
double. They are respectively named function, functionf, functionl. All long type functions, though
declared in math.h, are implemented as the double type variant which nearly always meets the
requirement in embedded applications.

The header file tgmath . h contains parallel type generic math macros whose expansion depends on the
used type. tgmath.h includes math.h and the effect of expansion is that the correct math _h functions
are called. The type generic macro, if available, is listed in the second column of the tables below.

Trigonometric and hyperbolic functions

math.h tgmath.h Description

sin sinf sinl sin Returns the sine of x.

cos cosf cosl cos Returns the cosine of x.

tan tanf tanl tan Returns the tangent of x.

asin asinf asinl asin Returns the arc sine sin'l(x) of x.
acos acosf acosl acos Returns the arc cosine cos'l(x) of x.
atan atanf atanl atan Returns the arc tangent tan'l(x) of x.

atan2 atan2f atan2l atan2 Returns the result of: tan’l(y/x).

694

Libraries

math.h tgmath.h Description

sinh sinhf sinhl sinh Returns the hyperbolic sine of x.

cosh coshf coshl cosh Returns the hyperbolic cosine of x.

tanh tanhf tanhl tanh Returns the hyperbolic tangent of x.

asinh asinhf asinhl asinh Returns the arc hyperbolic sine of x.

acosh acoshf acoshl acosh Returns the non-negative arc hyperbolic cosine of x.
atanh atanhf atanhl atanh Returns the arc hyperbolic tangent of x.

Exponential and logarithmic functions

All of these functions are new in ISO C99, except for exp, 1og and 10g10.

math.h tgmath.h Description
exp expf expl exp Returns the result of the exponential function e*.
exp2 exp2f exp2l exp2 Returns the result of the exponential function 2*. (Not
implemented)
expml expmlf expmll expml Returns the result of the exponential function e*-1. (Not
implemented)
log logf logl log Returns the natural logarithm In(x), x>0.
l1og10 logl0f 1ogl0l 1ogl0 Returns the base-10 logarithm of x, x>0.
loglp loglpf loglpl loglp Returns the base-e logarithm of (1+x).x <> -1.(Not
implemented)
log2 log2f log2l log2 Returns the base-2 logarithm of x. x>0. (Not implemented)
ilogb ilogbf ilogbl ilogb Returns the signed exponent of x as an integer. x>0. (Not
implemented)
logb logbf logbl logb Returns the exponent of x as a signed integer in value in
floating-point notation. x > 0. (Not implemented)
frexp, ldexp, modf, scalbn, scalbln
math.h tgmath.h Description
frexp frexpf frexpl frexp Splits a float x into fraction f and exponent n, so that:
f=0.00r0.5<|f|<1.0and 2" = x. Returns f, stores n.
Idexp Idexpf Idexpl ldexp Inverse of Frexp. Returns the result of x*2".
(x and n are both arguments).
modf modff modfl - Splits a float x into fraction f and integer n, so that:
| f| < 1.0 and f+n=x. Returns f, stores n.
scalbn scalbnf scalbnl scalbn Computes the result of x*FLT_RADIX". efficiently, not
normally by computing FLT_RADIX" explicitly.
scalbln scalblnf scalblnl scalbln Same as scalbn but with argument n as long int.

695

TASKING VX-toolset for TriCore User Guide

Rounding functions

math.h tgmath.h Description

ceil ceilf ceill ceil Returns the smallest integer not less than x, as a double.
floor floorf floorl floor Returns the largest integer not greater than x, as a double.

rint rintf rintl rint Returns the rounded integer value as an int according
to the current rounding direction. See fenv.h. (Not
implemented)

Irint Irintf Irintl Irint Returns the rounded integer value as a long int
according to the current rounding direction. See fenv .h.
(Not implemented)

Ilrint Irintf Irintl [Ilrint Returnstherounded integervalue asa long long int
according to the current rounding direction. See fenv .h.
(Not implemented)

nearbyint nearbyintf nearbyintl nearbyint Returns the rounded integer value as a floating-point
according to the current rounding direction. See fenv _h.
(Not implemented)

round roundf roundl round Returns the nearest integer value of x as int.
(Not implemented)

Iround Iroundf Iroundl Iround Returns the nearestinteger value of x as long int.
(Not implemented)

Ilround Iroundf Ilroundl Ilround Returns the nearestinteger value of x as long long int.
(Not implemented)

trunc truncf truncl trunc Returns the truncated integer value x. (Not implemented)
Remainder after division

math.h tgmath.h Description

fmod fmodf fmodl fmod Returns the remainder r of x-ny. n is chosen as
trunc(x/y). r has the same sign as x.

remainder remainderf remainderl remainder Returns the remainder r of x-ny. n is chosen as
trunc(x/y). r may not have the same sign as x. (Not
implemented)

remquo remquof remquol remquo Same as remainder. In addition, the argument *quo is
given a specific value (see ISO). (Not implemented)

Power and absolute-value functions

math.h tgmath.h Description
cbrt cbrtf cbrtl cbrt Returns the real cube root of x (=x1/3). (Not implemented)
fabs fabsf fabsl fabs Returns the absolute value of x (] x]). (abs, labs, 1l1abs,

div, Idiv, 11div are defined in stdlib.h)

696

Libraries

math.h tgmath.h Description

fma fmaf fmal fma Floating-point multiply add. Returns x*y+z. (Not
implemented)

hypot hypotf hypotl hypot Returns the square root of x2+y?.
pow powf powl power Returns x raised to the power y (xY).
sqrt sqrtf sqrtl sqrt Returns the non-negative square root of x. x 0.

Manipulation functions: copysign, nan, nextafter, nexttoward

math.h tgmath.h Description

copysign copysignf copysignll copysign Returns the value of x with the sign of y.

nan nanf nanl - Returns a quiet NaN, if available, with content indicated
through t agp.

(Not implemented)

nextafter nextafterf nextafterl nextafter Returns the next representable value in the specified
format after x in the direction of y. Returns y is x=y.
(Not implemented)

nexttonard nexttorardf nexttorardl nexttonard Same as nextafter, except that the second argument
in all three variants is of type long double. Returns y if
X=Y.
(Not implemented)

Positive difference, maximum, minimum

math.h tgmath.h Description

fdim fdimfF fdiml fdim Returns the positive difference between: | x-y].
(Not implemented)

fmax fmaxf fmaxl fmax Returns the maximum value of their arguments.
(Not implemented)

fmin fminf fminl fmin Returns the minimum value of their arguments.
(Not implemented)

Error and gamma (Not implemented)

math.h tgmath.h Description

erf erff erfl erf Computes the error function of x.
(Not implemented)

erfc erfcf erfcl erc Computes the complementary error function of x.
(Not implemented)

lIgamma lgammaf Igammal Igamma Computes the *loge T ()|
(Not implemented)

tgamma tgammaf tgammal tgamma Computes IM'(x)
(Not implemented)

697

TASKING VX-toolset for TriCore User Guide

Comparison macros

The next are implemented as macros. For any ordered pair of numeric values exactly one of the
relationships - less, greater, and equal - is true. These macros are type generic and therefor do not have
a parallel function in tgmath _h. All arguments must be expressions of real-floating type.

math.h tgmath.h Description

isgreater - Returns the value of (xX) > (y)

isgreaterequal - Returns the value of (X) >= (y)

isless - Returns the value of (X) < (y)

islessequal - Returns the value of (X) <= (y)

islessgreater - Returns the value of (xX) < (y) |1) > ()
isunordered - Returns 1 if its arguments are unordered, O otherwise.

Classification macros

The next are implemented as macros. These macros are type generic and therefor do not have a parallel
function in tgmath _h. All arguments must be expressions of real-floating type.

math.h tgmath.h Description

fpclassify - Returns the class of its argument:
FP_INFINITE, FP_NAN, FP_NORMAL, FP_SUBNORMAL or
FP_ZERO

isfinite - Returns a nonzero value if and only if its argument has a finite
value

isinf - Returns a nonzero value if and only if its argument has an infinite
value

ishan - Returns a nonzero value if and only if its argument has NaN value.

isnormal - Returns a nonzero value if an only if its argument has a normal
value.

signbit - Returns a nonzero value if and only if its argument value is
negative.

12.1.18. setjmp.h

The setjmp and longjmp in this header file implement a primitive form of non-local jumps, which may
be used to handle exceptional situations. This facility is traditionally considered more portable than
signal .h

int setjmp(mp_buf Records its caller's environment in env and returns O.
env)

void longjmp(mp_buf Restores the environment previously saved with a call to setjmp().
env, int status)

698

Libraries

12.1.19. signal.h

Signals are possible asynchronous events that may require special processing. Each signal is named by
a number. The following signals are defined:

SIGINT 1 Receipt of an interactive attention signal

SIGILL 2 Detection of an invalid function message

SIGFPE 3 An erroneous arithmetic operation (for example, zero divide, overflow)
SIGSEGY 4 Aninvalid access to storage

SIGTERM 5 A termination request sent to the program

SIGABRT 6 Abnormal termination, such as is initiated by the abort function

The next function sends the signal sig to the program:

int rai se(int sig)

The next function determines how subsequent signals will be handled:
signalfunction *si gnal (int, signalfunction *);

The first argument specifies the signal, the second argument points to the signal-handler function or has
one of the following values:

S1G_DFL Default behavior is used
SIG_IGN The signal is ignored

The function returns the previous value of signalfunction for the specific signal, or SIG_ERR if an
error occurs.

12.1.20. stdarg.h

The facilities in this header file gives you a portable way to access variable arguments lists, such as
needed for as fprintf and vfprintf. va_copy is new in ISO C99. This header file contains the
following macros:

va_arg(va_list ap,type) Returns the value of the next argument in the variable argument list.
It's return type has the type of the given argument type. A next call to
this macro will return the value of the next argument.

va_copy(va_list dest, This macro duplicates the current state of src in dest, creating a
va_list src) second pointer into the argument list. After this call, va_arg() may be
used on src and dest independently.

va_end(va_list ap) This macro must be called after the arguments have been processed.
It should be called before the function using the macro 'va_start' is
terminated.

699

TASKING VX-toolset for TriCore User Guide

va_start(va_list ap, This macro initializes ap. After this call, each call to va_arg() will return

lastarg) the value of the next argument. In our implementation, va_l ist cannot
contain any bit type variables. Also the given argument lastarg must
be the last non-bit type argument in the list.

12.1.21. stdbool.h

This header file contains the following macro definitions. These names for boolean type and values are
consistent with C++. You are allowed to #undefine or redefine the macros below.

#define bool _Bool
#define true 1
#define false 0
#define _ bool_true_ false_are_defined 1

12.1.22. stddef.h
This header file defines the types for common use:

ptrdiff_t Signed integer type of the result of subtracting two pointers.
size_t Unsigned integral type of the result of the sizeof operator.
wchar_t Integer type to represent character codes in large character sets.

Besides these types, the following macros are defined:

NULL Expands to 0 (zero).
offsetof(_type, Expands to an integer constant expression with type size_t that is the offset
_member) in bytes of _member within structure type _type.

12.1.23. stdint.h

See Section 12.1.11, inttypes.h and stdint.h
12.1.24. stdio.h and wchar.h

Types

The header file stdio.h contains functions for performing input and output. A number of functions also
have a parallel wide character function or macro, defined in wchar . h. The header file wchar . h also
includes stdio.h.

In the C language, many /O facilities are based on the concept of streams. The stdio.h header file
defines the data type FI LE which holds the information about a stream. A FILE object is created with
the function fopen. The pointer to this object is used as an argument in many of the in this header file.
The FILE object can contain the following information:

* the current position within the stream

* pointers to any associated buffers

700

Libraries

 indications of for read/write errors

¢ end of file indication

The header file also defines type fpos_t as an unsigned long.

Macros
stdio.h Description
NULL Expands to 0 (zero).
BUFS1Z Size of the buffer used by the setbuf/setvbuf function: 512
EOF End of file indicator. Expands to -1.
WEOF End of file indicator. Expands to UINT_MAX (defined in Fimits.h)

NOTE: WEOF need not to be a negative number as long as its value does not

correspond to a member of the wide character set. (Defined in wchar _h).
FOPEN_MAX Number of files that can be opened simultaneously: 10
FILENAME_MAX Maximum length of a filename: 100
_I10FBF Expand to an integer expression, suitable for use as argument to the setvbuf function.
_IOLBF
_IONBF
L_tmpnam Size of the string used to hold temporary file names: 8 (tmpxxxxx)
TMP_MAX Maximum number of unique temporary filenames that can be generated: 0x8000
SEEK_CUR Expand to an integer expression, suitable for use as the third argument to the fseek
SEEK_END function.
SEEK_SET
stderr Expressions of type "pointer to FILE" that point to the FILE objects associated with
stdin standard error, input and output streams.
stdout
File access
stdio.h Description
fopen(nane, node) Opens a file for a given mode. Available modes are:

re read; open text file for reading
w write; create text file for writing;

if the file already exists, its contents is discarded

a append; open existing text file or

create new text file for writing at end of file
"r+" open text file for update; reading and writing
"w+" create text file for update; previous

contents if any is discarded
"a+'" append; open or create text file for update,
writes at end of file

(FSS implementation)

701

TASKING VX-toolset for TriCore User Guide

stdio.h Description

fclose(nane) Flushes the data stream and closes the specified file that was previously
opened with fopen. (FSS implementation)

fFlush(nane) If stream is an output stream, any buffered but unwritten date is written.
Else, the effect is undefined. (FSS implementation)

freopen(nane,node, Similar to fopen, but rather than generating a new value of type FILE *,

stream) the existing value is associated with a new stream. (FSS implementation)

setbuf(stream,buf f er) If bufferis NULL, buffering is turned off for the stream. Otherwise, setbuf

is equivalentto: (void) setvbuf(stream,buffer , 10FBF,BUFSIZ).

setvbuf(st reambuf f er ,node, Controls buffering for the stream; this function must be called before reading
si ze) or writing. Mode can have the following values:

_10FBF causes full buffering

_IOLBF causes line buffering of text files

__IONBF causes no huffering.

If buffer is not NULL, it will be used as a buffer; otherwise a buffer will be
allocated. size determines the buffer size.

Formatted input/output

The Format string of pri nt f related functions can contain plain text mixed with conversion specifiers.
Each conversion specifier should be preceded by a '%' character. The conversion specifier should be
built in order:

Flags (in any order):

- specifies left adjustment of the converted argument.

+ a number is always preceded with a sign character.
+ has higher precedence than space.

space a negative number is preceded with a sign, positive numbers with a space.
0 specifies padding to the field width with zeros (only for numbers).

specifies an alternate output form. For o, the first digit will be zero. For x or X, "0x" and "0X"
will be prefixed to the number. For e, E, f, g, G, the output always contains a decimal point,
trailing zeros are not removed.

A number specifying a minimum field width. The converted argument is printed in a field with at least
the length specified here. If the converted argument has fewer characters than specified, it will be
padded at the left side (or at the right when the flag '-' was specified) with spaces. Padding to numeric
fields will be done with zeros when the flag '0' is also specified (only when padding left). Instead of a
numeric value, also *' may be specified, the value is then taken from the next argument, which is
assumed to be of type int.

A period. This separates the minimum field width from the precision.

A number specifying the maximum length of a string to be printed. Or the number of digits printed after
the decimal point (only for floating-point conversions). Or the minimum number of digits to be printed

702

Libraries

for an integer conversion. Instead of a numeric value, also '*' may be specified, the value is then taken
from the next argument, which is assumed to be of type int.

« Alength modifier 'h', 'hh', 'I', 'II', L', '}, 'z" or 't'. 'h" indicates that the argument is to be treated as a short
orunsigned short. 'hh'indicates that the argument is to be treated as a char or unsigned char.
'I' should be used if the argument is a ong integer, 'llI' for a long long. 'L’ indicates that the argument
isa long double.'j' indicates a pointer to intmax_t or uintmax_t, 'z' indicates a pointerto size_t
and 't indicates a pointer to ptrdiff_t.

Flags, length specifier, period, precision and length modifier are optional, the conversion character is not.

The conversion character must be one of the following, if a character following '%' is not in the list, the
behavior is undefined:

Character Printed as

d,i int, signed decimal

o] int, unsigned octal

X, X int, unsigned hexadecimal in lowercase or uppercase respectively

u int, unsigned decimal

c int, single character (converted to unsigned char)

s char *, the characters from the string are printed until a NULL character is found. When the

given precision is met before, printing will also stop

f double

e E double

9,G double

a, A double

n int *, the number of characters written so far is written into the argument. This should be a
pointer to an integer in default memory. No value is printed.

p pointer

r, Ir __fract, __lIfract

R, IR __accum, __laccum

% No argument is converted, a '%' is printed.

printf conversion characters

All arguments to the scanf related functions should be pointers to variables (in default memory) of the
type which is specified in the format string.

The format string can contain :

» Blanks or tabs, which are skipped.

» Normal characters (not '%"), which should be matched exactly in the input stream.
» Conversion specifications, starting with a '%' character.

Conversion specifications should be built as follows (in order) :

703

TASKING VX-toolset for TriCore User Guide

* A" meaning that no assignment is done for this field.
* A number specifying the maximum field width.

» The conversion characters d, i, n, 0, u and x may be preceded by 'h' if the argument is a pointer to
short rather than int, or by 'hh' if the argument is a pointer to char, or by 'l' (letter ell) if the argument
is a pointer to long or by 'Il' for a pointer to long long, ' for a pointer to intmax_t or uintmax_t,
'z' for a pointer to size_t or 't' for a pointer to ptrdiff_t. The conversion characters e, f, and g
may be preceded by 'l'if the argument is a pointer to doubl e rather than float, and by 'L' for a pointer
toa long double.

A conversion specifier. *', maximum field width and length modifier are optional, the conversion character
is not. The conversion character must be one of the following, if a character following '%' is not in the
list, the behavior is undefined.

Length specifier and length modifier are optional, the conversion character is not. The conversion character
must be one of the following, if a character following '%' is not in the list, the behavior is undefined.

Character Scanned as

d int, signed decimal.

i int, the integer may be given octal (i.e. a leading 0 is entered) or hexadecimal (leading "0x"
or "0X"), or just decimal.

int, unsigned octal.

int, unsigned decimal.

int, unsigned hexadecimal in lowercase or uppercase.
single character (converted to unsigned char).

nw O X < O

char *, a string of non white space characters. The argument should point to an array of
characters, large enough to hold the string and a terminating NULL character.

f, F float

e E float

g,G float

a, A float

n int *, the number of characters written so far is written into the argument. No scanning is done.

p pointer; hexadecimal value which must be entered without 0x- prefix.

r, Ir _fract, _Ifract

R, IR __accum, __laccum

[...] Matches a string of input characters from the set between the brackets. A NULL character is
added to terminate the string. Specifying []...] includes the '] character in the set of scanning
characters.

".] Matches a string of input characters not in the set between the brackets. A NULL character

is added to terminate the string. Specifying ["]...] includes the ']’ character in the set.
% Literal '%', no assignment is done.

scanf conversion characters

704

Libraries

stdio.h wchar.h Description

fscanf(stream, fwscanf(st ream, Performs a formatted read from the given stream.

format, ...) format, ...) Returns the number of items converted
successfully. (FSS implementation)

scanf(format ,...) wscanf(format, ...) Performs aformatted read from stdin. Returns

sscanf(*s, fornmat,

-2

vfscanf(stream,
format , arg)

vscanf(f ormat , arg)
vsscanf(*s, format ,
arg)

fprintf(stream,
format, ...)

printf(format , ...)

sprintf(*s, format,
---)

snprintf(*s, n,
format, ...)

vfprintf(stream,
format , arg)

vprintf(format , arg)

vsprintf(*s, format ,
arg)

swscanf(*s, format ,

---)

vfwscanf(stream,
format , arg)

vwscanf(f or mat , ar g)

vswscanf(*s, f or mat ,
arg)

fwprintf(stream,
format, ...)

wprintf(format, ...)

swprintf(*s, n,
format, ...)

viwprintf(stream,
format , arg)

vwprintf(f or mat ,
arg)

vswprintf(*s,
format , arg)

the number of items converted successfully. (FSS
implementation)

Performs a formatted read from the string s.
Returns the number of items converted
successfully.

Same as fscanf/fwscanT, but extra arguments
are given as variable argument list arg. (See
Section 12.1.20, stdarg.h)

Same as sscanf/swscanf, but extra arguments
are given as variable argument list arg. (See
Section 12.1.20, stdarg.h)

Same as scanf/wscanT, but extra arguments
are given as variable argument list arg. (See
Section 12.1.20, stdarg.h)

Performs a formatted write to the given stream.
Returns EOF/WEOF on error. (FSS
implementation)

Performs a formatted write to the stream stdout.
Returns EOF/WEOF on error. (FSS
implementation)

Performs a formatted write to string s. Returns
EOF/WEOF on error.

Same as sprintf, but n specifies the maximum
number of characters (including the terminating
null character) to be written.

Same as fprintf/fwprintf, but extra
arguments are given as variable argument list
arg. (See Section 12.1.20, stdarg.h) (FSS
implementation)

Same as printf/wprintf, but extra arguments
are given as variable argument list arg. (See
Section 12.1.20, stdarg.h) (FSS implementation)

Same as sprintf/swprintf, but extra
arguments are given as variable argument list
arg. (See Section 12.1.20, stdarg.h)

705

TASKING VX-toolset for TriCore User Guide

Character input/output

stdio.h wchar.h

Description

fgetc(stream) fgetwc(stream)

getc(stream) getwc(stream)

getchar(stdin) getwchar(stdin)

fgets(*s, n, stream) fgetws(*s, n,
stream)

gets(*s, n, stdin)

ungetc(c, stream)
fputc(c, stream)
putc(c, stream)

putwc(c, stream)

putchar(c, stdout)

fputs(*s, stream)

puts(*s) -

Direct input/output

stdio.h

ungetwc(c, stream)

fputwc(c, stream)

putwchar(c, stdout)

fputws(*s, stream)

Description

Reads one character from stream. Returns the
read character, or EOF/WEOF on error. (FSS
implementation)

Same as fgetc/Fgetwc except that is
implemented as a macro.

(FSS implementation)

NOTE: Currently #defined as
getchar()/getwchar() because FILE I/O is
not supported. Returns the read character, or
EOF/WEOF on error.

Reads one character from the stdin stream.
Returns the character read or EOF/WEOF on
error. Implemented as macro.

(FSS implementation)

Reads at most the next n-1 characters from the
stream into array s until a newline is found.
Returns s or NULL or EOF/WEOF on error. (FSS
implementation)

Reads at most the next n-1 characters from the
stdin stream into array s. A newline is ignored.
Returns s or NULL or EOF/WEOF on error. (FSS
implementation)

Pushes character ¢ back onto the input stream.
Returns EOF/WEOF on error.

Put character c onto the given stream. Returns
EOF/WEOF on error. (FSS implementation)
Same as fpuc/fputwc except that is
implemented as a macro. (FSS implementation)

Put character c onto the stdout stream. Returns
EOF/WEOF on error.
Implemented as macro. (FSS implementation)

Writes string s to the given stream. Returns
EOF/WEOF on error. (FSS implementation)

Writes string s to the stdout stream. Returns
EOF/WEOF on error. (FSS implementation)

fread(ptr,size,nobj,stream) Reads nobj members of size bytes from the given stream into
the array pointed to by ptr. Returns the number of elements
successfully read. (FSS implementation)

706

Libraries

stdio.h Description

fwrite(ptr,size,nobj,stream) Writes nobj members of size bytes from to the array pointed to
by ptr to the given stream. Returns the number of elements
successfully written. (FSS implementation)

Random access

stdio.h Description

fseek(stream, of fset, Sets the position indicator for stream. (FSS implementation)
origin)

When repositioning a binary file, the new position origin is given by the following macros:

SEEK_SET 0 offset characters from the beginning of the file
SEEK_CUR 1 offset characters from the current position in the file
SEEK_END 2 offset characters from the end of the file

ftell(stream) Returns the current file position for stream, or -1L on error.
(FSS implementation)

rewind(st r ean) Sets the file position indicator for the stream to the beginning of the file. This
function is equivalent to:
(void) fseek(stream,OL,SEEK_SET);
clearerr(stream);
(FSS implementation)

fgetpos(stream,pos) Stores the current value of the file position indicator for stream in the object
pointed to by pos. (FSS implementation)

fsetpos(st r eam,pos) Positions st r eamat the position recorded by fgetpos in *pos. (FSS
implementation)

Operations on files

stdio.h Description

remove(fil e) Removes the named file, so that a subsequent attempt to open it fails. Returns a
non-zero value if not successful.

rename(ol d,new) Changes the name of the file from old name to new name. Returns a non-zero
value if not successful.

tmpFileQ) Creates a temporary file of the mode "wb+" that will be automatically removed when
closed or when the program terminates normally. Returns a fi le pointer.

tmpnam(buffer) Creates new file names that do not conflict with other file names currently in use.
The new file name is stored in a buffer which must have room for L_tmpnam
characters. Returns a pointer to the temporary name. The file names are created
in the current directory and all start with "tmp". At most TMP_MAX unique file names
can be generated.

707

TASKING VX-toolset for TriCore User Guide

Error handling

stdio.h Description

clearerr(stream) Clears the end of file and error indicators for stream.

ferror(stream) Returns a non-zero value if the error indicator for stream is set.
feof(stream) Returns a non-zero value if the end of file indicator for stream is set.
perror(*s) Prints s and the error message belonging to the integer errno. (See

Section 12.1.6, errno.h)

12.1.25. stdlib.h and wchar.h

The header file stdlib . h contains general utility functions which fall into the following categories (Some
have parallel wide-character, declared in wchar _h)

* Numeric conversions

* Random number generation
* Memory management

» Environment communication
» Searching and sorting

* Integer arithmetic

» Multibyte/wide character and string conversions.

Macros

EXIT_SUCCES Predefined exit codes that can be used in the exit function.
0

EXIT_FAILURE

1

RAND_MAX Highest number that can be returned by the rand/srand function.
32767

MB_CUR_MAX 1 Maximum number of bytes in a multibyte character for the extended character set
specified by the current locale (category LC_CTYPE, see Section 12.1.15, locale.h).

Numeric conversions

The following functions convert the initial portion of a string *s to a double, int, long int and long
long int value respectively.

double atof(*s)
int atoi(*s)
long atol (*s)

long long atoll(*s)

708

Libraries

The following functions convert the initial portion of the string *s to a float, double and long double value
respectively. *endp will point to the first character not used by the conversion.

stdlib.h wchar.h
float strtof(*s,**endp) float westof(*s,**endp)
double strtod(*s,**endp) double westod(*s, **endp)

long double strtold(*s,**endp)

long double wcstold(*s,**endp)

The following functions convert the initial portion of the string *s to a long, long long, unsigned
long and unsigned long long respectively. Base specifies the radix. *endp will point to the first

character not used by the conversion.

stdlib.h

wchar.h

long strtol (*s,**endp,base)
long long strtoll
(*s,**endp, base)
unsigned long strtoul
(*s,**endp,base)
unsigned long long strtoull
(*s,**endp, base)

Random number generation

long westol (*s,**endp,base)
long long wcstoll
(*s,**endp,base)
unsigned long wcstoul
(*s,**endp,base)
unsigned long long wcstoull
(*s,**endp,base)

rand

Returns a pseudo random integer in the range 0 to RAND_MAX.

srand(seed) Same as rand but uses seed for a new sequence of pseudo random numbers.

Memory management

malloc(si ze)

calloc(nobj ,si ze)

free(*ptr)

realloc(*ptr ,si ze)

Allocates space for an object with size size.
The allocated space is not initialized. Returns a pointer to the allocated space.

Allocates space for n objects with size size.

The allocated space is initialized with zeros. Returns a pointer to the allocated
space.

Deallocates the memory space pointed to by ptr which should be a pointer
earlier returned by the mal loc or cal loc function.

Deallocates the old object pointed to by ptr and returns a pointer to a new
object with size size, while preserving its contents.

If the new size is smaller than the old size, some contents at the end of the
old region will be discarded. If the new size is larger than the old size, all of
the old contents are preserved and any bytes in the new object beyond the
size of the old object will have indeterminate values.

709

TASKING VX-toolset for TriCore User Guide

Environment communication

abort()
atexit(*func)

exit(status)

_Exit(status)

getenv(*s)

system(*s)

Causes abnormal program termination. If the signal SIGABRT is caught, the
signal handler may take over control. (See Section 12.1.19, signal.h).

func points to a function that is called (without arguments) when the program
normally terminates.

Causes normal program termination. Acts as if main() returns with status as
the return value. Status can also be specified with the predefined macros
EXIT_SUCCES or EXIT_FAILURE.

Same as exit, but not registered by the atexit function or signal handlers
registered by the signal function are called.

Searches an environment list for a string s. Returns a pointer to the contents
of s.

NOTE: this function is not implemented because there is nho OS.

Passes the string s to the environment for execution.
NOTE: this function is not implemented because there is no OS.

Searching and sorting

bsearch(*key,
*base, n, si ze,
*cnp)

gsort(*base, n,
size, *cnmp)

Integer arithmetic

int abs()
long labs(j)
long long llabs()

div_t div(x,y)
Idiv_t Idiv(x,y)
1idiv_t 11div(x,y)

This function searches in an array of n members, for the object pointed to by
key. The initial base of the array is given by base. The size of each member
is specified by size. The given array must be sorted in ascending order,
according to the results of the function pointed to by cmp. Returns a pointer
to the matching member in the array, or NULL when not found.

This function sorts an array of n members using the quick sort algorithm. The
initial base of the array is given by base. The size of each member is specified
by size. The array is sorted in ascending order, according to the results of the
function pointed to by cmp.

Compute the absolute value of an int, long int, and long long intj
respectively.

Compute x/y and x%y in a single operation. X and y have respectively type
int, long intand long long int.The resultis stored in the members
quot and rem of struct div_t, Idiv_t and 11div_t which have the
same types.

Multibyte/wide character and string conversions

mblen(*s,n)

mbtowc(*pwc,*s,n)

710

Determines the number of bytes in the multi-byte character pointed to by s. At
most n characters will be examined. (See also mbrlen in Section 12.1.29,
wchar.h).

Converts the multi-byte character in s to a wide-character code and stores it
in pwc. At most n characters will be examined.

Libraries

wctomb(*s ,wc) Converts the wide-character wc into a multi-byte representation and stores it
in the string pointed to by s. At most MB_CUR_MAX characters are stored.

mbstowcs(*pwcs ,*s ,n) Converts a sequence of multi-byte characters in the string pointed to by s into
a sequence of wide characters and stores at most n wide characters into the
array pointed to by pwcs. (See also mbsrtowcs in Section 12.1.29, wchar.h).

wcstombs(*s ,*pwes ,n) Converts a sequence of wide characters in the array pointed to by pwcs into
multi-byte characters and stores at most n multi-byte characters into the string
pointed to by s. (See also wcsrtowmb in Section 12.1.29, wchar.h).

12.1.26. string.h and wchar.h

This header file provides numerous functions for manipulating strings. By convention, strings in C are
arrays of characters with a terminating null character. Most functions therefore take arguments of type
*char. However, many functions have also parallel wide-character functions which take arguments of
type *wchar_t. These functions are declared in wchar . h.

Copying and concatenation functions

string.h wchar.h Description

memcpy(*s1,*s2,n) wmemcpy(*sl,*s2,n) Copies n characters from *s2 into *s1 and returns *s1. If
*s1 and *s2 overlap the result is undefined.

memmove(*s1,*s2,n) wnemmove(*sl,*s2,n) Same as memcpy, but overlapping strings are handled
correctly. Returns *s1.

strcpy(*sl,*s2) wecscpy(*sl,*s2) Copies *s2 into *s1 and returns *sl. If *s1 and *s2 overlap
the result is undefined.

strncpy(*s1,*s2,n) wesnepy(*sl,*s2,n) Copies not more than n characters from *s2 into *s1 and
returns *s1. If *s1 and *s2 overlap the result is undefined.

strcat(*sl,*s2) wcscat(*sl,*s2) Appends a copy of *s2 to *s1 and returns *s1. If *s1 and
*s2 overlap the result is undefined.

strncat(*s1,*s2,n) wesncat(*sl,*s2,n) Appends not more than n characters from *s2 to *s1 and
returns *sl. If *s1 and *s2 overlap the result is undefined.

Comparison functions

string.h wchar.h Description

memcmp(*s1,*s2,n) wmemcmp(*sl,*s2,n) Compares the first n characters of *s1 to the first n
characters of *s2. Returns < 0 if *s1 < *s2, 0 if *s1 = = *s2,
or > 0 if *s1 > *s2.

stremp(*sl,*s2) wescemp(*sl,*s2) Compares string *s1 to *s2. Returns < 0 if *s1 < *s2, 0 if *s1
==%*s2, or > 0 if *s1 > *s2.

strncmp(*s1,*s2,n) wesnemp(*sl,*s2,n) Compares the first n characters of *s1 to the first n
characters of *s2. Returns < 0 if *s1 < *s2, 0 if *s1 = = *s2,
or > 0 if *s1 > *s2.

711

TASKING VX-toolset for TriCore User Guide

string.h wchar.h

Description

strcoll(*s1,*s2) wcscoll(*s1,*s2)

Performs a local-specific comparison between string *s1
and string *s2 according to the LC_COLLATE category of
the current locale. Returns < 0 if *s1 < *s2, 0 if *s1 = = *s2,
or > 0 if *s1 > *s2. (See Section 12.1.15, locale.h)

strxfrm(*s1,*s2,n) wesxfrm(*sl1,*s2,n) Transforms (a local) string *s2 so that a comparison

Search functions

string.h wchar.h

between transformed strings with strcmp gives the same
result as a comparison between non-transformed strings
with strcol . Returns the transformed string *s1.

Description

memchr(*s,c,n) wmemchr(*s,c,n)

strchr(*s,c) wecschr(*s,c)

strrchr(*s,c) wesrchr(*s,c)

strspn(*s,*set) wcsspn(*s,*set)

strcspn(*s,*set) wescspn(*s,*set)

strpbrk(*s,*set) wcspbrk(*s,*set)

strstr(*s,*sub) wcsstr(*s,*sub)

strtok(*s,*dl m) wcstok(*s,*dl m)

Miscellaneous functions

string.h wchar.h

Checks the first n characters of *s on the occurrence of
character c. Returns a pointer to the found character.

Returns a pointer to the first occurrence of character c in
*s or the null pointer if not found.

Returns a pointer to the last occurrence of character ¢ in *s
or the null pointer if not found.

Searches *s for a sequence of characters specified in *set.
Returns the length of the first sequence found.

Searches *s for a sequence of characters not specified in
*set. Returns the length of the first sequence found.

Same as strspn/wcsspn but returns a pointer to the first
character in *s that also is specified in *set.

Searches for a substring *sub in *s. Returns a pointer to the
first occurrence of *sub in *s.

A sequence of calls to this function breaks the string *s into
a sequence of tokens delimited by a character specified in
*dlm. The token found in *s is terminated with a null
character. Returns a pointer to the first position in *s of the
token.

Description

memset(*s,c,n) wmemset(*s,c,n)
strerror(errno) -

strien(*s) weslen(*s)

712

Fills the first n bytes of *s with character ¢ and returns *s.

Typically, the values for errno come from int errno. This
function returns a pointer to the associated error message.
(See also Section 12.1.6, errno.h)

Returns the length of string *s.

Libraries

12.1.27. time.h and wchar.h

The header file time.h provides facilities to retrieve and use the (calendar) date and time, and the
process time. Time can be represented as an integer value, or can be broken-down in components. Two
arithmetic data types are defined which are capable of holding the integer representation of times:

clock_t unsigned long long
time_t unsigned long

The type struct tm below is defined according to ISO C99 with one exception: this implementation
does not support leap seconds. The struct tmtype is defines as follows:

struct tm

{
int tm_sec; /* seconds after the minute - [0, 59] */
int tm _min; /* minutes after the hour - [0, 59] */
int tm_hour; /* hours since midnight - [0, 23] */
int tm_mday; /* day of the month - [1, 31] */
int tm_mon; /* months since January - [0, 11] */
int tm_year; /* year since 1900 */
int tm_wday; /* days since Sunday - [0, 6] */
int tm_yday; /* days since January 1 - [0, 365] */
int tm_isdst; /* Daylight Saving Time flag */

}:

Time manipulation

clock Returns the application's best approximation to the processor time used by the
program since it was started. This low-level routine is not implemented because it
strongly depends on the hardware. To determine the time in seconds, the result of
clock should be divided by the value defined by CLOCKS_PER_SEC.

difftime(t 1,t 0) Returns the difference t1-t0 in seconds.

mktime(tm *tp) Converts the broken-down time in the structure pointed to by tp, to a value of type
time_t. The return value has the same encoding as the return value of the time
function.

time(*tiner) Returns the current calendar time. This value is also assigned to *timer.
Time conversion

asctime(tm *t p) Converts the broken-down time in the structure pointed to by tp into a string in the
form Mon Jan 22 16:15:14 2007\n\O0. Returns a pointer to this string.

ctime(*ti ner) Converts the calender time pointed to by timer to local time in the form of a string.
This is equivalent to: asctime(localtime(timer))

gmtime(*ti mer) Converts the calender time pointed to by timer to the broken-down time, expressed
as UTC. Returns a pointer to the broken-down time.

localtime(*ti ner) Converts the calendar time pointed to by timer to the broken-down time, expressed
as local time. Returns a pointer to the broken-down time.

713

TASKING VX-toolset for TriCore User Guide

Formatted time
The next function has a parallel function defined in wchar . h:

time.h wchar.h

strftime(*s,smax,*f nt ,tm wstrftime(*s,smax,*f nt ,tm *t p)
*tp)

Formats date and time information from struct tm *tp into *s according to the specified format *fmt.
No more than smax characters are placed into *s. The formatting of strftime is locale-specific using
the LC_TIME category (see Section 12.1.15, locale.h).

You can use the next conversion specifiers:

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

%c locale-specific date and time representation (same as %a %b %e %T %Y)
%C last two digits of the year

%d day of the month (01-31)

%D same as %m/%d/%y

%e day of the month (1-31), with single digits preceded by a space
%F 1SO 8601 date format: %Y-%m-%d

%g last two digits of the week based year (00-99)

%G week based year (0000—9999)

%h same as %b

%H hour, 24-hour clock (00-23)

%I hour, 12-hour clock (01-12)

%j day of the year (001-366)

%m month (01-12)

%M minute (00-59)

%n replaced by newline character

%p locale's equivalent of AM or PM

%r locale's 12-hour clock time; same as %1 -%M:%S %p

%R same as %H : %M

%S second (00-59)

%t replaced by horizontal tab character

%T 1SO 8601 time format: %H - %M : %S

%u 1SO 8601 weekday number (1-7), Monday as first day of the week

714

Libraries

%U week number of the year (00-53), week 1 has the first Sunday
%V 1SO 8601 week number (01-53) in the week-based year

%w weekday (0-6, Sunday is 0)

%W week number of the year (00-53), week 1 has the first Monday
%x local date representation

%X local time representation

%y year without century (00-99)

%Y year with century

%z 1SO 8601 offset of time zone from UTC, or nothing

%Z time zone name, if any

%% %

12.1.28. unistd.h

The file unistd.h contains standard UNIX I/O functions. These functions are all implemented using file
system simulation. Except for Istat and fstat which are not implemented. This header file is not
defined in ISO C99.

access(*nane,node) Use file system simulation to check the permissions of a file on the host. mode
specifies the type of access and is a bit pattern constructed by a logical OR of
the following values:

R_OK Checks read permission.

W_OK Checks write permission.

X_OK Checks execute (search) permission.
F_OK Checks to see if the file exists.

(FSS implementation)

chdir(*pat h) Use file system simulation to change the current directory on the host to the
directory indicated by path. (FSS implementation)

close(fd) File close function. The given file descriptor should be properly closed. This
function calls _close(). (FSS implementation)

getcwd(*buf ,si ze) Use file system simulation to retrieve the current directory on the host. Returns
the directory name. (FSS implementation)

Iseek(f d,of f set ,whence) Moves read-write file offset. Calls _Iseek(). (FSS implementation)

read(f d,*buf f ,cnt) Reads a sequence of characters from a file. This function calls _read(). (FSS
implementation)

stat(*nane,*buf f) Use file system simulation to stat() a file on the host platform. (FSS
implementation)

Istat(*nane,*buf f) This function is identical to stat(), except in the case of a symbolic link, where
the link itself is 'stat’-ed, not the file that it refers to. (Not implemented)

fstat(fd,*buff) This function is identical to stat(), except that it uses a file descriptor instead
of a name. (Not implemented)

715

TASKING VX-toolset for TriCore User Guide

unlink(*nane) Removes the named file, so that a subsequent attempt to open it fails. (FSS
implementation)

write(fd,*buf f ,cnt) Write a sequence of characters to a file. Calls _write(). (FSS implementation)

12.1.29. wchar.h

Many functions in wchar . h represent the wide-character variant of other functions so these are discussed
together. (See Section 12.1.24, stdio.h and wchar.h, Section 12.1.25, stdlib.h and wchar.h, Section 12.1.26,
string.h and wchar.h and Section 12.1.27, time.h and wchar.h).

The remaining functions are described below. They perform conversions between multi-byte characters
and wide characters. In these functions, ps points to struct mbstate_t which holds the conversion state
information necessary to convert between sequences of multibyte characters and wide characters:

typedef struct
{
wchar_t wc_value; /* wide character value solved
so far */
unsigned short n_bytes; /* number of bytes of solved
multibyte */
unsigned short encoding; /* encoding rule for wide
character <=> multibyte
conversion */
} mbstate_t;

When multibyte characters larger than 1 byte are used, this struct will be used to store the conversion
information when not all the bytes of a particular multibyte character have been read from the source. In
this implementation, multi-byte characters are 1 byte long (MB_CUR_MAX and MB_LEN_MAX are defined
as 1) and this will never occur.

mbsinit(*ps) Determines whether the object pointed to by ps, is an initial conversion
state. Returns a non-zero value if so.

mbsrtovcs(pwes ,**sr c,n,*ps) Restartable version of mbstowcs. See Section 12.1.25, stdlib.h and
wchar.h. The initial conversion state is specified by ps. The input sequence
of multibyte characters is specified indirectly by src.

wesrtombs(*s ,**sr c,n,*ps) Restartable version of wcstombs. See Section 12.1.25, stdlib.h and
wchar.h. The initial conversion state is specified by ps. The input wide
string is specified indirectly by src.

mbrtowc(*pwc,*s ,n,*ps) Converts a multibyte character *s to a wide character *pwc according to
conversion state ps. See also mbtowc in Section 12.1.25, stdlib.h and

wchar.h.

wecrtomb(*s ,wc, *ps) Converts a wide character wc to a multi-byte character according to
conversion state ps and stores the multi-byte character in *s.

btowc(c) Returns the wide character corresponding to character c. Returns WEOF
on error.

716

Libraries

wctob(c) Returns the multi-byte character corresponding to the wide character c.
The returned multi-byte character is represented as one byte. Returns
EOF on error.

mbrilen(*s,n,*ps) Inspects up to n bytes from the string *s to see if those characters
represent valid multibyte characters, relative to the conversion state held
in *ps.

12.1.30. wctype.h

Most functions in wctype . h represent the wide-character variant of functions declared in ctype.h and
are discussed in Section 12.1.4, ctype.h and wctype.h. In addition, this header file provides extensible,
locale specific functions and wide character classification.

wctype(*property) Constructs a value of type wctype_t that describes a class of wide characters
identified by the string *property. If property identifies a valid class of wide characters
according to the LC_TYPE category (see Section 12.1.15, locale.h) of the current
locale, a non-zero value is returned that can be used as an argument in the
iswctype function.

iswctype(we ,desc) Tests whether the wide character wc is a member of the class represented by
wctype_t desc. Returns a non-zero value if tested true.

Function Equivalent to locale specific test

iswalnum(we) iswctype(wc,wctype(*"alnum™))
iswalpha(wc) iswctype(wc,wctype(*'alpha'))
iswcntri(we) iswctype(wc,wctype('cntrl™))
iswdigit(we) iswctype(wc,wctype(*'digit"))
iswgraph(wc) iswctype(wc,wctype(*'graph™))
iswlower(we) iswctype(wc,wctype(*'lower™))
iswprint(we) iswctype(wc,wctype(''print'))
iswpunct(wc) iswctype(wc,wctype(*'punct™))
iswspace(wc) iswctype(wc,wctype(‘'space™))
iswupper(we) iswctype(wc,wctype(*'upper™))
iswxditig(we) iswctype(wc,wctype(*'xdigit'™))

wctrans(Cproperty) Constructs a value of type wctype_t that describes a mapping between wide
characters identified by the string *property. If property identifies a valid mapping
of wide characters according to the LC_TYPE category (see Section 12.1.15,
locale.h) of the current locale, a non-zero value is returned that can be used as an
argument in the towctrans function.

towctrans(we ,desc) Transforms wide character wc into another wide-character, described by desc.

Function Equivalent to locale specific transformation

towlower(we) towctrans(wec ,wctrans(*"tolower™)

717

TASKING VX-toolset for TriCore User Guide

Function Equivalent to locale specific transformation

towupper(we) towctrans(wec ,wctrans('"toupper')

12.2. C Library Reentrancy

Some of the functions in the C library are reentrant, others are not. The table below shows the functions
in the C library, and whether they are reentrant or not. A dash means that the function is reentrant. Note
that some of the functions are not reentrant because they set the global variable 'errno’ (or call other
functions that eventually set 'errno’). If your program does not check this variable and errno is the only
reason for the function not being reentrant, these functions can be assumed reentrant as well.

The explanation of the cause why a function is not reentrant sometimes refers to a footnote because the
explanation is to lengthy for the table.

Function Not reentrant because

_close Uses global File System Simulation buffer, _dbg_request

_doflt Uses I/0 functions which modify iob[]. See (1).

_doprint Uses indirect access to static iob[] array. See (1).

_doscan Uses indirect access to iob[] and calls ungetc (access to local static
ungetc]] buffer). See (1).

_Exit See exit.

_Filbuf Uses iob[], which is not reentrant. See (1).

_Flsbuf Uses iob[]. See ().

_getflt Uses iob[]. See (1).

_iob Defines static iob[]. See (1).

_Iseek Uses global File System Simulation buffer, _dbg_request

_open Uses global File System Simulation buffer, _dbg_request

_read Uses global File System Simulation buffer, _dbg_request

_unlink Uses global File System Simulation buffer, _dbg_request

_write Uses global File System Simulation buffer, _dbg_request

abort Calls exit

abs labs llabs
access

acos acosfT acosl
acosh acoshf acoshl
asctime

asin asinf asinl
asinh asinhf asinhl
atan atanf atanl
atan2 atan2f atan2l

718

Uses global File System Simulation buffer, _dbg_request
Sets errno.

Sets errno via calls to other functions.

asctime defines static array for broken-down time string.
Sets errno.

Sets errno via calls to other functions.

Function

Libraries

Not reentrant because

atanh atanhf atanhl
atexit

atof

atoi

atol

bsearch

btowc

cabs cabsf cabsl

cacos cacosft cacosl
cacosh cacosh cfacoshl
calloc

carg cargf cargl

casin casinf casinl
casinh casinh cfasinhl
catan catanf catanl
catanh catanhf catanhl
cbrt cbrtf cbrtl

ccos ccosf ccosl

ccosh ccoshf ccoshl
ceil ceilf ceill

cexp cexpf cexpl

chdir

cimag cimagf cimagl
cleanup

clearerr

clock

clog clogf clogl

close

conj conjf conjl

copysign copysignf
copysignl

cos cosf cosl
cosh coshf coshl

cpow cpowf cpowl

Sets errno via calls to other functions.

atexit defines static array with function pointers to execute at exit of
program.

Sets errno via calls to other functions.

Sets errno via calls to other functions.

Sets errno via calls to other functions.

calloc uses static buffer management structures. See malloc (5).
Sets errno via calls to other functions.

Sets errno via calls to other functions.

Sets errno via calls to other functions.

Sets errno via calls to other functions.

(Not implemented)

Sets errno via calls to other functions.

Sets errno via calls to other functions.

Sets errno via calls to other functions.

Uses global File System Simulation buffer, _dbg_request
Calls fclose. See (1)

Modifies iob[]. See (1)

Uses global File System Simulation buffer, _dbg_request
Sets errno via calls to other functions.

Calls _close

cosh calls exp(), which sets errno. If errno is discarded, cosh is
reentrant.

Sets errno via calls to other functions.

719

TASKING VX-toolset for TriCore User Guide

Function

Not reentrant because

cproj cprojf cprojl
creal crealf creall
csin csinf csinl
csinh csinhf csinhl
csqgrt csqrtf csqrtl
ctan ctanf ctanl
ctanh ctanhf ctanhl
ctime

difftime

div Idiv Ildiv

erf erfl erff

erfc erfcf erfcl
exit

exp expf expl
exp2 exp2f exp2l
expml expmlf expmll
fabs fabsf fabsl
fclose

fdim fdimf fdiml
feclearexcept
fegetenv
fegetexceptflag
fegetround
feholdexept
feof
feraiseexcept
ferror

fesetenv
fesetexceptflag
fesetround
fetestexcept
feupdateenv
fflush

fgetc fgetwc

720

Sets errno via calls to other functions.
Sets errno via calls to other functions.
Sets errno via calls to other functions.
Sets errno via calls to other functions.
Sets errno via calls to other functions.
Calls asctime

(Not implemented)
(Not implemented)

Calls fclose indirectly which uses iob[] calls functions in _atexit
array. See (1). To make exit reentrant kernel support is required

Sets errno.

(Not implemented)

(Not implemented)

Uses values in iob[]. See (1).
(Not implemented)

(Not implemented)

(Not implemented)

(Not implemented)

(Not implemented)

(Not implemented)

Uses values in iob[]. See (1).
(Not implemented)

Uses values in iob[]. See (1).
(Not implemented)

(Not implemented)

(Not implemented)

(Not implemented)

(Not implemented)
Modifies iob[]. See (1).

Uses pointer to iob[]. See (1).

Function

Libraries

Not reentrant because

fgetpos

fgets fgetws

floor floorf floorl
fma fmaf fmal

fmax fmaxf fmaxl
fmin fminf fminl
fmod fmodf fmodl
fopen

fpclassify

fprintf fwprintf
fputc fputwc

fputs fputws

fread

free

freopen

frexp frexpf frexpl
fscanf fwscanf
fseek

fsetpos

fstat

ftell

fwrite

getc getwc

getchar getwchar
getcwd

getenv

gets getws

gmtime

hypot hypotf hypotl
ilogb ilogbf ilogbl
imaxabs

imaxdiv

isalnum iswalnum
isalpha iswalpha

isascil iswascii

Sets the variable errno and uses pointer to iob[]. See (1) / (2).
Uses iob[]. See (1).
(Not implemented)
(Not implemented)
(Not implemented)

Uses iob[] and calls malloc when file open for buffered 10. See (1)
Uses iob[]. See (1).

Uses iob[]. See (1).

Uses iob[]. See (1).

Calls fgetc. See (1).

free uses static buffer management structures. See malloc (5).
Modifies iob[]. See (1).

Uses iob[]. See (1)

Uses iob[] and calls _Iseek. Accesses ungetc|] array. See (1).
Uses iob[] and sets errno. See (1) / (2).

(Not implemented)

Uses iob[] and sets errno. Calls _Iseek. See (1) / (2).

Uses iob[]. See (2).

Uses iob[]. See (1).

Uses iob[]. See (1).

Uses global File System Simulation buffer, _dbg_request
Skeleton only.

Uses iob[]. See (2).

gmtime defines static structure

Sets errno via calls to other functions.

(Not implemented)

721

TASKING VX-toolset for TriCore User Guide

Function

Not reentrant because

iscntrl iswcntrl
isdigit iswdigit
isfinite

isgraph iswgraph
isgreater
isgreaterequal
isinf

isless

islessequal
islessgreater
islower iswlower
isnan

isnormal

isprint iswprint
ispunct iswpunct
isspace iswspace
isunordered

isupper iswupper
iswalnum

iswalpha

iswcntrl

iswctype

iswdigit

iswgraph

iswlower

iswprint

iswpunct

iswspace

iswupper

iswxditig

isxdigit iswxdigit
lIdexp ldexpf Idexpl
lIgamma lgammaf Igammal
Ilrint Irintf Irintl
I1round Ilroundf Ilroundl

722

Sets errno. See (2).
(Not implemented)
(Not implemented)

(Not implemented)

Libraries

Function Not reentrant because
localeconv N.A.; skeleton function
localtime -

log logf logl

1og10 loglOf logl0l
loglp loglpf loglpl
log2 log2f log2l
logb logbf logbl
longjmp

Irint Irintf Irintl
Iround lroundf Iroundl
Iseek

Istat

malloc

mblen

mbrlen

mbrtowc

mbsinit

mbsrtowcs

mbstowcs

mbtowc

memchr wmemchr
memcmp wmemcmp
memcpy wmemcpy
memmove wmemmove
memset wmemset
mktime

modf modff modfl
nan nanf nanl

nearbyint nearbyintf
nearbyintl

nextafter nextafterf
nextafterl

nexttoward nexttowardf
nexttowardl

offsetof
open

Sets errno. See (2).

Sets errno via calls to other functions.
(Not implemented)

(Not implemented)

(Not implemented)

(Not implemented)

(Not implemented)

Calls _Iseek

(Not implemented)

Needs kernel support. See (5).
N.A., skeleton function

Sets errno.

Sets errno.

Sets errno.

N.A., skeleton function

N.A., skeleton function

(Not implemented)
(Not implemented)

(Not implemented)

(Not implemented)

Calls _open

723

TASKING VX-toolset for TriCore User Guide

Function Not reentrant because

perror Uses errno. See (2)

pow powf powl Sets errno. See (2)

printf wprintf Uses iob[]. See (1)

putc putwc Uses iob[]. See (1)

putchar putwchar Uses iob[]. See (1)

puts Uses iob[]. See (1)

gsort -

raise Updates the signal handler table

rand Uses static variable to remember latest random number. Must
diverge from ISO C standard to define reentrant rand. See (4).

read Calls _read

realloc See malloc (5).

remainder remainderf (Not implemented)

remainderl

remove Uses global File System Simulation buffer, _dbg_request

remquo remquof remquol (Not implemented)

rename Uses global File System Simulation buffer, _dbg_request

rewind Eventually calls _Iseek

rint rintf rintl (Not implemented)

round roundf roundl (Not implemented)

scalbln scalbInf scalblnl

scalbn scalbnf scalbnl -

scanf wscanf Uses iob[], calls _doscan. See (1).
setbuf Sets iob[]. See (1).

setjmp -

setlocale N.A.; skeleton function

setvbuf Sets iob and calls malloc. See (1) / (5).
signal Updates the signal handler table
signbit -

sin sinf sinl -

sinh sinhf sinhl Sets errno via calls to other functions.
snprintf swprintf Sets errno. See (2).

sprintf Sets errno. See (2).

sqrt sqrtf sqrtl Sets errno. See (2).

srand See rand

sscanf swscanf Sets errno via calls to other functions.

724

Libraries

Function Not reentrant because

stat Uses global File System Simulation buffer, _dbg_request
strcat wcscat -
strchr wcschr -
strcmp wcscmp -
strcoll wcscoll -
strcpy wcscpy -
strcspn wcscspn -
strerror -
strftime wstrftime -
strlen wcslen -
strncat wcsncat -
strncmp wcsncmp -
strncpy wcsncpy -
strpbrk wcspbrk -
strrchr wcsrchr -
strspn wcsspn -
strstr wcsstr -
strtod wcstod -
strtof wcstof -

strtoimax Sets errno via calls to other functions.

strtok wcstok strtok saves last position in string in local static variable. This function
is not reentrant by design. See (4).

strtol wcstol Sets errno. See (2).

strtold wcstold -

strtoul wcstoul Sets errno. See (2).

strtoull wcstoull Sets errno. See (2).

strtoumax Sets errno via calls to other functions.

strxfrm wcsxfrm -

system N.A; skeleton function

tan tanf tanl Sets errno. See (2).

tanh tanhf tanhl Sets errno via call to other functions.

tgamma tgammaf tgammal (Not implemented)

time Uses static variable which defines initial start time
tmpfile Uses iob[]. See (1).

725

TASKING VX-toolset for TriCore User Guide

Function Not reentrant because

tmpnam Uses local buffer to build filename.
Function can be adapted to use user buffer. This makes the function
non ISO C. See (4).

toascii -

tolower -

toupper -

towctrans -

towlower -

towupper -

trunc truncf truncl

ungetc ungetwc

unlink

vfprintf vfwprintf
vfscanf vfwscanf
vprintf vwprintf
vscanf vwscanf
vsprintf vswprintf
vsscanf vswscanf
wcrtomb

wcsrtombs
wcstoimax

wcstombs

wcstoumax

wctob

wctomb

wctrans

wctype

write

Table: C library reentrancy

(Not implemented)

Uses static buffer to hold unget characters for each file. Can be
moved into iob structure. See (1).

Uses global File System Simulation buffer, _dbg_request
Uses iob[]. See (1).

Calls _doscan

Uses iob[]. See (2).

Calls _doscan

Sets errno.

Sets errno.

Sets errno.

Sets errno.

Sets errno via calls to other functions.
N.A.; skeleton function

Sets errno via calls to other functions.
N.A.; skeleton function

Calls _write

Several functions in the C library are not reentrant due to the following reasons:

* The iob[] structure is static. This influences all 1/0O functions.

» The ungetc[] array is static. This array holds the characters (one for each stream) when ungetc()

is called.

» The variable errno is globally defined. Numerous functions read or modify errno

726

Libraries

» _doprint and _doscan use static variables for e.g. character counting in strings.
» Some string functions use locally defined (static) buffers. This is prescribed by ANSI.
« mal loc uses a static heap space.

The following description discusses these items into more detail. The numbers at the begin of each
paragraph relate to the number references in the table above.

(1) iob structures

The I/O part of the C library is not reentrant by design. This is mainly caused by the static declaration of
the 1ob[] array. The functions which use elements of this array access these elements via pointers (
FILE *).

Building a multi-process system that is created in one link-run is hard to do. The C language scoping
rules for external variables make it difficult to create a private copy of the 1ob[] array. Currently, the
iob[] array has external scope. Thus it is visible in every module involved in one link phase. If these
modules comprise several tasks (processes) in a system each of which should have its private copy of
iob[], itis apparent that the iob[] declaration should be changed. This requires adaptation of the
library to the multi-tasking environment. The library modules must use a process identification as an index
for determining which iob[] array to use. Thus the library is suitable for interfacing to that kernel only.

Another approach for the iob[] declaration problem is to declare the array static in one of the modules
which create a task. Thus there can be more than one 1ob[] array is the system without having conflicts
at link time. This brings several restrictions: Only the module that holds the declaration of the static iob[]
can use the standard file handles stdin, stdout and stderr (which are the first three entries in iob[]).
Thus all I/O for these three file handles should be located in one module.

(2) errno declaration

Several functions in the C library set the global variable errno. After completion of the function the user
program may consult this variable to see if some error occurred. Since most of the functions that set
errno already have a return type (this is the reason for using errno) it is not possible to check successful
completion via the return type.

The library routines can set errno to the values defined in errno.h. See the file errno.h for more
information.

errno can be set to ERR_FORMAT by the print and scan functions in the C library if you specify illegal
format strings.

errno will never be set to ERR_NOLONG or ERR_NOPOINT since the C library supports long and
pointer conversion routines for input and output.

errno can be set to ERANGE by the following functions: exp(), strtol (), strtoul () and tan().
These functions may produce results that are out of the valid range for the return type. If so, the result of
the function will be the largest representable value for that type and errno is set to ERANGE.

errno is set to EDOM by the following functions: acos(), asin(), 1og(), pow() and sqrt(). If the
arguments for these functions are out of their valid range (e.g. sqrt(-1)), errno is set to EDOM.

727

TASKING VX-toolset for TriCore User Guide

errno can be setto ERR_POS by the file positioning functions ftel 1 (), fsetpos() and fgetpos().
(3) ungetc

Currently the ungetc buffer is static. For each file entry in the 1ob[] structure array, there is one character
available in the buffer to unget a character.

(4) local buffers

tmpnam() creates a temporary filename and returns a pointer to a local static buffer. This is according
to the ANSI definition. Changing this function such that it creates the name in a user specified buffer
requires another calling interface. Thus the function would be no longer portable.

strtok() scans through a string and remembers that the string and the position in the string for
subsequent calls. This function is not reentrant by design. Making it reentrant requires support of a kernel
to store the information on a per process basis.

rand() generates a sequence of random numbers. The function uses the value returned by a previous
call to generate the next value in the sequence. This function can be made reentrant by specifying the
previous random value as one of the arguments. However, then it is no longer a standard function.

(5) malloc

Malloc uses a heap space which is assigned at locate time. Thus this implementation is not reentrant.
Making a reentrant malloc requires some sort of system call to obtain free memory space on a per process
basis. This is not easy to solve within the current context of the library. This requires adaptation to a
kernel.

This paragraph on reentrancy applies to multi-process environments only. If reentrancy is required
for calling library functions from an exception handler, another approach is required. For such a
situation it is of no use to allocate e.g. multiple 1ob[] structures. In such a situation several pieces
of code in the library have to be declared ‘atomic': this means that interrupts have to be disabled
while executing an atomic piece of code.

728

Chapter 13. List File Formats

This chapter describes the format of the assembler list file and the linker map file.

13.1. Assembler List File Format

The assembiler list file is an additional output file of the assembler that contains information about the
generated code. For details on how to generate a list file, see Section 7.5, Generating a List File.

The list file consists of a page header and a source listing.
Page header

The page header is repeated on every page:

TASKING VX-toolset for TriCore: assembler vx.yrz Build nnn SN 00000000
Title Page 1

ADDR CODE CYCLES LINE SOURCE LINE

The first line contains version information. The second line can contain a title which you can specify with
the assembler control $TITLE and always contains a page number. The third line is empty and the fourth
line contains the headings of the columns for the source listing.

With the assembler controls $LI1ST, $PAGE, and with the assembler option --list-format you can format
the list file.

Source listing

The following is a sample part of a listing. An explanation of the different columns follows below.

ADDR CODE CYCLES LINE SOURCE LINE
1 ; Module start

27 Id.a al5,world

0002 85rFrrrr 1 2
0006 F4AF 1 3 28 stl6.a [al0],al5
0008 91rOrr4r 1 4 29 movh.a a4,#@his(_2_ini)
000C D944rrrr 1 5 30 lea a4,[a4]@los(_2_ini)
0010 1Drrrrrr 1 6 31] printf
0000 44 buf: -.space 4
| RESERVED
0003

729

TASKING VX-toolset for TriCore User Guide

ADDR This column contains the memory address. The address is a hexadecimal number
that represents the offset from the beginning of a relocatable section or the absolute
address for an absolute section. The address only appears on lines that generate
object code.

CODE This is the object code generated by the assembler for this source line, displayed
in hexadecimal format. The displayed code need not be the same as the generated
code that is entered in the object module. The code can also be relocatable code.
In this case the letter 'r' is printed for the relocatable code part in the listing. For
lines that allocate space, the code field contains the text "RESERVED". For lines
that initialize a buffer, the code field lists one value followed by the word
"REPEATS".

CYCLES The first number in this column is the number of instruction cycles needed to
execute the instruction(s) as generated in the CODE field. The second number is
the accumulated cycle count of this section.

LINE This column contains the line number. This is a decimal number indicating each
input line, starting from 1 and incrementing with each source line.

SOURCE LINE This column contains the source text. This is a copy of the source line from the
assembly source file.

For the .SET and -EQU directives the ADDR and CODE columns do not apply. The symbol value is listed
instead.

13.2. Linker Map File Format

The linker map file is an additional output file of the linker that shows how the linker has mapped the
sections and symbols from the various object files (. 0) to output sections. The locate part shows the
absolute position of each section. External symbols are listed per space with their absolute address, both
sorted on symbol and sorted on address. For details on how to generate a map file, see Section 8.9,
Generating a Map File.

With the linker option --map-file-format you can specify which parts of the map file you want to see.

In Eclipse the linker map file (project.map) is generated in the output directory of the build configuration,
usually Debug or Release. You can open the map file by double-clicking on the file name.

730

[im] File
malloc.o
_iob.o
atexit.o
dbg.o
clockspersec.o
_shrk.o
_iob.o
atexit.o
profcalltime. o
myproject.obj
profcalltime. o
cskart.obj
cinit, o
clock.o
calloc.o
malloc.o
_shrk.o
_doprint_int.o
fprintf.o
printf.o
_iob.o
fputc.o
_Flsbuf.o
frlose.o

<

Link Result

List File Formats

[in] Section

Jbss.libc (55)

Jbss.libc (78]

Jbss.libc (57

Jbss.libc (913
.data.libc (500
.data.libc (59}
.data.libc (75)
.data.libc (56}
.data.profallkime {453
rodata. myproject (250
rodata, profealltime {48)
extlibo (20

ext b (470
Jext b {490
Jext.libc {330
Jtextlibc {540
Jextlibe {630

et libo (710
extlibo (720
extlibo (730
text.libc (747
textlibe (78)
extlibe (51)
extlibe (52)

[in] Size (MALLY
00000005
00000030
00000050
0000001 4
00000005
00000004
Oe000000cS
Oe<00000001
000000015
0000000352
0000006
00000196
0000004
000000120
0000001
00000202
00000046
00000692
0000001
000000025
00000001 e
00000024
Ox000000b2
000000022

[out] OFfset
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00
00
00
00

[out] Section

Jbss.libc (55)
Jbss.libc (78]
Jbss.libc (57
Jbss.libc (913
.data.libc (500
.data.libc (59}
.data.libc (75)
.data.libc (56}
.data.profallkime {453
rodata. myproject (250
rodata, profealltime {48)
extlibo (20
ext b (470
Jext b {490
Jext.libc {330
Jtextlibc {540
Jextlibe {630
et libo (710
extlibo (720
extlibo (730
text.libc (747
textlibe (78)
extlibe (51)
textlibe (52)

Tool and Invocation | Used Resources | Processed Files |Link Result | Cross References | Call Graph | Locate Result | Locake Rules

*

Each tab displays a part of the map file. When you right-click in the view, a popup menu appears (for
example, select Find to find a symbol). The meaning of the different parts is:

Tool and Invocation

This part of the map file contains information about the linker, its version header information, binary

location and which options are used to call it.

Used Resources

This part of the map file shows the memory usage at memory level and space level. The largest free
block of memory (Largest gap) is also shown. This part also contains an estimation of the stack usage.

Explanation of the columns:

Memory
Code
Data

The names of the memory as defined in the linker script file (*. Isl).

The size of all executable sections.

The size of all non-executable sections (not including stacks, heaps, debug sections

in non-alloc space).

731

TASKING VX-toolset for TriCore User Guide

Reserved

Free

Total
Space

Native used ...

Foreign used

Stack Name
Used

The total size of reserved memories, reserved ranges, reserved special sections,
stacks, heaps, alignment protections, sections located in non-alloc space (debug
sections). In fact, this size is the same as the size in the Total column minus the
size of all other columns.

The free memory area addressable by this core. This area is accessible for
unrestricted items.

The total memory area addressable by this core.

The names of the address spaces as defined in the linker script file (*. Isl). The
names are constructed of the derivative name followed by a colon "', the core
name, another colon "' and the space name. For example: spe:-tc:linear.

The size of sections located in this space.

The size of all sections destined for/located in other spaces, but because of overlap
in spaces consume memory in this space.

The name(s) of the stack(s) as defined in the linker script file (*. Isl).

An estimation of the stack usage. The linker calculates the required stack size by
using information (. CALLS directives) generated by the compiler. If for example
recursion is detected, the calculated stack size is inaccurate, therefore this is an
estimation only. The calculated stack size is supposed to be smaller than the actual
allocated stack size. If that is not the case, then a warning is given.

Processed Files

This part of the map file shows all processed files. This also includes object files that are extracted from
a library, with the symbol that led to the extraction.

Link Result

This part of the map file shows per object file how the link phase has mapped the sections from the various
object files (. 0) to output sections.

[in] File
[in] Section

[in] Size
[out] Offset
[out] Section
[out] Size

The name of an input object file.

A section name and id from the input object file. The number between '()' uniquely
identifies the section.

The size of the input section.

The offset relative to the start of the output section.
The resulting output section name and id.

The size of the output section.

Module Local Symbols

This part of the map file shows a table for each local scope within an object file. Each table has three
columns, 1 the symbol name, 2 the address of the symbol and 3 the space where the symbol resides in.
The table is sorted on symbol name within each space.

732

List File Formats

By default this part is not shown in the map file. You have to turn this part on manually with linker option
--map-file-format=+statics (module local symbols).

Cross References

This part of the map file lists all symbols defined in the object modules and for each symbol the object
modules that contain a reference to the symbol are shown. Also, symbols that remain undefined are
shown.

Call Graph

This part of the map file contains a schematic overview that shows how (library) functions call each other.
To obtain call graph information, the assembly file must contain . CALLS directives.

You can click the + or - sign to expand or collapse a node.

Overlay

This part is empty for the TriCore.

Locate Result: Sections

This part of the map file shows the absolute position of each section in the absolute object file. It is
organized per address space, memory chip and group and sorted on space address.

+ Space The names of the address spaces as defined in the linker script file (*. 1sl). The
names are constructed of the derivative name followed by a colon "', the core
name, another colon "' and the space name. For example: spe:tc:linear.

Chip The names of the memory chips as defined in the linker script file (*. Isl) in the
memory definitions.

Group Sections can be ordered in groups. These are the names of the groups as defined
in the linker script file (*. Is1) with the keyword group in the section_layout
definition. The name that is displayed is the name of the deepest nested group.

Section The name and id of the section. The number between '()' uniquely identifies the
section. Names within square brackets [] will be copied during initialization from
ROM to the corresponding section name in RAM.

Size (MAU) The size of the section in minimum addressable units.
Space addr The absolute address of the section in the address space.
Chip addr The absolute offset of the section from the start of a memory chip.

Locate Result: Symbols
This part of the map file lists all external symbols per address space name.

Address The absolute address of the symbol in the address space.
Name The name of the symbol.

733

TASKING VX-toolset for TriCore User Guide

Space The names of the address spaces as defined in the linker script file (*. Isl). The
names are constructed of the derivative name followed by a colon "', the core
name, another colon "' and the space name. For example: spe:tc:linear.

Processor and Memory
This part of the map file shows the processor and memory information of the linker script file.

By default this part is not shown in the map file. You have to turn this part on manually with linker option
--map-file-format=+Isl (processor and memory info). You can print this information to a separate file with
linker option --Isl-dump.

Locate Rules
This part of the map file shows the rules the linker uses to locate sections.

Address space The names of the address spaces as defined in the linker script file (*. I1sl). The
names are constructed of the derivative name followed by a colon "', the core
name, another colon "' and the space name.

Type The rule type:
ordered/contiguous/clustered/unrestricted

Specifies how sections are grouped. By default, a group is 'unrestricted' which
means that the linker has total freedom to place the sections of the group in the
address space.

absolute

The section must be located at the address shown in the Properties column.
address range

The section must be located in the union of the address ranges shown in the
Properties column; end addresses are not included in the range.

address range size

The sections must be located in some address range with size not larger than

shown in the Properties column; the second number in that field is the alignment
requirement for the address range.

bal looned

After locating all sections, the largest remaining gap in the space is used completely
for the stack and/or heap.

Properties The contents depends on the Type column.

734

Sections

List File Formats

The sections to which the rule applies;
restrictions between sections are shown in this column:

< ordered
| contiguous
+ clustered

For contiguous sections, the linker uses the section order as shown here. Clustered
sections can be located in any relative order.

735

TASKING VX-toolset for TriCore User Guide

736

Chapter 14. Object File Formats

This chapter describes the format of several object files.

14.1. ELF/DWARF Object Format

The TASKING VX-toolset for TriCore by default produces objects in the ELF/DWARF 2 format.

The ELF/DWARF 2 Object Format for the TriCore toolset follows the convention as described in the
TriCore Embedded Application Binary Interface [Infineon].

For a complete description of the ELF and DWARF formats, please refer to the Tool Interface Standard
(TIS).

14.2. Intel Hex Record Format

Intel Hex records describe the hexadecimal object file format for 8-bit, 16-bit and 32-bit microprocessors.
The hexadecimal object file is an ASCII representation of an absolute binary object file. There are six
different types of records:

» Data Record (8-, 16, or 32-bit formats)
* End of File Record (8-, 16, or 32-bit formats)
» Extended Segment Address Record (16, or 32-bit formats)
» Start Segment Address Record (16, or 32-bit formats)
» Extended Linear Address Record (32-bit format only)
» Start Linear Address Record (32-bit format only)
To generate an Intel Hex output file:
1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Linker » Output Format.
4. Enable the option Generate Intel Hex format file.
5. (Optional) Specify the Size of addresses (in bytes) for Intel Hex records.
6. (Optional) Enable or disable the optionEmit start address record.

By default the linker generates records in the 32-bit format (4-byte addresses).

737

TASKING VX-toolset for TriCore User Guide

General Record Format

In the output file, the record format is:

‘ : ‘ length ‘ offset | type ‘ content checksum
where:
: is the record header.
length is the record length which specifies the number of bytes of the content field. This
value occupies one byte (two hexadecimal digits). The linker outputs records of
255 bytes (32 hexadecimal digits) or less; that is, length is never greater than OxFF.
offset is the starting load offset specifying an absolute address in memory where the
data is to be located when loaded by a tool. This field is two bytes long. This field
is only used for Data Records. In other records this field is coded as four ASCII
zero characters ('0000").
type is the record type. This value occupies one byte (two hexadecimal digits). The
record types are:
Byte Type |Record Type
00 Data
01 End of file
02 Extended segment address (not used)
03 Start segment address (not used)
04 Extended linear address (32-bit)
05 Start linear address (32-bit)
content is the information contained in the record. This depends on the record type.
checksum is the record checksum. The linker computes the checksum by first adding the

binary representation of the previous bytes (from length to content). The linker
then computes the result of sum modulo 256 and subtracts the remainder from
256 (two's complement). Therefore, the sum of all bytes following the header is
zero.

Extended Linear Address Record

The Extended Linear Address Record specifies the two most significant bytes (bits 16-31) of the absolute
address of the first data byte in a subsequent Data Record:

’: ‘ 02 ‘ 0000 ‘ 04 ‘ upper_address checksum |

The 32-bit absolute address of a byte in a Data Record is calculated as:
(address + offset + index) modulo 4G

where:

738

Object File Formats

address is the base address, where the two most significant bytes are the upper_address
and the two least significant bytes are zero.

offset is the 16-bit offset from the Data Record.

index is the index of the data byte within the Data Record (O for the first byte).

Example:

:0200000400FFFB

| 1 | 1 |_ checksum
| 1 | |_ upper_address
I 1 |_ type

| |_ offset

|_ length

Data Record

The Data Record specifies the actual program code and data.

‘: ‘ length ‘ offset | 00 ‘ data checksum |

The length byte specifies the number of data bytes. The linker has an option (--hex-record-size) that
controls the length of the output buffer for generating Data records. The default buffer length is 32 bytes.

The offset is the 16-bit starting load offset. Together with the address specified in the Extended Address
Record it specifies an absolute address in memory where the data is to be located when loaded by a tool.

Example:

:0F00200000232222754E00754FO04AFAFAE4E22C3

(| (| |_ checksum
11 | I_data

11 |_ type

| |_ offset

|_ length

Start Linear Address Record

The Start Linear Address Record contains the 32-bit program execution start address.

|: ‘ 04 | 0000 ‘ 05 ‘ address checksum

With linker option --hex-format=S you can prevent the linker from emitting this record.

Example:
:04000005A000000057
| 1 | 1 |_ checksum

| 1 | |_ address
I 1 |- type

739

TASKING VX-toolset for TriCore User Guide

| |_ offset
|_ length

End of File Record

The hexadecimal file always ends with the following end-of-file record:

:00000001FF
| 1 | |_ checksum

I 1 |_ type
| |_ offset
I_

length

14.3. Motorola S-Record Format

To generate a Motorola S-record output file:
1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Linker » Output Format.
4. Enable the option Generate S-records file.
5. (Optional) Specify the Size of addresses (in bytes) for Motorola S records.

By default, the linker produces output in Motorola S-record format with three types of S-records (4-byte
addresses): SO, S3 and S7. Depending on the size of addresses you can force other types of S-records.
They have the following layout:

SO - record

‘SO ‘ length ‘ 0000 comment checksum

A linker generated S-record file starts with an SO record with the following contents:

1 tc
S00600006C7463B6

The SO record is a comment record and does not contain relevant information for program execution.

where:

SO is a comment record and does not contain relevant information for program
execution.

740

Object File Formats

length represents the number of bytes in the record, not including the record type and
length byte. This value occupies one byte (two hexadecimal digits).

comment contains the name of the linker.

checksum is the record checksum. The linker computes the checksum by first adding the

binary representation of the bytes following the record type (starting with the length
byte) to just before the checksum. Then the one's complement is calculated of this
sum. The least significant byte of the result is the checksum. The sum of all bytes
following the record type is OXFF.

S1/S2/S3 -record

This record is the program code and data record for 2-byte, 3-byte or 4-byte addresses respectively.

‘Sl ‘ length ‘ address ‘ code bytes | checksum ‘
ISZ ‘ length | address | code bytes | checksum ‘
‘SS ‘ length ‘ address ‘ code bytes | checksum ‘
where:
S1 is the program code and data record for 2-byte addresses.
S2 is the program code and data record for 3-byte addresses.
S3 is the program code and data record for 4-byte addresses (this is the default).
length represents the number of bytes in the record, not including the record type and
length byte. This value occupies one byte (two hexadecimal digits).
address contains the code or data address.
code bytes contains the actual program code and data.
checksum is the record checksum. The checksum calculation is identical to SO.
Example:
S3070000FFFE6E6825
| 1 | |_ checksum
| 1 |_ code
| |_ address
|_ length

S7/S8/S9 -record

This record is the termination record for 4-byte, 3-byte or 2-byte addresses respectively.

‘87 ‘ length ‘ address ‘ checksum ‘

’88 ‘ length ‘ address ’ checksum ‘

741

TASKING VX-toolset for TriCore User Guide

‘SQ ‘ length address checksum
where:
S7 is the termination record for 4-byte addresses (this is the default). S7 is the
corresponding termination record for S3 records.
S8 is the termination record for 3-byte addresses. S8 is the corresponding termination
record for S2 records.
S9 is the termination record for 2-byte addresses. S9 is the corresponding termination
record for S1 records.
length represents the number of bytes in the record, not including the record type and
length byte. This value occupies one byte (two hexadecimal digits).
address contains the program start address.
checksum is the record checksum. The checksum calculation is identical to SO.
Example:
S705A00000005A
| 1 | _checksum
| |_ address
|_ length

742

Chapter 15. Linker Script Language (LSL)

To make full use of the linker, you can write a script with information about the architecture of the target
processor and locating information. The language for the script is called the Linker Script Language (LSL).
This chapter first describes the structure of an LSL file. The next section contains a summary of the LSL
syntax. In the remaining sections, the semantics of the Linker Script Language is explained.

The TASKING linker is a target independent linker/locator that can simultaneously link and locate all
programs for all cores available on a target board. The target board may be of arbitrary complexity. A
simple target board may contain one standard processor with some external memory that executes one
task. A complex target board may contain multiple standard processors and DSPs combined with
configurable IP-cores loaded in an FPGA. Each core may execute a different program, and external
memory may be shared by multiple cores.

LSL serves two purposes. First it enables you to specify the characteristics (that are of interest to the
linker) of your specific target board and of the cores installed on the board. Second it enables you to
specify how sections should be located in memory.

15.1. Structure of a Linker Script File

A script file consists of several definitions. The definitions can appear in any order.

The architecture definition (required)

In essence an architecture definition describes how the linker should convert logical addresses into
physical addresses for a given type of core. If the core supports multiple address spaces, then for each
space the linker must know how to perform this conversion. In this context a physical address is an offset
on a given internal or external bus. Additionally the architecture definition contains information about items
such as the (hardware) stack and the interrupt vector table.

This specification is normally written by Altium. Altium supplies LSL files in the include. Isl directory.
The architecture definition of the LSL file should not be changed by you unless you also modify the core's
hardware architecture. If the LSL file describes a multi-core system an architecture definition must be
available for each different type of core.

See Section 15.4, Semantics of the Architecture Definition for detailed descriptions of LSL in the architecture
definition.

The derivative definition

The derivative definition describes the configuration of the internal (on-chip) bus and memory system.
Basically it tells the linker how to convert offsets on the buses specified in the architecture definition into
offsets in internal memory. Microcontrollers and DSPs often have internal memory and I/O sub-systems
apart from one or more cores. The design of such a chip is called a derivative.

Altium provides LSL descriptions of supported derivatives, along with "SFR files", which provide easy
access to registers in /O sub-systems from C and assembly programs. When you build an ASIC or use
a derivative that is not (yet) supported by the TASKING tools, you may have to write a derivative definition.

743

TASKING VX-toolset for TriCore User Guide

When you want to use multiple cores of the same type, you must instantiate the cores in a derivative
definition, since the linker automatically instantiates only a single core for an unused architecture.

See Section 15.5, Semantics of the Derivative Definition for a detailed description of LSL in the derivative
definition.

The processor definition

The processor definition describes an instance of a derivative. Typically the processor definition instantiates
one derivative only (single-core processor). A processor that contains multiple cores having the same
(homogeneous) or different (heterogeneous) architecture can also be described by instantiating multiple
derivatives of the same or different types in separate processor definitions.

See Section 15.6, Semantics of the Board Specification for a detailed description of LSL in the processor
definition.

The memory and bus definitions (optional)

Memory and bus definitions are used within the context of a derivative definition to specify internal memory
and on-chip buses. In the context of a board specification the memory and bus definitions are used to
define external (off-chip) memory and buses. Given the above definitions the linker can convert a logical
address into an offset into an on-chip or off-chip memory device.

See Section 15.6.3, Defining External Memory and Buses, for more information on how to specify the
external physical memory layout. Internal memory for a processor should be defined in the derivative
definition for that processor.

The board specification

The processor definition and memory and bus definitions together form a board specification. LSL provides
language constructs to easily describe single-core and heterogeneous or homogeneous multi-core
systems. The board specification describes all characteristics of your target board's system buses, memory
devices, 1/0 sub-systems, and cores that are of interest to the linker. Based on the information provided
in the board specification the linker can for each core:

» convert a logical address to an offset within a memory device
* locate sections in physical memory

* maintain an overall view of the used and free physical memory within the whole system while locating
The section layout definition (optional)

The optional section layout definition enables you to exactly control where input sections are located.
Features are provided such as: the ability to place sections at a given load-address or run-time address,
to place sections in a given order, and to overlay code and/or data sections.

Which object files (sections) constitute the task that will run on a given core is specified on the command
line when you invoke the linker. The linker will link and locate all sections of all tasks simultaneously.
From the section layout definition the linker can deduce where a given section may be located in memory;,

744

Linker Script Language (LSL)

form the board specification the linker can deduce which physical memory is (still) available while locating
the section.

See Section 15.8, Semantics of the Section Layout Definition, for more information on how to locate a
section at a specific place in memory.

Skeleton of a Linker Script File

architecture architecture_nane

{

// Specification core architecture
}
derivative derivative_nane
{

// Derivative definition
}
processor processor_nane
{

// Processor definition
}

nmenory and/or bus definitions

section_layout space_nane

{
}

// section placement statements

15.2. Syntax of the Linker Script Language

This section describes what the LSL language looks like. An LSL document is stored as a file coded in
UTF-8 with extension . Isl. Before processing an LSL file, the linker preprocesses it using a standard
C preprocessor. Following this, the linker interprets the LSL file using a scanner and parser. Finally, the
linker uses the information found in the LSL file to guide the locating process.

15.2.1. Preprocessing

When the linker loads an LSL file, the linker processes it with a C-style prepocessor. As such, it strips C
and C++ comments. You can use the standard ISO C preprocessor directives, such as #include,
#deFfine, #if/#else/#endif.

For example:

#include "arch.lIsl"

Preprocess and include the file arch. Isl at this point in the LSL file.

745

TASKING VX-toolset for TriCore User Guide

15.2.2. Lexical Syntax

The following lexicon is used to describe the syntax of the Linker Script Language:

A::=B = Aisdefined as B

A::=BC = Ais defined as B and C; B is followed by C

A::=B] C = AisdefinedasBorC

0It = zero or one occurrence of B

>70 = zero of more occurrences of B

>"1 = one of more occurrences of B

| DENTI FI ER = acharacter sequence starting with 'a’-'z', 'A’-'’Z' or '_". Following
characters may also be digits and dots "'

STRI NG = sequence of characters not starting with \n, \r or \t

DQSTRI NG = " STRING " (double quoted string)

CCT_NUM = octal number, starting with a zero (06, 045)

DEC_NUM = decimal number, not starting with a zero (14, 1024)

HEX_NUM = hexadecimal number, starting with '0x' (0x0023, OxFF0O0)

OCT_NUM DEC_NUMand HEX_NUMcan be followed by a k (kilo), M (mega), or G (giga).

Characters in bold are characters that occur literally. Words in italics are higher order terms that are
defined in the same or in one of the other sections.

To write comments in LSL file, you can use the C style '/* */' or C++ style '//'.

15.2.3. Identifiers and Tags

ar ch_nane = | DENTI FI ER
bus_nane = | DENTI FI ER
cor e_nane = | DENTI FI ER
derivative_nane = | DENTI FI ER
file_name = DQSTRI NG
group_nane := | DENTI FI ER
heap_nane = section_nane
mem_namnme = | DENTI FI ER
proc_narme := | DENTI FI ER
section_nane = DQSTRI NG
space_nane := | DENTI FI ER
stack_nane = section_nane
synbol _narme = DQSTRI NG

746

Linker Script Language (LSL)

(tag<, tag>""0)
tag = DQSTRI NG

tag_attr
t ag

A tag is an arbitrary text that can be added to a statement.

15.2.4. Expressions

The expressions and operators in this section work the same as in ISO C.

nunber COCT_NUM
DEC_NUM

HEX_NUM

nunber

synbol _nane
unary_op expr

expr binary_op expr
expr ? expr : expr
(expr)
function_cal

expr

unary_op ! // logical NOT
~ // bitwise complement

- // negative value

bi nary_op A // exclusive OR

* // multiplication

/ // division

% // modulus

+ // addition

- // subtraction

>> // right shift

<< // left shift

== // equal to

// not equal to

> // greater than

< // less than

>= // greater than or equal to
<= // less than or equal to
& // bitwise AND

[// bitwise OR

&& // logical AND

[] // logical OR

15.2.5. Built-in Functions
function_call = absolute (expr)

| addressof (addr_id)

| exists (section_nane)
| max (expr , expr)

747

TASKING VX-toolset for TriCore User Guide

| min (expr , expr)
| sizeof (size_id)

addr _id = sect : section_nane
| group : group_nane
size_id = sect : section_nane

group : group_nane
mem : mem nane

» Every space, bus, memory, section or group your refer to, must be defined in the LSL file.

» The addressof() and sizeof() functions with the gr oup or sect argument can only be used in
the right hand side of an assignment. The sizeof () function with the nemargument can be used
anywhere in section layouts.

You can use the following built-in functions in expressions. All functions return a numerical value. This
value is a 64-bit signed integer.

absolute()

int absolute(expr)

Converts the value of expr to a positive integer.
absolute("labelA"-"l1abelB")
addressof()

int addressof(addr _id)

Returns the address of addr_id, which is a named section or group. To get the offset of the section with
the name asect:

addressof(sect: "asect')

This function only works in assignments.

exists()
int exists(section_nane)

The function returns 1 if the section section_name exists in one or more object file, O otherwise. If the
section is not present in input object files, but generated from LSL, the result of this function is undefined.

To check whether the section mysection exists in one of the object files that is specified to the linker:

exists("mysection")

748

Linker Script Language (LSL)

max()

int max(expr, expr)

Returns the value of the expression that has the largest value. To get the highest value of two symbols:
max("'syml"™ , *‘'sym2')

min()

int min(expr, expr)

Returns the value of the expression hat has the smallest value. To get the lowest value of two symbols:
min("'syml"™ , ''sym2')

sizeof()

int sizeof(size_id)

Returns the size of the object (group, section or memory) the identifier refers to. To get the size of the
section "asection":

sizeof(sect: "asection”)

The gr oup and sect arguments only works in assignments. The memargument can be used
anywhere in section layouts.

15.2.6. LSL Definitions in the Linker Script File
description ::= <definition>""1

architecture_definition
derivative_definition
boar d_spec
section_definition
section_setup

definition o:

» Atleastone architecture_definition mustbe presentin the LSL file.

15.2.7. Memory and Bus Definitions
mem def ::= nemory nemname <tag attr>°11 { <memdescr ;> }
 Anem def defines a memory with the nem _nane as a unique name.

type = <reserved>’l' nemtype
mau = expr

size = expr

speed = nunber

mappi ng

mem descr s

749

TASKING VX-toolset for TriCore User Guide

 Anem def contains exactly one t ype statement.

 Anem def contains exactly one nau statement (non-zero size).
 Anem def contains exactly one si ze statement.

 Anem def contains zero or one speed statement (default value is 1).

* Anmem def contains at least one mappi ng

mem t ype = rom // attrs = rx
| ram // attrs = rw
| nvram // attrs = rwx
bus_def ::= bus bus_name { <bus_descr ;> }

» Abus_def statement defines a bus with the given bus_nane as a unique name within a core
architecture.

bus_descr II= mau = expr
| width = expr // bus width, nr
| // of data bits
| mappi ng // legal destination

// “bus® only

» The mau and wi dt h statements appear exactly once in a bus_descr . The default value for wi dt h is
the mau size.

The bus width must be an integer times the bus MAU size.

» The MAU size must be non-zero.

* A bus can only have a nappi ng on a destination bus (through dest = bus:).
nmappi ng ::= map (nmap_descr <, map_descr>>70)

dest = destination

dest _dbits = range

dest _of fset = expr

map_descr Ii=
|
|
| size = expr
|
|
|

src_dbits = range

src_of fset = expr

tag
* A mappi ng requires at least the si ze and dest statements.
» Each map_descr can occur only once.

* You can define multiple mappings from a single source.

Overlap between source ranges or destination ranges is not allowed.

750

Linker Script Language (LSL)

» Ifthe src_dbits ordest _dbits statement is not present, its value defaults to the wi dt h value if

the source/destination is a bus, and to the nmau size otherwise.
destination II= space : space_nhane

| bus : <proc_nane |
core_nane :>°1' pus_nane

* A space_nane refers to a defined address space.
» A proc_nane refers to a defined processor.
» A core_nane refers to a defined core.
» A bus_nane refers to a defined bus.
» The following mappings are allowed (source to destination)

e space => space

¢ space => bus

e bus => bus

e memory => bus
range II= expr .. expr

« With address ranges, the end address is not part of the range.

15.2.8. Architecture Definition

architecture _definition
::= architecture arch_nane
<(paraneter |ist)>°I*
<extends arch_nane
<(argunent |ist)>011 5011
{ <arch_spec>>0}

 Anarchitecture_definition defines a core architecture with the given ar ch_nane as a unique
name.

» Atleast one space_def and at least one bus_def have to be presentin an
archi tecture_definition.

* Anarchitecture_definitionthatusesthe ext ends constructdefines an architecture that inherits
all elements of the architecture defined by the second ar ch_nan®e. The parent architecture must be
defined in the LSL file as well.

parameter_|i st 1= parameter <, paraneter>""°
par aret er ::= IDENTIFIER <= expr>°l1
argunent _| i st 11z expr <, expr>>7°

751

TASKING VX-toolset for TriCore User Guide

arch_spec 1= bus_def
| space_def
| endi anness_def
space_def ::= space space_nane <tag_attr>°l1 { <space_descr;>"" }

» Aspace_def defines an address space with the given space_nane as a unique name within an
architecture.

space_descr 1= space_property ;
section_definition //no space ref
vect or _tabl e_st at enent

reserved_range

id = nunber // as used in object
mau = expr
align = expr

space_property i

page_size = expr <[range] <| [range]>>700I1
page

direction = direction

st ack_def

heap_def

copy_t abl e_def
start _address

nmappi ng

» Aspace_def contains exactly one i d and one mau statement.
* Aspace_def contains at most one al i gn statement.

» Aspace_def contains at most one page_si ze statement.

* Aspace_def contains at most one mappi ng.

st ack_def 1= stack stack_nane (stack_heap_descr
<, stack_heap_descr >0)

» Astack_def defines a stack with the st ack_nan® as a unique name.

heap_def ::= heap heap_nanme (stack_heap_descr
<, stack_heap_descr >0)

» Aheap_def defines a heap with the heap_nan® as a unique name.

stack_heap_descr ::= min_size = expr
| grows = direction
| align = expr
| fixed
| id = expr
| tag

* The m n_si ze statement must be present.

752

Linker Script Language (LSL)

* You can specify at most one al i gn statement and one gr ows statement.

» Each stack definition has its own unique i d, the number specified corresponds to the index in the
-CALLS directive as generated by the compiler.

direction = low_to_high
| high_to_|l ow

« If you do not specify the gr ows statement, the stack and heap grow | ow- t o- hi gh.

copy_t abl e_def ::= copytable <(copy_table_descr
<, copy_table_descr >>70)01

» Aspace_def contains at most one copyt abl e statement.
» Exactly one copy table must be defined in one of the spaces.

copy_table_descr =::= align = expr

| copy_unit = expr

| dest <space_name>’l! = space_nane
| page

| tag

* The copy_uni t is defined by the size in MAUs in which the startup code moves data.

» The dest statementis only required when the startup code initializes memory used by another processor
that has no access to ROM.

» A space_nane refers to a defined address space.

start_addr := start_address (start_addr_descr
<, start_addr_descr>""0)

start _addr_descr ::= run_addr = expr
| synbol = synbol _nane

» Asynbol _nane refers to the section that contains the startup code.

vect or _t abl e_st at enent
= vector_tabl e section_name
(vecttab_spec <, vecttab_spec>
{ <vector_def>>0}

>=0)

vecttab_spec II= vector_size = expr

size = expr

i d_synbol _prefix = synbol nane
run_addr = addr_absol ute

tenpl ate = section_nane

tenpl ate_synbol = synbol nanme
vector_prefix = section_nane
fill = vector_val ue

no_inline

753

TASKING VX-toolset for TriCore User Guide

| copy
| tag

vect or _def vector (vector_spec <, vector_spec>>:0);

id = vector_id_spec
fill = vector_val ue
tag

vect or _spec

nunber

vector _id_spec
[range | <, [range]>>7°

vect or _val ue

synbol _nanme
[number <, number>>7]
loop <[expr]>°1*

reserved_range ::= reserved <tag attr>°1% expr .. expr ;

» The end address is not part of the range.

endi anness_def ::= endi anness { <endi anness_type;>""1 }

endi anness_t ype s

15.2.9. Derivative Definition

derivative_definition
::= derivative derivative_nane
<(paranmeter_list)>0I
<ext ends derivative_nane
<(argument _|ist)>C01t 5011
{ <derivative_spec>""C }

 Aderivative_definition defines a derivative with the given deri vati ve_nane as a unique
name.

derivative_spec 1= core_def

| bus_def

| mem def

| section_definition // no processor name
| section_setup

core_def ::= core core_nane { <core_descr : >>70 }

» Acore_def defines a core with the given cor e_nane as a unique name.

» Atleast one cor e_def must be presentinaderivative_definition.

core_descr ::= architecture = arch_nane
<(argunent _list)>01

754

Linker Script Language (LSL)
| endi anness = (endi anness_type
<, endi anness_type>")
« An ar ch_name refers to a defined core architecture.

» Exactly one ar chi t ect ur e statement must be present in a cor e_def .

15.2.10. Processor Definition and Board Specification
boar d_spec ::= proc_def
bus_def
mem def

proc_def II= processor proc_name

{ proc_descr ; }

derivative = derivative_nane
<(argunent_|ist)>0I1

proc_descr

» Aproc_def defines a processor with the pr oc_nane as a unique name.

« If you do not explicitly define a processor for a derivative in an LSL file, the linker defines a processor
with the same name as that derivative.

« Aderivative_nane refers to a defined derivative.

* Aproc_def contains exactly one deri vat i ve statement.

15.2.11. Section Layout Definition and Section Setup
section_definition ::= section_|layout <space_ref>CIt

<(space_l ayout _properties)>0I1

{ <section_statement>""C }
» A section definition inside a space definition does not have a space_r ef.

« All global section definitions have a space_r ef .

space_r ef ::= <proc_nane>l' : <core_name>°I*
space_nane

« If more than one processor is present, the pr oc_nane must be given for a global section layout.

If the section layout refers to a processor that has more than one core, the cor e_nane must be given
in the space_r ef .

« A proc_nane refers to a defined processor.
e Acore_nane refers to a defined core.

» A space_nane refers to a defined address space.

755

TASKING VX-toolset for TriCore User Guide

space_|l ayout _properties

::= space_|l ayout _property <, space_| ayout _property >~

space_| ayout _property
::= locate_direction

| tag
| ocate_direction =::= direction = direction
direction = low_to_high

| high_to_ Il ow
* A section layout contains at most one di r ect i on statement.

« If you do not specify the di r ect i on statement, the locate direction of the section layout is
| owt o- hi gh.

section_stat ement
::= sinple_section_statenent ;
| aggregat e_secti on_st at enent

si mpl e_section_st at ement
::= assi gnment
| sel ect _section_stat enent
| special _section_statenent

assi gnnent ::= synbol _name assign_op expr

assi gn_op I

sel ect _section_statenment
::= select <ref _tree>’lt <section_nane>°lt
<section_sel ecti ons>0I*

» Eithera secti on_nane or at least one secti on_sel ecti on must be defined.
section_sel ections
::= (section_selection

<, section_sel ection>"")

section_sel ection
z:= attributes = < <+|-> attribute>>

| tag
 +attribute means: select all sections that have this attribute.
« -attribute means: select all sections that do not have this attribute.
speci al _section_st at enent

::= heap heap_nane <stack_heap_nods>°l*
| stack stack _nane <stack_heap_nods>°l*

756

0

Linker Script Language (LSL)

| copytable

| reserved section_nane <reserved_specs>l1

» Special sections cannot be selected in load-time groups.

st ack_heap_nods ::= (stack_heap_nod <, stack_heap_nod>""0)

size = expr

st ack_heap_nod ti=
| tag

reserved_specs ::= (reserved_spec <, reserved_spec>""C)

= attributes
| fill_spec

| size = expr

| alloc_all owed = absol ute

reserved_spec s

» Ifareserved section has attributes r, rw, X, rx or rwx, and no fill pattern is defined, the section is
filled with zeros. If no attributes are set, the section is created as a scratch section (attributes ws, no
image).

fill_spec = fill = fill _values

fill _val ues II= expr
| [expr <, expr>70]

aggr egat e_secti on_st at ement

::= { <section_statenent>"70 }
group_descr
i f _statenent
section_creation_statenent

= group <group_name>°1t <(group_specs)>0I*
section_st at ement

group_descr

» No two groups for an address space can have the same gr oup_narne.

group_specs 1:1= group_spec <, group_spec >0
= group_al i gnnent

| attributes
| copy

| nocopy

| group_| oad_address

| fill <= fill_values>°I*
| group_page
|

|

|
|
|

gr oup_spec

group_run_address
group_type

al l ow_cross_references
priority = nunber

tag

757

TASKING VX-toolset for TriCore User Guide

» The al | ow cross-r ef er ences property is only allowed for overlay groups.

» Sub groups inherit all properties from a parent group.

group_al i gnnent :z= align = expr
attributes s:= attributes = <attribute>""1
attribute = // readable sections

| w // writable sections

| x // executable code sections

| i // initialized sections

| s // scratch sections

| b // blanked (cleared) sections

group_| oad_address
::= load_addr <= |oad_or_run_addr >011

page <= expr>°l?

gr oup_page 1I=
| page_size = expr <[range] <| [range]>

>=0,0]1

group_run_address ::= run_addr <= Ioad_or_run_addr>°Il
= clustered
| contiguous
| ordered
| overlay

group_t ype i

» For non-contiguous groups, you can only specify gr oup_al i gnnent and attri but es.
* The over | ay keyword also sets the cont i guous property.
» The cl ust er ed property cannot be set together with cont i guous or or der ed on a single group.

| oad_or _run_addr ::= addr_absol ute
| addr_range <| addr_range>>"°

addr _absol ute II= expr

| menory_reference [expr]
» An absolute address can only be set on ordered groups.

addr _range = [expr .. expr]
| menory_reference
| menory_reference [expr .. expr]

» The parent of a group with an addr _r ange or page restriction cannot be or der ed, cont i guous or
cl ustered.
» The end address is not part of the range.

nmemory reference ::= mem: <proc_nane :>°l' <core_name :>°I* nem nanme

758

Linker Script Language (LSL)

* A proc_nane refers to a defined processor.
« Acore_nane refers to a defined core.
* A nem nane refers to a defined memory.

i f_statenent = if (expr) section_statenent
<el se section_statenent >0t

section_creation_statenent
I:= section section_nane (section_specs)
{ <section_statenent2>>0}

secti on_specs 1= section_spec <, section_spec >0
attributes

fill_spec

size = expr

bl ocksi ze = expr

overfl ow = section_nanme

tag

secti on_spec I

section_statenent 2
::= sel ect_section_statenent ;
group_descr2

{ <section_statenment2>"C }

group_descr2 ::= group <group_nane>°lt
(group_specs2)

section_statenent2

group_spec2 <, group_spec2 >>=0

group_specs?2

group_spec?2

group_al i gnment

attributes

| oad_addr

tag

section_setup ::= section_setup space_ref <tag attr>°l?
{ <section_setup_iten™0 }

section_setup_item
::= vector_tabl e_statenent

| reserved_range

| stack_def ;

| heap_def ;

15.3. Expression Evaluation

Only constant expressions are allowed, including sizes, but not addresses, of sections in object files.

759

TASKING VX-toolset for TriCore User Guide

All expressions are evaluated with 64-bit precision integer arithmetic. The result of an expression can be
absolute or relocatable. A symbol you assign is created as an absolute symbol.

15.4. Semantics of the Architecture Definition

Keywords in the architecture definition

architecture
extends
endianness big little
bus
mau
width
map
space
id
mau
align
page_size
page
direction low_to_high high_to_low
stack
min_size
grows low_to_high high_to_low
align
fixed
id
heap
min_size
grows low_to_high high_to_low
align
fixed
id
copytable
align
copy_unit
dest
page
vector_table
vector_size
size
id_symbol_prefix
run_addr
template
template_symbol
vector_prefix
fill
no_inline
copy
vector

760

Linker Script Language (LSL)

id
fill loop
reserved
start_address
run_addr
symbol
map

map
dest bus space
dest _dbits
dest_offset
size
src_dbits
src_offset

15.4.1. Defining an Architecture

With the keyword ar chi t ect ur e you define an architecture and assign a unique name to it. The name
is used to refer to it at other places in the LSL file:

archi tecture nane

{
}

If you are defining multiple core architectures that show great resemblance, you can define the common
features in a parent core architecture and extend this with a child core architecture that contains specific
features. The child inherits all features of the parent. With the keyword extends you create a child core
architecture:

definitions

architecture nane_chil d_arch extends name_parent _arch

{
}

A core architecture can have any number of parameters. These are identifiers which get values assigned
on instantiation or extension of the architecture. You can use them in any expression within the core
architecture. Parameters can have default values, which are used when the core architecture is instantiated
with less arguments than there are parameters defined for it. When you extend a core architecture you
can pass arguments to the parent architecture. Arguments are expressions that set the value of the
parameters of the sub-architecture.

definitions

architecture nane_chil d_arch (parni, par n2=1)
ext ends nane_parent _arch (argunents)

{
}

definitions

761

TASKING VX-toolset for TriCore User Guide

15.4.2. Defining Internal Buses

With the bus keyword you define a bus (the combination of data and corresponding address bus). The
bus name is used to identify a bus and does not conflict with other identifiers. Bus descriptions in an
architecture definition or derivative definition define internal buses. Some internal buses are used to
communicate with the components outside the core or processor. Such buses on a processor have
physical pins reserved for the number of bits specified with the wi dt h statements.

» The mau field specifies the MAU size (Minimum Addressable Unit) of the data bus. This field is required.

» The wi dt h field specifies the width (number of address lines) of the data bus. The default value is the
MAU size.

» The map keyword specifies how this bus maps onto another bus (if so). Mappings are described in
Section 15.4.4, Mappings.

bus bus_nane

{

mau = 8;

w dth = 8;

map (map_description);
}

15.4.3. Defining Address Spaces

With the space keyword you define a logical address space. The space name is used to identify the
address space and does not conflict with other identifiers.

» The i d field defines how the addressing space is identified in object files. In general, each address
space has a unique ID. The linker locates sections with a certain ID in the address space with the same
ID. This field is required.

» The nau field specifies the MAU size (Minimum Addressable Unit) of the space. This field is required.

* The al i gn value must be a power of two. The linker uses this value to compute the start addresses
when sections are concatenated. An align value of n means that objects in the address space have to
be aligned on n MAUSs.

* The page_si ze field sets the page alignment and page size in MAUs for the address space. It must
be a power of 2. The default value is 1. If one or more page ranges are supplied the supplied value
only sets the page alignment. The ranges specify the available space in each page, as offsets to the
page start, which is aligned at the page alignment.

See also the page keyword in subsection Locating a group in Section 15.8.2, Creating and Locating
Groups of Sections.

» With the optional di r ect i on field you can specify how all sections in this space should be located.
This can be either from | ow_t o_hi gh addresses (this is the default) or from hi gh_t o_| owaddresses.

» The map keyword specifies how this address space maps onto an internal bus or onto another address
space. Mappings are described in Section 15.4.4, Mappings.

762

Linker Script Language (LSL)

Stacks and heaps

* The st ack keyword defines a stack in the address space and assigns a hame to it. The architecture
definition must contain at least one stack definition. Each stack of a core architecture must have a
unique name. See also the st ack keyword in Section 15.8.3, Creating or Modifying Special Sections.

The stack is described in terms of a minimum size (m n_si ze) and the direction in which the stack
grows (gr ows). This can be either from | ow_t o_hi gh addresses (stack grows upwards, this is the
default) or from hi gh_t o_| owaddresses (stack grows downwards). The mi n_si ze is required.

By default, the linker tries to maximize the size of the stacks and heaps. After locating all sections, the
largest remaining gap in the space is used completely for the stacks and heaps. If you specify the
keyword f i xed, you can disable this so-called 'balloon behavior'. The size is also fixed if you used a
stack or heap in the software layout definition in a restricted way. For example when you override a
stack with another size or select a stack in an ordered group with other sections.

The i d keyword matches stack information generated by the compiler with a stack name specified in
LSL. This value assigned to this keyword is strongly related to the compiler’'s output, so users are not
supposed to change this configuration.

Optionally you can specify an alignment for the stack with the argument al i gn. This alignment must
be equal or larger than the alignment that you specify for the address space itself.

» The heap keyword defines a heap in the address space and assigns a name to it. The definition of a
heap is similar to the definition of a stack. See also the heap keyword in Section 15.8.3, Creating or
Modifying Special Sections.

Stacks and heaps are only generated by the linker if the corresponding linker labels are referenced in the
object files.

See Section 15.8, Semantics of the Section Layout Definition, for information on creating and placing
stack sections.

Copy tables

» The copyt abl e keyword defines a copy table in the address space. The content of the copy table is
created by the linker and contains the start address and size of all sections that should be initialized
by the startup code. You must define exactly one copy table in one of the address spaces (for a core).

Optionally you can specify an alignment for the copy table with the argument al i gn. This alignment
must be equal or larger than the alignment that you specify for the address space itself. If smaller, the
alignment for the address space is used.

The copy_uni t argument specifies the size in MAUs of information chunks that are copied. If you do
not specify the copy unit, the MAU size of the address space itself is used.

The dest argument specifies the destination address space that the code uses for the copy table. The
linker uses this information to generate the correct addresses in the copy table. The memory into where
the sections must be copied at run-time, must be accessible from this destination space.

Sections generated for the copy table may get a page restriction with the address space's page size,
by adding the page argument.

763

TASKING VX-toolset for TriCore User Guide

Vector table

» The vect or _t abl e keyword defines a vector table with n vectors of size m (This is an internal LSL
object similar to an LSL group.) The r un_addr argument specifies the location of the first vector (id=0).
This can be a simple address or an offset in memory (see the description of the run-time address in
subsection Locating a group in Section 15.8.2, Creating and Locating Groups of Sections). A vector
table defines symbols _Ic_ub_foo and _Ic_ue_Too pointing to start and end of the table.

vector_table *"vtable"™ (vector_size=m, size=n, run_addr=x, ...)
See the following example of a vector table definition:

vector_table "vtable"™ (vector_size = 4, size = 256, run_addr=0,
template=""_text.vector_template",
template_symbol=""_lc_vector_target",
vector_prefix="_text._vector.",
id_symbol_prefix="foo",
no_inline,
/* default: empty, or */
fill="foo", /* or */
fill=[1,2,3,4], /* or */

fill=loop)
{
vector (id=23, fill="main");
vector (id=12, fill=[Oxab, 0x21, 0x32, 0x43]);
vector (id=[1..11], fill=[0]);
vector (id=[18..23], fill=loop);
}

The t enpl at e argument defines the name of the section that holds the code to jump to a handler
function from the vector table. This template section does not get located and is removed when the
locate phase is completed. This argument is required.

Thet enpl at e_synbol argumentis the symbol reference in the template section that must be replaced
by the address of the handler function. This symbol name should start with the linker prefix for the
symbol to be ignored in the link phase. This argument is required.

The vect or _pr ef i x argument defines the names of vector sections: the section for a vector with id
vector_id is $(vector_prefix)$(vector_id). Vectors defined in C or assembly source files that should be
included in the vector table must have the correct symbol name. The compiler uses the prefix that is
defined in the default LSL file(s); if this attribute is changed, the vectors declared in C source files are
not included in the vector table. When a vector supplied in an object file has exactly one relocation, the
linker will assume it is a branch to a handler function, and can be removed when the handler is inlined
in the vector table. Otherwise, no inlining is done. This argument is required.

With the optional no_i nl i ne argument the vectors handlers are not inlined in the vector table.

With the optional copy argument a ROM copy of the vector table is made and the vector table is copied
to RAM at startup.

764

Linker Script Language (LSL)

With the optional i d_symnbol _pr ef i x argument you can set an internal string representing a symbol
name prefix that may be found on symbols in vector handler code. When the linker detects such a
symbol in a handler, the symbol is assigned the vector number. If the symbol was already assigned a
vector number, a warning is issued.

The fi || argument sets the default contents of vectors. If nothing is specified for a vector, this setting
is used. See below. When no default is provided, empty vectors may be used to locate large vector
handlers and other sections. Only one fi | | argument is allowed.

The vect or field defines the content of vector with the number specified by i d. If a range is specified
forid ([p--d,s--t]) all vectors in the ranges (inclusive) are defined the same way.

With fi | | =symbol_name, the vector must jump to this symbol. If the section in which the symbol is
defined fits in the vector table (size may be >m), locate the section at the location of the vector.
Otherwise, insert code to jump to the symbol's value. A template interrupt handler section name +
symbol name for the target code must be supplied in the LSL file.

fill=[value(s)], fills the vector with the specified MAU values.

Withfi | | =l oop the vector jumps to itself. With the optional [offset] you can specify an offset from the
vector table entry.

Reserved address ranges

» The r eser ved keyword specifies to reserve a part of an address space even if not all of the range is
covered by memory. See also the r eser ved keyword in Section 15.8.3, Creating or Modifying Special
Sections.

Start address

» The st art _addr ess keyword specifies the start address for the position where the C startup code is
located. When a processor is reset, it initializes its program counter to a certain start address, sometimes
called the reset vector. In the architecture definition, you must specify this start address in the correct
address space in combination with the name of the label in the application code which must be located
here.

The run_addr argument specifies the start address (reset vector). If the core starts executing using
an entry from a vector table, and directly jumps to the start label, you should omit this argument.

The synbol argument specifies the name of the label in the application code that should be located
at the specified start address. The synbol argument is required. The linker will resolve the start symbol
and use its value after locating for the start address field in IEEE-695 files and Intel Hex files. If you
also specified the r un_addr argument, the start symbol (label) must point to a section. The linker
locates this section such that the start symbol ends up on the start address.

space space_nanme

{

765

TASKING VX-toolset for TriCore User Guide

stack nanme (mn_size = 1k, grows = low_to_high);
reserved start_address .. end_address;
start_address (run_addr = 0x0000,

synbol = "start_Ilabel ")

map (map_description);

}

15.4.4. Mappings

You can use a mapping when you define a space, bus or memory. With the map field you specify how
addresses from the source (space, bus or memory) are translated to addresses of a destination (space,
bus). The following mappings are possible:

* space => space

* space => bus

* bus => bus

* memory => bus

With a mapping you specify a range of source addresses you want to map (specified by a source offset
and a size), the destination to which you want to map them (a bus or another address space), and the
offset address in the destination.

» The dest argument specifies the destination. This can be a bus or another address space (only for
a space to space mapping). This argument is required.

» The src_of f set argument specifies the offset of the source addresses. In combination with size, this
specifies the range of address that are mapped. By default the source offset is 0x0000.

» The si ze argument specifies the number of addresses that are mapped. This argument is required.

» The dest _of f set argument specifies the position in the destination to which the specified range of
addresses is mapped. By default the destination offset is 0x0000.

If you are mapping a bus to another bus, the number of data lines of each bus may differ. In this case
you have to specify a range of source data lines you want to map (sr c_dbi t s =begi n. . end) and the
range of destination data lines you want to map them to (dest _dbits =first.. | ast).

* The src_dbi t s argument specifies a range of data lines of the source bus. By default all data lines
are mapped.

» The dest _dbi t s argument specifies a range of data lines of the destination bus. By default, all data
lines from the source bus are mapped on the data lines of the destination bus (starting with line 0).

From space to space
If you map an address space to another address space (nesting), you can do this by mapping the subspace

to the containing larger space. In this example a small space of 64 kB is mapped on a large space of 16
MB.

766

Linker Script Language (LSL)

space small

{
id = 2;
mau = 4;
map (src_offset = 0, dest_offset = 0,
dest = space : large, size = 64k);
3

From space to bus
All spaces that are not mapped to another space must map to a bus in the architecture:

space large

{
id = 1;
mau = 4;
map (src_offset = 0, dest_offset = 0,
dest = bus:bus_name, size = 16M);
s

From bus to bus

The next example maps an external bus called e_bus to an internal bus called i_bus. This internal bus
resides on a core called mycore. The source bus has 16 data lines whereas the destination bus has only
8 data lines. Therefore, the keywords sr c_dbi t s and dest _dbi t s specify which source data lines are
mapped on which destination data lines.

architecture mycore

{
bus i_bus
{
mau = 4;
¥
space i_space
{ map (dest=bus:i_bus, size=256);
¥
¥
bus e_bus
{
mau = 16;
width = 16;
map (dest = bus:mycore:i_bus, src_dbits = 0..7, dest_dbits = 0..7)
3

It is not possible to map an internal bus to an external bus.

767

TASKING VX-toolset for TriCore User Guide

15.5. Semantics of the Derivative Definition

Keywords in the derivative definition

derivative
extends
core
architecture
bus
mau
width
map
memory
type reserved rom ram nvram
mau
size
speed
map
section_layout
section_setup

map
dest bus space
dest _dbits
dest_offset
size
src_dbits
src_offset

15.5.1. Defining a Derivative

With the keyword der i vat i ve you define a derivative and assign a unique name to it. The name is used
to refer to it at other places in the LSL file:

derivative nane

{
}

If you are defining multiple derivatives that show great resemblance, you can define the common features
in a parent derivative and extend this with a child derivative that contains specific features. The child
inherits all features of the parent (cores and memories). With the keyword ext ends you create a child
derivative:

definitions

derivative nane_chil d_deriv extends nane_parent _deriv

{
}

definitions

768

Linker Script Language (LSL)

As with a core architecture, a derivative can have any number of parameters. These are identifiers which
get values assigned on instantiation or extension of the derivative. You can use them in any expression
within the derivative definition.

derivative nane_child_deriv (parml, parn2=1)
ext ends name_parent _deriv (argunents)
{

}

15.5.2. Instantiating Core Architectures

definitions

With the keyword cor e you instantiate a core architecture in a derivative.

» With the keyword ar chi t ect ur e you tell the linker that the given core has a certain architecture. The
architecture name refers to an existing architecture definition in the same LSL file.

For example, if you have two cores (called mycore_1 and mycore_2) that have the same architecture
(called mycorearch), you must instantiate both cores as follows:

core mycore_1

{

architecture = mycorearch;
}
core mycore_2
{

architecture = mycorearch;
}

If the architecture definition has parameters you must specify the arguments that correspond with the
parameters. For example mycorearchl expects two parameters which are used in the architecture
definition:

core mycore

{
}

architecture = mycorearchl (1,2);

15.5.3. Defining Internal Memory and Buses

With the nenor y keyword you define physical memory that is present on the target board. The memory
name is used to identify the memory and does not conflict with other identifiers. It is common to define
internal memory (on-chip) in the derivative definition. External memory (off-chip memory) is usually defined
in the board specification (See Section 15.6.3, Defining External Memory and Buses).

» The t ype field specifies a memory type:

e rom read-only memory - it can only be written at load-time

769

TASKING VX-toolset for TriCore User Guide

« ramrandom access volatile writable memory - writing at run-time is possible while writing at load-time
has no use since the data is not retained after a power-down

e nvr am non volatile ram - writing is possible both at load-time and run-time

The optional r eser ved qualifier before the memory type, tells the linker not to locate any section in
the memory by default. You can locate sections in such memories using an absolute address or range
restriction (see subsection Locating a group in Section 15.8.2, Creating and Locating Groups of Sections).

The mau field specifies the MAU size (Minimum Addressable Unit) of the memory. This field is required.
The si ze field specifies the size in MAU of the memory. This field is required.

The speed field specifies a symbolic speed for the memory (1..4): 1 is the slowest, 4 the fastest. The
linker uses the relative speed of the memories in such a way, that faster memory is used before slower
memory. The default speed is 1.

The map field specifies how this memory maps onto an (internal) bus. Mappings are described in
Section 15.4.4, Mappings.

menory mem name

{

}

type = rom;
mau = 8;

size = 64k;
speed = 2;

map (map_description);

With the bus keyword you define a bus in a derivative definition. Buses are described in Section 15.4.2,
Defining Internal Buses.

15.6. Semantics of the Board Specification

Keywords in the board specification

processor

derivative

bus

mau
width
map

memory

type reserved rom ram nvram
mau

size

speed

map

map
dest bus space

770

Linker Script Language (LSL)

dest_dbits
dest_offset
size
src_dbits
src_offset

15.6.1. Defining a Processor

If you have a target board with multiple processors that have the same derivative, you need to instantiate
each individual processor in a processor definition. This information tells the linker which processor has
which derivative and enables the linker to distinguish between the present processors.

If you use processors that all have a unique derivative, you may omit the processor definitions.
In this case the linker assumes that for each derivative definition in the LSL file there is one
processor. The linker uses the derivative name also for the processor.

With the keyword pr ocessor you define a processor. You can freely choose the processor name. The
name is used to refer to it at other places in the LSL file:

processor proc_nane

{
}

15.6.2. Instantiating Derivatives

processor definition

With the keyword der i vat i ve you tell the linker that the given processor has a certain derivative. The
derivative name refers to an existing derivative definition in the same LSL file.

For example, if you have two processors on your target board (called myproc_1 and myproc_2) that
have the same derivative (called myderiv), you must instantiate both processors as follows:

processor myproc_1

{

derivative = myderiv;
3
processor myproc_2
{

derivative = myderiv;
ks

If the derivative definition has parameters you must specify the arguments that correspond with the
parameters. For example myderivl expects two parameters which are used in the derivative definition:

processor myproc

{
}

derivative = myderivl (2,4);

771

TASKING VX-toolset for TriCore User Guide

15.6.3. Defining External Memory and Buses

It is common to define external memory (off-chip) and external buses at the global scope (outside any
enclosing definition). Internal memory (on-chip memory) is usually defined in the scope of a derivative
definition.

With the keyword menory you define physical memory that is present on the target board. The memory
name is used to identify the memory and does not conflict with other identifiers. If you define memory
parts in the LSL file, only the memory defined in these parts is used for placing sections.

If no external memory is defined in the LSL file and if the linker option to allocate memory on demand is
set then the linker will assume that all virtual addresses are mapped on physical memory. You can override
this behavior by specifying one or more memory definitions.

menory mem name

{

type = rom;

mau = 8;

size = 64k;

speed = 2;

map (map_description);
}

For a description of the keywords, see Section 15.5.3, Defining Internal Memory and Buses.

With the keyword bus you define a bus (the combination of data and corresponding address bus). The
bus name is used to identify a bus and does not conflict with other identifiers. Bus descriptions at the
global scope (outside any definition) define external buses. These are buses that are present on the target
board.

bus bus_nane

{

mau = 8;

width = 8;

map (map_description);
}

For a description of the keywords, see Section 15.4.2, Defining Internal Buses.

You can connect off-chip memory to any derivative: you need to map the off-chip memory to a bus and
map that bus on the internal bus of the derivative you want to connect it to.

15.7. Semantics of the Section Setup Definition

Keywords in the section setup definition

section_setup
stack
min_size
grows low_to_high high_to_low
align

772

Linker Script Language (LSL)

fixed
id
heap
min_size
grows low_to_high high_to_low
align
fixed
id
vector_table
vector_size
size
id_symbol_prefix
run_addr
template
template_symbol
vector_prefix
fill
no_inline
copy
vector
id
fill loop
reserved

15.7.1. Setting up a Section

With the keyword sect i on_set up you can define stacks, heaps, vector tables, and/or reserved address
ranges outside their address space definition.

section_setup ::my_space

{
vector table statenents
reserved address range
stack definition
heap definition

3

See the subsections Stacks and heaps, Vector table and Reserved address ranges in Section 15.4.3,
Defining Address Spaces for details on the keywords st ack, heap, vect or _t abl e and r eser ved.

15.8. Semantics of the Section Layout Definition

Keywords in the section layout definition

section_layout

direction low_to_high high_to_low
group

align

attributes + - rwxbis

copy

773

TASKING VX-toolset for TriCore User Guide

nocopy
fill
ordered
contiguous
clustered
overlay
allow_cross_references
load_addr
mem
run_addr
mem
page
page_size
priority
select
stack
size
heap
size
reserved
size
attributes rw x
fill
alloc_allowed absolute
copytable
section
size
blocksize
attributes rw x
fill
overflow

if
else

15.8.1. Defining a Section Layout

With the keyword sect i on_| ayout you define a section layout for exactly one address space. In the
section layout you can specify how input sections are placed in the address space, relative to each other,
and what the absolute run and load addresses of each section will be.

You can define one or more section definitions. Each section definition arranges the sections in one
address space. You can precede the address space name with a processor name and/or core name,
separated by colons. You can omit the processor name and/or the core name if only one processor is
defined and/or only one core is present in the processor. A reference to a space in the only core of the
only processor in the system would look like ": :my_space". A reference to a space of the only core on
a specific processor in the system could be "my_chip: :my_space". The next example shows a section
definition for sections in the my_space address space of the processor called my_chip:

section_|l ayout my chip::my_space (|locate_direction)

{

774

Linker Script Language (LSL)

section statenents

}

With the optional keyword di r ect i on you specify whether the linker starts locating sections from

| ow_t o_hi gh (default) or from hi gh_t o_I ow. In the second case the linker starts locating sections at
the highest addresses in the address space but preserves the order of sections when necessary (one
processor and core in this example).

section_|l ayout ::my _space (direction = high_to_|low)

{
}

section statenents

If you do not explicitly tell the linker how to locate a section, the linker decides on the basis of the
section attributes in the object file and the information in the architecture definition and memory
parts where to locate the section.

15.8.2. Creating and Locating Groups of Sections

Sections are located per group. A group can contain one or more (sets of) input sections as well as other
groups. Per group you can assign a mutual order to the sets of sections and locate them into a specific
memory part.

group (group_specifications)

{
}

With the sect i on_st at enent s you generally select sets of sections to form the group. This is described
in subsection Selecting sections for a group.

section_statenments

Instead of selecting sections, you can also modify special sections like stack and heap or create a reserved
section. This is described in Section 15.8.3, Creating or Modifying Special Sections.

With the gr oup_speci fi cati ons you actually locate the sections in the group. This is described in
subsection Locating a group.

Selecting sections for a group

With the keyword sel ect you can select one or more sections for the group. You can select a section
by name or by attributes. If you select a section by name, you can use a wildcard pattern:

* matches with all section names
? matches with a single character in the section name
\ takes the next character literally

[abc] matches with a single 'a’, 'b' or 'c' character
[a-z] matches with any single character in the range 'a' to 'z’

775

TASKING VX-toolset for TriCore User Guide

group (-..)

{
sel ect "mysection';
sel ect "*';

}

The first sel ect statement selects the section with the name "mysection”. The second sel ect
statement selects all sections that were not selected yet.

A section is selected by the first select statement that matches, in the union of all section layouts for the
address space. Global section layouts are processed in the order in which they appear in the LSL file.
Internal core architecture section layouts always take precedence over global section layouts.

» Theattri but es field selects all sections that carry (or do not carry) the given attribute. With +attribute
you select sections that have the specified attribute set. With -attribute you select sections that do not
have the specified attribute set. You can specify one or more of the following attributes:

 rreadable sections

e w writable sections

« X executable sections

« iinitialized sections

* b sections that should be cleared at program startup
« s scratch sections (not cleared and not initialized)

To select all read-only sections:

group (...)
{

}

Keep in mind that all section selections are restricted to the address space of the section layout in which
this group definition occurs.

select (attributes = +r-w);

» With the r ef _t r ee field you can select a group of related sections. The relation between sections is
often expressed by means of references. By selecting just the 'root' of tree, the complete tree is selected.
This is for example useful to locate a group of related sections in special memory (e.g. fast memory).
The (referenced) sections must meet the following conditions in order to be selected:

1. The sections are within the section layout's address space
2. The sections match the specified attributes
3. The sections have no absolute restriction (as is the case for all wildcard selections)

For example, to select the code sections referenced from fool:

776

Linker Script Language (LSL)

group refgrp (ordered, contiguous, run_addr=mem:ext_c)

{
}

If section fool references foo2 and foo2 references o003, then all these sections are selected by
the selection shown above.

select ref_tree "fool" (attributes=+x);

Locating a group

group group_name (group_specifications)

{
}

With the gr oup_speci fi cat i ons you actually define how the linker must locate the group. You can
roughly define three things: 1) assign properties to the group like alignment and read/write attributes, 2)
define the mutual order in the address space for sections in the group and 3) restrict the possible addresses
for the sections in a group.

section_statenments

The linker creates labels that allow you to refer to the begin and end address of a group from within the
application software. Labels _| c_gb_group_nane and _| c_ge_gr oup_nane mark the begin and end
of the group respectively, where the begin is the lowest address used within this group and the end is the
highest address used. Notice that a group not necessarily occupies all memory between begin and end
address. The given label refers to where the section is located at run-time (versus load-time).

1. Assign properties to the group like alignment and read/write attributes.

These properties are assigned to all sections in the group (and subgroups) and override the attributes
of the input sections.

» The al i gn field tells the linker to align all sections in the group and the group as a whole according
to the align value. By default the linker uses the largest alignment constraint of either the input
sections or the alignment of the address space.

« The at tri but es field tells the linker to assign one or more attributes to all sections in the group.
This overrules the default attributes. By default the linker uses the attributes of the input sections.
You can set the r, w, or rw attributes and you can switch between the b and s attributes.

» The copy field tells the linker to locate a read-only section in RAM and generate a ROM copy and
a copy action in the copy table. This property makes the sections in the group writable which causes
the linker to generate ROM copies for the sections.

» The effect of the nocopy field is the opposite of the copy field. It prevents the linker from generating
ROM copies of the selected sections.

2. Define the mutual order of the sections in the group.

By default, a group is unrestricted which means that the linker has total freedom to place the sections
of the group in the address space.

777

TASKING VX-toolset for TriCore User Guide

* The or der ed keyword tells the linker to locate the sections in the same order in the address space
as they appear in the group (but not necessarily adjacent).

Suppose you have an ordered group that contains the sections 'A’, 'B' and 'C'. By default the linker
places the sections in the address space like ‘A’ - 'B' - 'C', where section 'A’ gets the lowest possible
address. With di recti on=hi gh_t o_| owin the secti on_| ayout space properties, the linker
places the sections in the address space like 'C' - 'B' - 'A’, where section 'A’ gets the highest possible
address.

» The cont i guous keyword tells the linker to locate the sections in the group in a single address
range. Within a contiguous group the input sections are located in arbitrary order, however the group
occupies one contiguous range of memory. Due to alignment of sections there can be 'alignment
gaps' between the sections.

When you define a group that is both or der ed and cont i guous, this is called a sequential group.
In a sequential group the linker places sections in the same order in the address space as they
appear in the group and it occupies a contiguous range of memory.

» The cl ust er ed keyword tells the linker to locate the sections in the group in a number of contiguous
blocks. It tries to keep the number of these blocks to a minimum. If enough memory is available, the
group will be located as if it was specified as cont i guous. Otherwise, it gets split into two or more
blocks.

If a contiguous or clustered group contains alignment gaps, the linker can locate sections that are
not part of the group in these gaps. To prevent this, you can use the fi | | keyword. If the group is
located in RAM, the gaps are treated as reserved (scratch) space. If the group is located in ROM,
the alignment gaps are filled with zeros by default. You can however change the fill pattern by
specifying a bit pattern. The result of the expression, or list of expressions, is used as values to write
to memory, each in MAU.

» The over | ay keyword tells the linker to overlay the sections in the group. The linker places all
sections in the address space using a contiguous range of addresses. (Thus an overlay group is
automatically also a contiguous group.) To overlay the sections, all sections in the overlay group
share the same run-time address.

For each input section within the overlay the linker automatically defines two symbols. The symbol
_lc_cb_section_nane is defined as the load-time start address of the section. The symbol
_lc_ce_section_nane is defined as the load-time end address of the section. C (or assembly)
code may be used to copy the overlaid sections.

If sections in the overlay group contain references between groups, the linker reports an error. The
keyword al | ow_cr oss_r ef er ences tells the linker to accept cross-references. Normally, it does
not make sense to have references between sections that are overlaid.

group ovl (overl ay)

{

group a

{

select "my_ovl_pl";
select "my_ovl_p2";

778

Linker Script Language (LSL)

group b
{

}

select "my ovl_ql";

It may be possible that one of the sections in the overlay group already has been defined in
another group where it received a load-time address. In this case the linker does not overrule
this load-time address and excludes the section from the overlay group.

3. Restrict the possible addresses for the sections in a group.

The load-time address specifies where the group's elements are loaded in memory at download time.
The run-time address specifies where sections are located at run-time, that is when the program is
executing. If you do not explicitly restrict the address in the LSL file, the linker assigns addresses to
the sections based on the restrictions relative to other sections in the LSL file and section alignments.
The program is responsible for copying overlay sections at appropriate moment from its load-time
location to its run-time location (this is typically done by the startup code).

e The run_addr keyword defines the run-time address. If the run-time location of a group is set
explicitly, the given order between groups specify whether the run-time address propagates to the
parent group or not. The location of the sections a group can be restricted either to a single absolute
address, or to a number of address ranges (not including the end address). With an expression you
can specify that the group should be located at the absolute address specified by the expression:

group (run_addr = 0xa00f0000)
You can use the '[of f set]' variant to locate the group at the given absolute offset in memory:
group (run_addr = mem A[0x1000])

Arange can be an absolute space address range, writtenas [expr .. expr], acomplete memory
device, written as mem mem_nane, or a memory address range, mem mem_name[expr .. expr

]

group (run_addr = nmem my_dram)
You can use the '|' to specify an address range of more than one physical memory device:
group (run_addr = nem A | nem B)

» Thel oad_addr keyword changes the meaning of the section selection in the group: the linker

selects the load-time ROM copy of the named section(s) instead of the regular sections. Just like
run_addr you can specify an absolute address or an address range.

group (contiguous, | oad_addr)

{
select "mydata'; // select ROM copy of mydata:

// "[mydata]”

779

TASKING VX-toolset for TriCore User Guide

The load-time and run-time addresses of a group cannot be set at the same time. If the load-time
property is set for a group, the group (only) restricts the positioning at load-time of the group's
sections. It is not possible to set the address of a group that has a not-unrestricted parent group.

The properties of the load-time and run-time start address are:

< At run-time, before using an element in an overlay group, the application copies the sections from
their load location to their run-time location, but only if these two addresses are different. For
non-overlay sections this happens at program start-up.

» The start addresses cannot be set to absolute values for unrestricted groups.

« For non-overlay groups that do not have an overlay parent, the load-time start address equals the
run-time start address.

« For any group, if the run-time start address is not set, the linker selects an appropriate address.

« If an ordered group or sequential group has an absolute address and contains sections that have
separate page restrictions (not defined in LSL), all those sections are located in a single page. In
other cases, for example when an unrestricted group has an address range assigned to it, the
paged sections may be located in different pages.

For overlays, the linker reserves memory at the run-time start address as large as the largest element
in the overlay group.

» The page keyword tells the linker to place the group in one page. Instead of specifying a run-time
address, you can specify a page and optional a page number. Page numbers start from zero. If you
omit the page number, the linker chooses a page.

The page keyword refers to pages in the address space as defined in the architecture definition.

» With the page_si ze keyword you can override the page alignment and size set on the address
space. When you set the page size to zero, the linker removes simple (auto generated) page
restrictions from the selected sections. See also the page_si ze keyword in Section 15.4.3, Defining
Address Spaces.

« With the pri ori ty keyword you can change the order in which sections are located. This is useful
when some sections are considered important for good performance of the application and a small
amount of fast memory is available. The value is a number for which the default is 1, so higher
priorities start at 2. Sections with a higher priority are located before sections with a lower priority,
unless their relative locate priority is already determined by other restrictions like r un_addr and

page.

group (priority=2)
{
select "importantcodel™;

select "importantcode2";

}

780

Linker Script Language (LSL)

15.8.3. Creating or Modifying Special Sections

Instead of selecting sections, you can also create a reserved section or an output section or modify special
sections like a stack or a heap. Because you cannot define these sections in the input files, you must use
the linker to create them.

Stack

» The keyword st ack tells the linker to reserve memory for the stack. The name for the stack section
refers to the stack as defined in the architecture definition. If no name was specified in the architecture
definition, the default name is stack.

With the keyword si ze you can specify the size for the stack. If the size is not specified, the linker uses
the size given by the m n_si ze argument as defined for the stack in the architecture definition. Normally
the linker automatically tries to maximize the size, unless you specified the keyword f i xed.

group C ---)
{

}

The linker creates two labels to mark the begin and end of the stack, _| c_ub_st ack_nane for the
begin of the stack and _| ¢c_ue_st ack_nane for the end of the stack. The linker allocates space for
the stack when there is a reference to either of the labels.

stack "mystack"™ (size = 2k);

See also the st ack keyword in Section 15.4.3, Defining Address Spaces.

Heap

» The keyword heap tells the linker to reserve a dynamic memory range for the mal loc() function.
Each heap section has a name. With the keyword si ze you can change the size for the heap. If the
si ze is not specified, the linker uses the size given by the m n_si ze argument as defined for the heap
in the architecture definition. Normally the linker automatically tries to maximize the size, unless you
specified the keyword f i xed.

group (-..)
{

}

The linker creates two labels to mark the begin and end of the heap, _| ¢_ub_heap_nan® for the begin
of the heap and _| c_ue_heap_nane for the end of the heap. The linker allocates space for the heap
when a reference to either of the section labels exists in one of the input object files.

heap "myheap"™ (size = 2k);

Reserved section

» The keyword r eser ved tells the linker to create an area or section of a given size. The linker will not
locate any other sections in the memory occupied by a reserved section, with some exceptions. Each
reserved section has a name. With the keyword si ze you can specify a size for a given reserved area
or section.

781

TASKING VX-toolset for TriCore User Guide

group (...)
{
reserved "myreserved" (size = 2k);
}
The optional fi | | field contains a bit pattern that the linker writes to all memory addresses that remain

unoccupied during the locate process. The result of the expression, or list of expressions, is used as
values to write to memory, each in MAU. The first MAU of the fill pattern is always the first MAU in the
section.

By default, no sections can overlap with a reserved section. With al | oc_al | owed=absol ut e sections
that are located at an absolute address due to an absolute group restriction can overlap a reserved
section.

With the at t ri but es field you can set the access type of the reserved section. The linker locates the
reserved section in its space with the restrictions that follow from the used attributes, r, w or x or a valid
combination of them. The allowed attributes are shown in the following table. A value between < and
> in the table means this value is set automatically by the linker.

Properties set in LSL |Resulting section properties
attributes |filled access |memory |content

X yes <rom> executable
r yes r <rom> data

r no r <rom> scratch

rx yes r <rom> executable
w yes rw <ram> data

rw no rw <ram> scratch
rwx yes rw <ram> executable
group (...)

{

reserved "myreserved" (size = 2k,
attributes = rw, fill = Oxaa);

}

If you do not specify any attributes, the linker will reserve the given number of maus, no matter what
type of memory lies beneath. If you do not specify a fill pattern, no section is generated.

The linker creates two labels to mark the begin and end of the section, _| ¢_ub_nane for the begin of
the section and _I| c_ue_nane for the end of the reserved section.

Output sections

» The keyword sect i on tells the linker to accumulate sections obtained from object files (“input sections™)
into an output section of a fixed size in the locate phase. You can select the input sections with sel ect
statements. You can use groups inside output sections, but you can only setthe al i gn, attri but es
and | oad_addr attributes.

782

Linker Script Language (LSL)

Thefill field contains a bit pattern that the linker writes to all unused space in the output section.
When all input sections have an image (code/data) you must specify a fill pattern. If you do not specify
a fill pattern, all input sections must be scratch sections. The fill pattern is aligned at the start of the
output section.

As with a reserved section you can use the at t ri but es field to set the access type of the output
section.

group (---)
{
section "myoutput" (size = 4k, attributes = rw,
fill = Oxaa)
{
sel ect "myinputl™;
sel ect "myinput2™;
}

}

The available room for input sections is determined by the si ze, bl ocksi ze and over f | owfields.
With the keyword si ze you specify the fixed size of the output section. Input sections are placed from
output section start towards higher addresses (offsets). When the end of the output section is reached
and one or more input sections are not yet placed, an error is emitted. If however, the over f | owfield
is set to another output section, remaining sections are located as if they were selected for the overflow
output section.

group (-.-)
{
section "tskl_data" (size=4k, attributes=rw, fill=0,
overflow = "overflow_data')
{

select ".data.tskl.*"

}
section "tsk2_data" (size=4k, attributes=rw, fill=0,
overflow = "overflow_data')

{
select "_data.tsk2._.*"
}
section "overflow_data" (size=4k, attributes=rx,
fill=0)
{
}
}

With the keyword bl ocksi ze , the size of the output section will adapt to the size of its content. For
example:

group flash_area (run_addr = 0x10000)
{

section "flash_code" (bl ocksize=4k, attributes=rx,
fill=0)
{

783

TASKING VX-toolset for TriCore User Guide

select "*._flash";

}
}

If the content of the section is 1 mau, the size will be 4 kB, if the content is 11 kB, the section will be
12 kB, etc. If you use si ze in combination with bl ocksi ze, the si ze value is used as default (minimal)
size for this section. If it is omitted, the default size will be of bl ocksi ze. It is not allowed to omit both
si ze and bl ocksi ze from the section definition.

The linker creates two labels to mark the begin and end of the section, _| ¢_ub_nane for the begin of
the section and _I c_ue_nane for the end of the output section.

Copy table

» The keyword copyt abl e tells the linker to select a section that is used as copy table. The content of
the copy table is created by the linker. It contains the start address and length of all sections that should
be initialized by the startup code.

The linker creates two labels to mark the begin and end of the section, _| ¢c_ub_t abl e for the begin
of the section and _| c_ue_t abl e for the end of the copy table. The linker generates a copy table
when a reference to either of the section labels exists in one of the input object files.

15.8.4. Creating Symbols

You can tell the linker to create symbols before locating by putting assignments in the section layout
definition. Symbol names are represented by double-quoted strings. Any string is allowed, but object files
may not support all characters for symbol names. You can use two different assignment operators. With
the simple assignment operator '=', the symbol is created unconditionally. With the ':=' operator, the
symbol is only created if it already exists as an undefined reference in an object file.

The expression that represents the value to assign to the symbol may contain references to other symbols.
If such a referred symbol is a special section symbol, creation of the symbol in the left hand side of the
assignment will cause creation of the special section.

section_layout

{
" Ic_cp” := "_lc_ub_table";
// when the symbol _lIc_cp occurs as an undefined reference
// in an object file, the linker generates a copy table

}

15.8.5. Conditional Group Statements
Within a group, you can conditionally select sections or create special sections.

» With the if keyword you can specify a condition. The succeeding section statement is executed if the
condition evaluates to TRUE (1).

» The optional else keyword is followed by a section statement which is executed in case the if-condition
evaluates to FALSE (0).

784

Linker Script Language (LSL)

group (-..)
{
if (exists("mysection"))
select "mysection';
el se
reserved "myreserved"” (size=2k);

785

TASKING VX-toolset for TriCore User Guide

786

Chapter 16. Debug Target Configuration Files

DTC files (Debug Target Configuration files) define all possible configurations for a debug target. A debug
target can be target hardware such as an evaluation board or a simulator. The DTC files are used by
Eclipse to configure the project and the debugger. The information is used by the Target Board
Configuration wizard and the debug configuration. DTC files are located in the etc directory of the installed
product and use .dtc as filename suffix.

Based on the DTC files, the Target Board Configuration wizard adjust the project's LSL file and creates
a debug launch configuration.

16.1. Custom Board Support

When you need support for a custom board and the board requires a different configuration than those
that are in the product, it is necessary to create a dedicated DTC file.

To add a custom board

1. From the etc directory of the product, make a copy of a .dtc file and put it in your project directory
(in the current workspace).

In Eclipse, the DTC file should now be visible as part of your project.
2. Edit the file and give it a name that reflects the custom board.

The Target Board Configuration wizard in Eclipse adds DTC files that are present in your current project
to the list of available target boards.

Syntax of a DTC file

DTC files are XML files. Use a delivered .dtc file as a starting point for creating a custom board
specification.

Basically a DTC file consists of the definition of the debug target (debugTarget element) which embodies
one or more communication methods (communicationMethod element). Within each communication
method, you can define multiple configurations (configuration element). The Target Board Configuration
wizard in Eclipse reflects the structure of the DTC file. The elements that determine the settings that are
applied by the wizard, can be found at any level in the DTC file. The wizard will apply all elements that
are within the path to the selected configuration. This is best explained by an example of a DTC file with
the following basic layout:

debugTarget: Infineon TriBoard TC1165
clzsr:wmunicationMethod: DAS over MiniWigglerll
clzirlwfiguration: Single Chip
communic;:::onMethod: DAS over USB-Wiggler
clzirlwfiguration: Single Chip

787

TASKING VX-toolset for TriCore User Guide

Isl
Isl

In this example there is an LSL element at every level. If, in the Target Board Configuration wizard in
Eclipse, you set the debug target configuration to "DAS over MiniWigglerll" -> "Single Chip", the wizard
puts the following LSL parts into the project's LSL file in this order:

the Isl part under the debugTarget element

the Isl part under the communi cationMethod "DAS over MiniWigglerll" element

the Isl part under the configuration "Single Chip" in the communicationMethod "DAS over
MiniWigglerll" element

« the Isl part in the debugTarget element at the end of the DTC file

The same applies to all other elements that determine the underlying settings.

DTC macros in LSL

To protect the Target Board Configuration wizard from changing the LSL file, you can protect the LSL file
by adding the macro ___DTC_IGNORE. This can be useful for projects that need the same LSL file, but
still need to run on different target boards.

#define _ DTC_IGNORE

The following DTC macros can be present in the LSL file:

LSL Define Description

__DTC_IGNORE If defined, protects the LSL file against changes by the Target Board
Configuration wizard.

__DTC_START The LSL part that is between these macros can be replaced by LSL text

__DTC_END from the DTC file. If the macros are not present in the LSL file, the Target
Board Configuration wizard will add them.

16.2. Description of DTC Elements and Attributes

The following table contains a description of the DTC elements and attributes. For each element a list of
allowed elements is listed and the available attributes are described.

Element / Attribute Description Allowed Elements
debugTarget The debug target. flashChips, Isl,
name The name of the configuration. communicationMethod,
def, processor,
manufacturer The manufacturer of the debug target. resource, initialize
processor Defines a processor that can be presenton |-
the debug target. Multiple processor definitions
are allowed. The user should select the actual
processor on the debug target.

788

Debug Target Configuration Files

Element / Attribute

Description

Allowed Elements

name

cpu

A descriptive name of the processor derivative.

Defines the CPU name, as for example
supplied with the option --cpu of the C
compiler.

communicationMethod

name

debuglnstrument

gdiMethod

Defines a communication method. A
communication method is the channel that is
used to communicate with the target.

A descriptive name of the communication
method.

The debug instrument DLL/Shared library file
to be used for this communication method. Do
not supply a path or a filename suffix.

This is the method used for communication.
Allowed values: rs232, tcpip, can, hone

ref, resource, initialize,
configuration, Isl,
processor

def

id

Define a set of elements as a macro. The
macro can be expanded using the ref
element.

The macro name.

Isl, resource, initialize,
ref, configuration,
flashMonitor

resource

value

Defines a resource definition that can be used
by Eclipse, the debugger or by the debug
instrument.

The identifier name used by the debugger or
debug instrument to retrieve the value.

The value assigned to the resource.

ref

id

Reference to a macro defined with a def
element. The elements contained in the def
element with the same name will be expanded
at the location of the ref. Multiple refs to the
same def are allowed.

The name of the referenced macro.

configuration

name

Defines a configuration.

The descriptive name of the configuration.

ref, initialize, resource,
Isl, flashMonitor,
processor

resourceld

This element defines an initialization
expression. Each initialize element contains a
resourceld attribute. If the DI requests this
resource the debugger will compose a string
from all initialize elements with the same
resourceld. This DI can use this string to
initialize registers by passing it to the debugger
as an expression to be evaluated.

The name of the resource to be used.

789

TASKING VX-toolset for TriCore User Guide

available on this debug target.

Element / Attribute Description Allowed Elements
name The name of the register to be initialized.
value When the cstart attribute is false, this is the
value to be used, otherwise, it is the default
value when using this configuration. It will be
used by the startup code editor to set the
default register values.
cstart A boolean value. If true the debugger should
ask the C startup code editor for the value,
otherwise the contents of the value attribute is
used. The default value is true.
flashMonitor This element specifies the flash programming |-
monitor to be used for this configuration.
monitor Filename of the monitor, usually an Intel Hex
or S-Record file.
workspaceAddress The address of the workspace of the flash
programming monitor.
FlashSectorBufferSize|Specifies the buffer size for buffering a flash
sector.
chip This element defines a flash chip. It must be |debugTarget
used by the flash properties page to add it on
request to the list of flash chips.
vendor The vendor of this flash chip.
chip The name of the chip.
width The width of the chip in bits.
chips The number of chips present on the board.
baseAddress The base address of the chip.
chipSize The size of the chip in bytes.
flashChips Specify a list of flash chips that can be chip

Isl

Defines LSL pieces belonging to the
configuration part. The LSL text must be
defined between the start and end tag of this
element. All LSL texts of the active selection
will be placed in the project's LSL file.

16.3. Special Resource Identifiers

The following resource IDs are available in the TASKING VX-toolset for TriCore:

790

Debug Target Configuration Files

DAS debug instrument (DI): gdi2das

Resource Name

Description

Possible Values

in milliseconds. The default is 0x4000.

AccessPort The port used to connect to the wiggler. JTAG1, USBO
DASserver The DAS Server used for communication. JTAG JDRV LPT
JTAG over USB Box
JTAG over USB Chip
DasTimeOut The timeout value for communication with the DAS server

RegisterFile

The core register file that is used by the debug instrument.
This is usually "regbase_f7el.dat" or "regbase_ffff.dat",
depending on the register base address.

TerminateServer

Terminate the DAS server when the session is closed.

0,1

16.4. Initialize Elements

The initialize elements are used to initialize SFRs at startup. This is also done using a resource of
the debug instrument. The following resource Ids exist for the DAS debug instrument (gdi2das):

Resource Name

Description

einit

Initialize an SFR that is protected with the ENDINIT flag.

init

Initialize an SFR that is not protected with the ENDINIT flag.

791

TASKING VX-toolset for TriCore User Guide

792

Chapter 17. CPU Problem Bypasses and
Checks

Infineon Technologies regularly publishes microcontroller errata sheets for reporting both functional
problems and deviations from the electrical and timing specifications.

For some of these functional problems in the microcontroller itself, the TASKING VX-toolset for TriCore
provides workarounds. In fact these are software workarounds for hardware problems.

Support to deal with CPU functional problem is provided in three areas:

* Whenever possible and relevant, compiler bypasses will modify the code in order to avoid the identified
erroneous code sequences;

» The assembler gives warnings for suspicious or erroneous code sequences;

» Ready-built, 'protected' standard C libraries with bypasses for all identified TriCore CPU functional
problems are included in the toolset.

This chapter lists a summary of functional problems which can be bypassed by the TASKING VX-toolset
for TriCore. Please refer to the Infineon errata sheets for the CPU step you are using, to verify if you need
to use one of these bypasses.

To set a CPU bypass or check

1. From the Project menu, select Properties
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Processor.
In the right pane the Processor page appears.

3. From the Processor Selection list, select a processor.

The CPU Problem Bypasses and Checks box shows the available workarounds/checks available
for the selected processor.

4. (Optional) Select Show all CPU problem bypasses and checks.

5. Click Select All or select one or more individual options.
Overview of the CPU problem bypasses and checks
The following table contains an overview of the silicon bugs you can provide to the C compiler option

--silicon-bug and the assembler option --silicon-bug. WA means a workaround by the compiler, assembler
and/or linker, CK means a check by the compiler or assembler.

793

TASKING VX-toolset for TriCore User Guide

CPU Problem |Description Compiler |Assembler |Linker|CPU
CPUTC.013 |Unreliable context load/store WA CK TC1100, TC1115,
operation following an TC1130, TC11IB,
address register load TC1765, TC1766,
instruction TC1775,TC1792,
TC1796
CPUTC.018 |[LOOP over arithmetical WA CK TC1765, TC1775
instruction causes a jump to
an undefined address
CPU TC.021 |Incorrect forwarding from WA CK TC1765, TC1775
branch and link address
register update
CPUTC.023 |CALLI with target address in CK TC1765, TC1775
register A11 not functional
CPUTC.024 |Incorrect return address in |WA CK TC1765, TC1775
A11 when performing nested
calls
CPU TC.030 |Loop bug following the WA CK TC1765, TC1775
DVSTEP type instruction
CPUTC.031 |Wrong return address after |WA CK TC1765, TC1775
any divide instruction
CPU TC.033 [Circular addressing mode WA WA WA TC1765, TC1775
limitations
CPU TC.034 |DSYNC causes corruption of WA CK TC1765, TC1775
up to two following
instructions
CPU TC.043 |A load/store instruction to the WA TC1765, TC1775
last 16 bytes of a segment
can lead to undefined
behavior
CPU TC.048 |CPU fetches program from |WA CK TC1100, TC1115,
unexpected address TC1130, TC11IB,
TC1765, TC1766,
TC1775,TC1792,
TC1796
CPU TC.050 |A load instruction following a WA CK TC1765, TC1775
multicycle integer instruction
can get lost
CPUTC.051 |Reduced context save area |WA WA WA TC111IB
CPU TC.052 |Alignment Restrictions for WA TC1100, TC1115,

Accesses using PTE-Based
Translation

TC1130, TC11IB

794

CPU Problem Bypasses and Checks

CPU Problem |Description Compiler |Assembler |Linker | CPU
CPU TC.060 |LD.[A,DA] followed by a WA CK TC1100, TC1115,
dependent LD.[DA,D,W] can TC1130, TC11IB,
produce unreliable results TC1765, TC1766,
TC1775, TC1792,
TC1796
CPU TC.065 |Error when unconditional loop | WA CK TC1100, TC1115,
targets unconditional jump TC1130, TC11IB,
TC1765, TC1766,
TC1775, TC1792,
TC1796
CPU TC.068 |Potential PSW corruption by |WA CK TC1100, TC1115,
cancelled DVINIT instructions TC1130, TC11IB,
TC1765, TC1766,
TC1775,TC1792,
TC1796
CPU TC.069 |Potential incorrect operation |WA CK TC1100, TC1115,
of RSLCX instruction TC1130, TC11IB,
TC1765, TC1766,
TC1775, TC1792,
TC1796
CPUTC.070 |[Error when conditional jump |WA CK TC1100, TC1115,
precedes loop instruction TC1130, TC11IB,
TC1765, TC1766,
TC1775, TC1792,
TC1796
CPUTC.071 |Error when Conditional Loop |WA CK TC1100, TC1115,
targets Unconditional Loop TC1130, TC11IB,
TC1765, TC1766,
TC1775,TC1792,
TC1796
CPUTC.072 |Error when Loop Counter WA CK TC1100, TC1115,
modified prior to Loop TC1130, TC11IB,
instruction TC1765, TC1766,
TC1775, TC1792,
TC1796
CPUTC.074 |Interleaved LOOP/LOOPU WA TC1100, TC1115,
instructions may cause TC1130, TC11IB,
GRWP Trap TC1766, TC1792,
TC1796
CPUTC.081 |Error during Load A[10], Call CK TC1100, TC1115,

/ Exception Sequence

TC1130, TC11IB,
TC1766, TC1792,
TC1796

795

TASKING VX-toolset for TriCore User Guide

CPU Problem |Description Compiler |Assembler |Linker|CPU
CPU TC.082 |Data corruption possible when | WA CK TC1100, TC1115,
Memory Load follows Context TC1130, TC11IB,
Store TC1766, TC1792,
TC1796
CPU TC.083 |Interrupt may be taken WA CK TC1100, TC1115,
following DISABLE instruction TC1130, TC11IB,
TC1766, TC1792,
TC1796
CPUTC.094 |Potential Performance Loss |WA CK TC1100, TC1115,
when CSA Instruction follows TC1130, TC11IB,
IP Jump TC1766, TC1792,
TC1796
CPU TC.095 |Incorrect Forwarding in SAT, |WA CK TC1100, TC1115,
Mixed Register Instruction TC1130, TC11IB,
Sequence TC1766, TC1792,
TC1796
CPUTC.096 |Error when Conditional Loop |WA CK TC1100, TC1115,
targets Single Issue Group TC1130, TC11IB,
Loop TC1766, TC1792,
TC1796
CPU TC.103 |Spurious parity errors can be WA WA TC1100, TC1115,
generated TC1130, TC1766
CPUTC.104 |Double-word Load WA CK TC1100, TC1115,
instructions using Circular TC1130, TC1766,
Addressing mode can TC1792, TC1796
produce unreliable results
CPUTC.105 [|User/ Supervisor mode not |CK CK TC1766, TC1767,
staged correctly for Store TC1792, TC1796,
Instructions TC1797
CPU TC.106 |Incorrect PSW update for CK CK TC1767,TC1797
certain IP instructions
dual-issued with MTCR PSW
CPUTC.108 |Incorrect Data Size for WA CK TC1736, TC1766,
Circular Addressing mode TC1767, TC1792,
instructions with wrap-around TC1796, TC1797
CPUTC.109 |Circular Addressing Load can|WA CK TC1736, TC1766,
overtake conflicting Store in TC1767, TC1792,
Store Buffer TC1796, TC1797
DMU TC.001 |RMW accesses to DMU WA CK TC11IB,TC1765,TC1775
memory are not locked
PMITC.003 |MMU-PMU Address WA WA TC11IB

Translation

796

CPU Problem Bypasses and Checks

CPU Problem |Description

Compiler

Assembler

Linker

CPU

PMU TC.004 |PMU not addressable in split
mode via the LFI, bug will
trigger an LMB_ABORT

WA

WA

TC111B

TC1161, TC1162, TC1163, TC1164, TC1165, TC1166, TC1762, TC1764 have the same silicon

bugs as the TC1766.

797

TASKING VX-toolset for TriCore User Guide

CPU_TC.013

Command line option

--silicon-bug=cpu-tc013

Description

To bypass this CPU functional problem, the C compiler generates a NOP16 instruction if a 16-bit load/store
address register instruction (instructions: LD16 . A and ST16._A) is followed by a lower context load/store

instruction (instructions: LDLCX and STLCX).

The assembler issues a warning if a 16-bit load/store address register instruction (instructions: LD16 . A
and ST16.A) is followed by a lower context load/store instruction (instructions: LDLCX and STLCX).

798

CPU Problem Bypasses and Checks

CPU_TC.018

Command line option
--silicon-bug=cpu-tc018
Description

To bypass this CPU functional problem, the C compiler generates an 1SYNC instruction before each
LOOP, LOOP16 and LOOPU instruction.

The assembler issues a warning when the preceding instruction of a LOOP, LOOP16 or LOOPU instruction
is not an ISYNC instruction.

799

TASKING VX-toolset for TriCore User Guide

CPU_TC.021

Command line option
--silicon-bug=cpu-tc021
Description

To bypass this CPU functional problem, the C compiler generates a NOP instruction between a (target)
label and the instruction following it This is done when the instruction directly uses an An register for either
an effective address calculation or as the target of an indirect branch. Optionally an integer instruction
may directly follow the label.

For example, a NOP will be inserted after the following labels:
A label:
Ji a4

B label:
add dO, di ; Integer instruction
Ji a4

The assembler issues a warning for an instruction using an An register for either an effective address
calculation or as the target of an indirect branch that is located directly after a (target) label, optionally
with an integer instruction in between.

800

CPU Problem Bypasses and Checks

CPU_TC.023

Command line option
--silicon-bug=cpu-tc023
Description

There is no C compiler workaround required for this CPU functional problem, because the compiler does
not generate CALLI instructions with a target address in register A11.

The assembler generates an error for instruction CALL1 Al1.

801

TASKING VX-toolset for TriCore User Guide

CPU_TC.024

Command line option

--silicon-bug=cpu-tc024

Description

To bypass this CPU functional problem, the C compiler generates a NOP instruction at the very top of any
subroutine that starts with a CALL instruction or that starts with an integer instruction or MAC instruction

directly followed by a CALL instruction.

The assembler issues a warning when the first instruction of a subroutine is a CALL instruction or an
integer instruction or MAC instruction directly followed by a CALL instruction.

802

CPU Problem Bypasses and Checks

CPU_TC.030

Command line option
--silicon-bug=cpu-tc030
Description

To bypass this CPU functional problem, the C compiler generates an 1SYNC instruction prior to the LOOP
instruction if the last instruction in the loop is a DVSTEP or a DVSTEP _U.

The assembler issues a warning for loops where the last instruction is a DVSTEP or a DVSTEP . U.

803

TASKING VX-toolset for TriCore User Guide

CPU_TC.031

Command line option
--silicon-bug=cpu-tc031
Description

To bypass this CPU functional problem, the C compiler generates an I1SYNC instruction prior to the LOOP
instruction.

The assembler issues a warning if the LOOP instruction is not preceded by an 1SYNC instruction.

804

CPU Problem Bypasses and Checks

CPU_TC.033

Command line option
--silicon-bug=cpu-tc033
Description

To bypass this CPU functional problem, the C compiler aligns circular qualified buffers to a quad-word
boundary, and the compiler sizes all stack frames to an integral number of quad-words.

See Section 1.3.2, Circular Buffers: __circ for a description on how to declare a circular buffer.

To bypass this CPU functional problem, the assembler adds a macro to the C startup code to enable
initialization of the stack pointers to a quad-word boundary.

The preprocessor define __ CPU_TCO033___is used in the tc*. Isl linker script files to set the alignment
of the user stack and the interrupt stack to a quad-word alignment.

805

TASKING VX-toolset for TriCore User Guide

CPU_TC.034

Command line option
--silicon-bug=cpu-tc034
Description

To bypass this CPU functional problem, the C compiler generates an 1SYNC instruction after each DSYNC
instruction.

The assembler issues a warning if a DSYNC instruction is not followed by an ISYNC instruction.

806

CPU Problem Bypasses and Checks

CPU_TC.043

Command line option
--silicon-bug=cpu-tc043
Description

To bypass this CPU functional problem, the preprocessor define __ CPU_TC043___is used in the tc*_1sl
linker script files. The linker will not use the last 16 bytes of a segment.

807

TASKING VX-toolset for TriCore User Guide

CPU_TC.048

Command line option
--silicon-bug=cpu-tc048
Description

To bypass this CPU functional problem, the C compiler generates a NOP instruction before a J1 or CALLI
instruction when this instruction is not directly preceded by either a NOP instruction or an integer instruction
or a MAC instruction. The compiler also generates a NOP instruction before a RET and RET16 instruction
if there is no or just one instruction before RET, starting from the function entry point.

The assembler issues a warning when a J1 or CALLI instruction is not directly preceded by a NOP
instruction. The assembler also issues a warning when there is no or just one instruction (not a NOP
instruction) between label and RET or RET16.

808

CPU Problem Bypasses and Checks

CPU_TC.050

Command line option
--silicon-bug=cpu-tc050
Description

To bypass this CPU functional problem, the C compiler generates a NOP instruction between a multi-cycle
integer instruction and a load instruction.

The assembler issues a warning if a multi-cycle integer instruction is directly followed by a load instruction.

809

TASKING VX-toolset for TriCore User Guide

CPU_TC.051

Command line option
--silicon-bug=cpu-tc051
Description

To bypass this CPU functional problem, the C compiler sets the preprocessor define
__CPU_TCOS51_INITIAL__, which is used in the C startup code.

To bypass this CPU functional problem, the preprocessor define __ CPU_TC051___isused in the tc*. Isl
linker script files. The linker will use more than one section for context stores if the required CSA area
exceeds the 4 kB. Each section will have a maximum size of 4 kB and will start on an 8 kB boundary.

810

CPU Problem Bypasses and Checks

CPU_TC.052

Command line option
--silicon-bug=cpu-tc052
Description

To bypass this CPU functional problem, the C compiler prevents load (1d) and store (st) instructions to
be combined.

For example, silicon bug workaround CPU_TCO052 prevents that two LD . W instructions are combined into
one LD.DW instruction.

There is no assembler check for this silicon bug.

811

TASKING VX-toolset for TriCore User Guide

CPU_TC.060

Command line option
--silicon-bug=cpu-tc060
Description

To bypass this CPU functional problem, the C compiler generates a NOP instruction between an LD_A/
LD.DA instruction and a following LD .W / LD . D instruction, even if an integer instruction occurs in between.

The assembler issues a warning when an LD . A/ LD.DA instruction is directly followed by an LD.W/LD.D
instruction, or when only an integer instruction is in between.

812

CPU Problem Bypasses and Checks

CPU_TC.065

Command line option
--silicon-bug=cpu-tc065
Description

To bypass this CPU functional problem, the C compiler inserts a NOP instruction before a jump, when a
label is directly followed by an unconditional jump.

The assembler issues a warning when a label is directly followed by an unconditional jump, only when
debug information is turned off.

813

TASKING VX-toolset for TriCore User Guide

CPU_TC.068

Command line option
--silicon-bug=cpu-tc068
Description

To bypass this CPU functional problem, the C compiler inserts a DISABLE and two NOP instructions
before each DVINIT instruction (and if necessary an ENABLE after TGE DVINIT).

The assembler issues a warning when a DVINIT instruction is not preceded by a DISABLE and two NOP
instructions.

814

CPU Problem Bypasses and Checks

CPU_TC.069

Command line option
--silicon-bug=cpu-tc069
Description

To bypass this CPU functional problem, the C compiler inserts a NOP instruction after each RSLCX
instruction.

The assembler issues a warning when an RSLCX instruction is not followed by a NOP instruction.

815

TASKING VX-toolset for TriCore User Guide

CPU_TC.070

Command line option
--silicon-bug=cpu-tc070
Description

To bypass this CPU functional problem, the C compiler inserts a NOP instruction before a loop instruction,
when a conditional jump, based on the value in an address register, is directly followed by a loop instruction.

The compiler inserts two NOP instructions before a loop instruction, when a conditional jump, based on
the value in a data register, is directly followed by a loop instruction.

The assembler issues a warning when a conditional jump, based on the value in an address register, is
directly followed by a loop instruction.

The assembler issues a warning when a conditional jump, based on the value in a data register, is directly
followed by a loop instruction or when only a single NOP instruction is in between.

816

CPU Problem Bypasses and Checks

CPU_TC.071

Command line option
--silicon-bug=cpu-tc071
Description

To bypass this CPU functional problem, the C compiler inserts a NOP instruction before a loop instruction,
when a label is directly followed by an unconditional loop instruction.

The assembler issues a warning when a label is directly followed by an unconditional loop instruction,
only when debug information is turned off.

817

TASKING VX-toolset for TriCore User Guide

CPU_TC.072

Command line option

--silicon-bug=cpu-tc072

Description

To bypass this CPU functional problem, the C compiler inserts a NOP instruction before a loop instruction,
when an instruction that updates an address register is followed by a conditional loop instruction which

uses this address register.

The assembler issus a warning when an instruction that updates an address register is followed by a
conditional loop instruction which uses this address register.

818

CPU Problem Bypasses and Checks

CPU_TC.074

Command line option
--silicon-bug=cpu-tc074

Description

The C compiler has no workaround for this problem.

To bypass this CPU functional problem, the assembler encodes the LOOPU instruction in such a way that
bits 12-15 get the value 1.

819

TASKING VX-toolset for TriCore User Guide

CPU_TC.081

Command line option
--silicon-bug=cpu-tc081
Description

The C compiler has no workaround for this problem.

The assembler issues a warning when an address register load instruction, LD . A or LD . DA, targeting the
A[10] register, is immediately followed by an operation causing a context switch.

820

CPU Problem Bypasses and Checks

CPU_TC.082

Command line option
--silicon-bug=cpu-tc082
Description

To bypass this CPU functional problem, the C compiler inserts a NOP instruction between a context store
operation, STUCX or STLCX, and a memory load operation which reads from the last double-word address
written by the context store.

The assembler issues a warning when a context store operation, STUCX or STLCX, is immediately followed
by a memory load operation which reads from the last double-word address written by the context store.

821

TASKING VX-toolset for TriCore User Guide

CPU_TC.083

Command line option
--silicon-bug=cpu-tc083
Description

To bypass this CPU functional problem, the C compiler inserts a NOP instruction after each DI1SABLE
instruction.

The assembler issues a warning when the DISABLE instruction is not followed by a NOP instruction.

822

CPU Problem Bypasses and Checks

CPU_TC.094

Command line option
--silicon-bug=cpu-tc094
Description

To bypass this CPU functional problem, the C compiler inserts a NOP instruction between an IP jump and
CSA list instruction.

The assembler issues a warning when an IP jump is followed by a CSA list instruction.

823

TASKING VX-toolset for TriCore User Guide

CPU_TC.095

Command line option

--silicon-bug=cpu-tc095

Description

To bypass this CPU functional problem, the C compiler inserts a NOP instruction between any
SAT.B/SAT _H instruction and a following load-store instruction with a DGPR source operand (addsc . a,

addsc.at, mov.a, mtcr).

The assembler issues a warning when a SAT .B/SAT _H instruction is immediately followed by a load-store
instruction with a DGPR source operand (addsc.a, addsc.at, mov.a, mtcr).

824

CPU Problem Bypasses and Checks

CPU_TC.096

Command line option

--silicon-bug=cpu-tc096

Description

To bypass this CPU functional problem, the C compiler inserts two NOP instructions for a single group
loop, between an IP instruction and a loop instruction targeting the IP instruction. One NOP is inserted

between a LS and a loop instruction, when the single group loop exists of an optional IP instruction, a
single LS instruction and a loop instruction targeting the first instruction.

The assembler issues a warning in the following situations:

label:

loop Ax,label
label:

<any instruction>

loop Ax, label
label:

<any | P-instruction>
<any LS-instruction or NOP>
loop Ax,label

825

TASKING VX-toolset for TriCore User Guide

CPU_TC.103

Command line option
--silicon-bug=cpu-tcl03
Description

To bypass this CPU functional problem, the C compiler directs certain program flow instructions, such as
RET, RFE, CALL and JI, running in spram (scratch pad ram) via a stub located in safe memory. In order
to be able to tell the C compiler that certain code is predetermined for spram, the pragma spram and
option --spram are introduced.

To bypass this CPU functional problem, the preprocessor define __ CPU_TC103___isused in the tc*. Isl
linker script files. The linker will collect the stubs as generated by the C compiler and locate them in safe
non-spram memory. Furthermore it is tested if (the start of) the interrupt and trap table are located at safe
addresses.

Safe non-SPRAM addresses are defined as any address except:

bit [15:14]
bit [14:13]

11b (TC1130, TC1115, TC1110 PMEM)
11b (TC1762, TC1764, TC1766 PMEM)

826

CPU Problem Bypasses and Checks

CPU_TC.104

Command line option
--silicon-bug=cpu-tcl04
Description

To bypass this CPU functional problem, the C compiler inserts a NOP instruction before a double-word
load instruction using circular addressing mode (LD .D instruction).

The assembler issues a warning when a double-word load instruction using circular addressing mode
(LD.D instruction) is not preceded by a NOP instruction.

827

TASKING VX-toolset for TriCore User Guide

CPU_TC.105

Command line option
--silicon-bug=cpu-tcl05
Description

The C compiler has no workaround for this problem. The compiler issues a warning when an MTCR
instruction is generated, which is not preceded by a DSYNC instruction.

Under some conditions the use of MTCR leads to errors, a DSYNC before the MTCR prevents these problems,
but is in most situations not necessary.

The assembler issues a warning when an MTCR instruction is not preceded by a DSYNC instruction.

828

CPU Problem Bypasses and Checks

CPU_TC.106

Command line option
--silicon-bug=cpu-tcl06
Description

The C compiler has no workaround for this problem. The compiler issues a warning when an MTCR
instruction is generated, which is preceded by a MUL, MADD, MSUB or RSTV instruction.

Under some conditions the use of MTCR directly after a MUL/MADD/MSUB/RSTYV instruction leads to errors,
a NOP before the MTCR prevents these problems, but is in most situations not necessary.

The assembler issues a warning when an MTCR instruction is preceded by a MUL, MADD, MSUB or RSTV
instruction.

829

TASKING VX-toolset for TriCore User Guide

CPU_TC.108

Command line option
--silicon-bug=cpu-tcl08
Description

To bypass this CPU functional problem, the C compiler inserts a NOP instruction before a load or store
instruction using a circular addressing mode.

The assembler issues a warning when a load or store instruction using a circular addressing mode is not
preceded by a NOP instruction.

830

CPU Problem Bypasses and Checks

CPU_TC.109

Command line option
--silicon-bug=cpu-tcl09
Description

To bypass this CPU functional problem, the C compiler inserts a NOP instruction before the load word
instruction when a load word instruction, using circular addressing mode, is preceded by a store byte
instruction, or when only a single 1P instruction is in between such a load word instruction and a store
byte instruction.

The assembler issues a warning when a load word instruction, using circular addressing mode is preceded
by a store byte instruction, or when only a single 1P instruction is in between such a load word instruction
and a store byte instruction.

831

TASKING VX-toolset for TriCore User Guide

DMU_TC.001

Command line option
--silicon-bug=dnu-tc001
Description

To bypass this CPU functional problem, the C compiler avoids generation of the ST.T, SWAP and LDMST
instructions. For direct __bit and bit-field operations, alternative instructions are used.

The assembler issues a warning for SWAP, LDMST and ST.T instructions.

832

CPU Problem Bypasses and Checks

PMI_TC.003

Command line option

--silicon-bug=pm -tc003

Description

To bypass this CPU functional problem, the C compiler sets the preprocessor define

_ PMI_TC103_INITIAL__, which is used in the C startup code to set the TLB-A and TLB-B mappings
to a page size of 16 kB. The SZA and SZB in the MMU_CON are set to 16 kB.

The assembler defines the macro __ PMI_TC103__.

833

TASKING VX-toolset for TriCore User Guide

PMU_TC.004

Command line option

--silicon-bug=pnu-tc004

Description

To bypass this CPU functional problem, the C compiler sets the preprocessor define
__PMU_TC104_INITIAL__, which is used in the C startup code to disable the split mode on the LMB
bus. The SPLT bit of the SFR register LFI_CON is set to zero.

The assembler defines the macro __ PMU_TC104__.

834

Chapter 18. MISRA-C Rules

This chapter contains an overview of the supported and unsupported MISRA C rules.

18.1. MISRA-C:1998

This section lists all supported and unsupported MISRA-C:1998 rules.
See also Section 4.8, C Code Checking: MISRA-C.

A number of MISRA-C rules leave room for interpretation. Other rules can only be checked in a limited
way. In such cases the implementation decisions and possible restrictions for these rules are listed.

x means that the rule is not supported by the TASKING C compiler. (R) is a required rule, (A) is an advisory
rule.

1. (R) The code shall conform to standard C, without language extensions
X 2. (A) Other languages should only be used with an interface standard

3. (A) Inline assembly is only allowed in dedicated C functions
X 4, (A) Provision should be made for appropriate run-time checking

5. (R) Only use characters and escape sequences defined by ISO C
X 6. (R) Character values shall be restricted to a subset of ISO 106460-1

7. (R) Trigraphs shall not be used

8. (R) Multibyte characters and wide string literals shall not be used

9. (R) Comments shall not be nested

10. (A) Sections of code should not be "commented out"

In general, it is not possible to decide whether a piece of comment is C code that is
commented out, or just some pseudo code. Instead, the following heuristics are used
to detect possible C code inside a comment:

* aline ends with ;', or

« aline starts with '}', possibly preceded by white space

11. (R) Identifiers shall not rely on significance of more than 31 characters
12. (A) The same identifier shall not be used in multiple name spaces
13. (A) Specific-length typedefs should be used instead of the basic types
14. (R) Use 'unsigned char' or 'signed char' instead of plain ‘char'

X 15. (A) Floating-point implementations should comply with a standard

16. (R) The bit representation of floating-point numbers shall not be used
A violation is reported when a pointer to a floating-point type is converted to a pointer
to an integer type.

17. (R) "typedef' names shall not be reused

835

TASKING VX-toolset for TriCore User Guide

836

18.

19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
20.
30.

31.
32.
33.
34.
35.
36.
37.
38.

39.
40.
41.
42.
43.
44,
45,
46.

47.

(A)

R
R
(R
(A)
(A)
R
R
R
(A)
(A)
R
R

R
R
R
(R
R
(A)
(R)
R

(R)
(A)
(A)
R
(R
(A)
R
R

QY

Numeric constants should be suffixed to indicate type
A violation is reported when the value of the constant is outside the range indicated
by the suffixes, if any.

Octal constants (other than zero) shall not be used

All object and function identifiers shall be declared before use
Identifiers shall not hide identifiers in an outer scope
Declarations should be at function scope where possible

All declarations at file scope should be static where possible
Identifiers shall not have both internal and external linkage
Identifiers with external linkage shall have exactly one definition
Multiple declarations for objects or functions shall be compatible
External objects should not be declared in more than one file
The "register" storage class specifier should not be used

The use of a tag shall agree with its declaration

All automatics shall be initialized before being used

This rule is checked using worst-case assumptions. This means that violations are
reported not only for variables that are guaranteed to be uninitialized, but also for
variables that are uninitialized on some execution paths.

Braces shall be used in the initialization of arrays and structures
Only the first, or all enumeration constants may be initialized
The right hand operand of && or || shall not contain side effects
The operands of a logical && or || shall be primary expressions
Assignment operators shall not be used in Boolean expressions
Logical operators should not be confused with bitwise operators
Bitwise operations shall not be performed on signed integers

A shift count shall be between 0 and the operand width minus 1 This violation will
only be checked when the shift count evaluates to a constant value at compile time.

The unary minus shall not be applied to an unsigned expression
"sizeof" should not be used on expressions with side effects

The implementation of integer division should be documented
The comma operator shall only be used in a "for" condition

Don't use implicit conversions which may result in information loss
Redundant explicit casts should not be used

Type casting from any type to or from pointers shall not be used

The value of an expression shall be evaluation order independent

This rule is checked using worst-case assumptions. This means that a violation will
be reported when a possible alias may cause the result of an expression to be
evaluation order dependent.

No dependence should be placed on operator precedence rules

48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.

67.
68.
69.
70.

71.
72.
73.
74.
75.
76.
77.
78.
79.
80.

(A)
(A)
R
(A)
R
R
R
(A)
R
(R
R
R
(A)
R
R
(A)
R
R
(A)

(A)
R
R
R

R
R
R
R
R
R
R
R
R
R

MISRA-C Rules

Mixed arithmetic should use explicit casting

Tests of a (hon-Boolean) value against 0 should be made explicit
F.P. variables shall not be tested for exact equality or inequality
Constant unsigned integer expressions should not wrap-around
There shall be no unreachable code

All non-null statements shall have a side-effect

A null statement shall only occur on a line by itself

Labels should not be used

The "goto" statement shall not be used

The "continue" statement shall not be used

The "break" statement shall not be used (except in a "switch")
An "if" or loop body shall always be enclosed in braces

All "if", "else if" constructs should contain a final "else"

Every non-empty "case" clause shall be terminated with a "break”
All "switch" statements should contain a final "default" case

A "switch" expression should not represent a Boolean case
Every "switch" shall have at least one "case"

Floating-point variables shall not be used as loop counters

A "for" should only contain expressions concerning loop control
A violation is reported when the loop initialization or loop update expression modifies
an object that is not referenced in the loop test.

Iterator variables should not be modified in a "for" loop
Functions shall always be declared at file scope
Functions with variable number of arguments shall not be used

Functions shall not call themselves, either directly or indirectly

A violation will be reported for direct or indirect recursive function calls in the source
file being checked. Recursion via functions in other source files, or recursion via
function pointers is not detected.

Function prototypes shall be visible at the definition and call

The function prototype of the declaration shall match the definition
Identifiers shall be given for all prototype parameters or for none
Parameter identifiers shall be identical for declaration/definition
Every function shall have an explicit return type

Functions with no parameters shall have a "void" parameter list
An actual parameter type shall be compatible with the prototype
The number of actual parameters shall match the prototype

The values returned by "void" functions shall not be used

Void expressions shall not be passed as function parameters

837

TASKING VX-toolset for TriCore User Guide

838

81.
82.
83.
84.
85.
86.

87.
88.
89.
90.
91.
92.
93.
94.
95.

96.
97.
98.
99.

100.
101.
102.

103.

104.
105.
106.
107.

108.

(A)
(A)
R
(R)
(A)
(A)

(R
R
R
(R)
(R
(A)
(A)
R
R

R
(A)
R
R

(R)
(A)
(A)

R

R
(R
R
R

R

"const" should be used for reference parameters not modified

A function should have a single point of exit

Every exit point shall have a "return” of the declared return type
For "void" functions, "return" shall not have an expression
Function calls with no parameters should have empty parentheses

If a function returns error information, it should be tested
A violation is reported when the return value of a function is ignored.

#include shall only be preceded by other directives or comments
Non-standard characters shall not occur in #include directives
#include shall be followed by either <filename> or "filename”
Plain macros shall only be used for constants/qualifiers/specifiers
Macros shall not be #define'd and #undef'd within a block

#undef should not be used

A function should be used in preference to a function-like macro
A function-like macro shall not be used without all arguments

Macro arguments shall not contain pre-preprocessing directives
A violation is reported when the first token of an actual macro argument is '#'.

Macro definitions/parameters should be enclosed in parentheses
Don't use undefined identifiers in pre-processing directives
A macro definition shall contain at most one # or ## operator

All uses of the #pragma directive shall be documented
This rule is really a documentation issue. The compiler will flag all #pragma directives
as violations.

"defined" shall only be used in one of the two standard forms
Pointer arithmetic should not be used

No more than 2 levels of pointer indirection should be used
A violation is reported when a pointer with three or more levels of indirection is
declared.

No relational operators between pointers to different objects

In general, checking whether two pointers point to the same object is impossible. The
compiler will only report a violation for a relational operation with incompatible pointer
types.

Non-constant pointers to functions shall not be used

Functions assigned to the same pointer shall be of identical type

Automatic address may not be assigned to a longer lived object

The null pointer shall not be de-referenced
A violation is reported for every pointer dereference that is not guarded by a NULL
pointer test.

All struct/union members shall be fully specified

MISRA-C Rules

109. (R) Overlapping variable storage shall not be used A violation is reported for every ‘union’
declaration.

110. (R) Unions shall not be used to access the sub-parts of larger types
A violation is reported for a 'union' containing a 'struct' member.

111. (R) bit-fields shall have type "unsigned int" or "signed int"

112. (R) bit-fields of type "signed int" shall be at least 2 bits long

113. (R) All struct/union members shall be named

114. (R) Reserved and standard library names shall not be redefined
115. (R) Standard library function names shall not be reused

116. (R) Production libraries shall comply with the MISRA C restrictions
117. (R) The validity of library function parameters shall be checked
118. (R) Dynamic heap memory allocation shall not be used

119. (R) The error indicator "errno” shall not be used

120. (R) The macro "offsetof" shall not be used

121. (R) <locale.h> and the "setlocale" function shall not be used

122. (R) The "setjmp" and "longjmp" functions shall not be used

123. (R) The signal handling facilities of <signal.h> shall not be used
124. (R) The <stdio.h> library shall not be used in production code

125. (R) The functions atof/atoi/atol shall not be used

126. (R) The functions abort/exit/getenv/system shall not be used

127. (R) The time handling functions of library <time.h> shall not be used

18.2. MISRA-C:2004

This section lists all supported and unsupported MISRA-C:2004 rules.
See also Section 4.8, C Code Checking: MISRA-C.

A number of MISRA-C rules leave room for interpretation. Other rules can only be checked in a limited
way. In such cases the implementation decisions and possible restrictions for these rules are listed.

X means that the rule is not supported by the TASKING C compiler. (R) is a required rule, (A) is an advisory
rule.

Environment

1.1 (R) All code shall conform to ISO 9899:1990 "Programming languages - C", amended
and corrected by ISO/IEC 9899/COR1:1995, ISO/IEC 9899/AMD1:1995, and ISO/IEC
9899/COR2:1996.

1.2 (R) No reliance shall be placed on undefined or unspecified behavior.

839

TASKING VX-toolset for TriCore User Guide

X 1.3
X 1.4
X 1.5

(R

R

(A)

Multiple compilers and/or languages shall only be used if there is a common defined
interface standard for object code to which the languages/compilers/assemblers
conform.

The compiler/linker shall be checked to ensure that 31 character significance and
case sensitivity are supported for external identifiers.

Floating-point implementations should comply with a defined floating-point standard.

Language extensions

2.1
2.2
2.3
24

R
R
(R)
(A)

Assembly language shall be encapsulated and isolated.
Source code shall only use /* ... */ style comments.
The character sequence /* shall not be used within a comment.

Sections of code should not be "commented out". In general, it is not possible to
decide whether a piece of comment is C code that is commented out, or just some
pseudo code. Instead, the following heuristics are used to detect possible C code
inside a comment: - a line ends with *;', or - a line starts with '}, possibly preceded by
white space

Documentation

3.1
3.2
3.3

3.4

3.5

R
R
(A)

R

R

(R

All usage of implementation-defined behavior shall be documented.
The character set and the corresponding encoding shall be documented.

The implementation of integer division in the chosen compiler should be determined,
documented and taken into account.

All uses of the #pragma directive shall be documented and explained. This rule is
really a documentation issue. The compiler will flag all #pragma directives as
violations.

The implementation-defined behavior and packing of bit-fields shall be documented
if being relied upon.

All libraries used in production code shall be written to comply with the provisions of
this document, and shall have been subject to appropriate validation.

Character sets

41 (R)
42 (R

Identifiers
51 (R
52 (R)

840

Only those escape sequences that are defined in the ISO C standard shall be used.
Trigraphs shall not be used.

Identifiers (internal and external) shall not rely on the significance of more than 31
characters.

Identifiers in an inner scope shall not use the same name as an identifier in an outer
scope, and therefore hide that identifier.

53 (R)
54 (R)
X 55 (A
56 (A
X 57 (A
Types
61 (R)
X 6.2 (R)
63 (A
6.4 (R)
65 (R)
Constants
71 (R)

MISRA-C Rules

A typedef name shall be a unique identifier.
A tag name shall be a unique identifier.
No object or function identifier with static storage duration should be reused.

No identifier in one name space should have the same spelling as an identifier in
another name space, with the exception of structure and union member names.

No identifier name should be reused.

The plain char type shall be used only for storage and use of character values.

signed and unsigned char type shall be used only for the storage and use of
numeric values.

typedefs that indicate size and signedness should be used in place of the basic
types.

bit-fields shall only be defined to be of type unsigned intorsigned int.
bit-fields of type signed int shall be at least 2 bits long.

Octal constants (other than zero) and octal escape sequences shall not be used.

Declarations and definitions

81 (R
82 (R
83 (R
84 (R
85 (R)
86 (R
87 (R
88 (R)
89 (R
8.10 (R)
811 (R)

Functions shall have prototype declarations and the prototype shall be visible at both
the function definition and call.

Whenever an object or function is declared or defined, its type shall be explicitly
stated.

For each function parameter the type given in the declaration and definition shall be
identical, and the return types shall also be identical.

If objects or functions are declared more than once their types shall be compatible.
There shall be no definitions of objects or functions in a header file.
Functions shall be declared at file scope.

Objects shall be defined at block scope if they are only accessed from within a single
function.

An external object or function shall be declared in one and only one file.
An identifier with external linkage shall have exactly one external definition.

All declarations and definitions of objects or functions at file scope shall have internal
linkage unless external linkage is required.

The static storage class specifier shall be used in definitions and declarations of
objects and functions that have internal linkage.

841

TASKING VX-toolset for TriCore User Guide

Initialization

8.12

9.1

9.2

9.3

(R

R

R

(R

When an array is declared with external linkage, its size shall be stated explicitly or
defined implicitly by initialization.

All automatic variables shall have been assigned a value before being used. This rule
is checked using worst-case assumptions. This means that violations are reported
not only for variables that are guaranteed to be uninitialized, but also for variables
that are uninitialized on some execution paths.

Braces shall be used to indicate and match the structure in the non-zero initialization
of arrays and structures.

In an enumerator list, the "=" construct shall not be used to explicitly initialize members
other than the first, unless all items are explicitly initialized.

Arithmetic type conversions

10.1

10.2

10.3

10.4

10.5

10.6

R

R

(R

R

R

R

The value of an expression of integer type shall not be implicitly converted to a different
underlying type if:

a) it is not a conversion to a wider integer type of the same signedness, or

b) the expression is complex, or

¢) the expression is not constant and is a function argument, or

d) the expression is not constant and is a return expression.

The value of an expression of floating type shall not be implicitly converted to a
different type if:

a) it is not a conversion to a wider floating type, or

b) the expression is complex, or

c) the expression is a function argument, or

d) the expression is a return expression.

The value of a complex expression of integer type may only be cast to a type that is
narrower and of the same signedness as the underlying type of the expression.

The value of a complex expression of floating type may only be cast to a narrower
floating type.

If the bitwise operators ~ and << are applied to an operand of underlying type
unsigned char orunsigned short, the result shall be immediately cast to the
underlying type of the operand.

A "U" suffix shall be applied to all constants of unsigned type.

Pointer type conversions

842

11.1

11.2

11.3

(R
R

(A)

Conversions shall not be performed between a pointer to a function and any type
other than an integral type.

Conversions shall not be performed between a pointer to object and any type other
than an integral type, another pointer to object type or a pointer to void.

A cast should not be performed between a pointer type and an integral type.

114

11.5

Expressions

(A)

R

121 (A
122 (R)
123 (R)
124 (R)
125 (R)
126 (A
127 (R)
128 (R)
129 (R)
12.10 (R)
12.11 (A)
12.12 (R)
12.13 (A)

MISRA-C Rules

A cast should not be performed between a pointer to object type and a different pointer
to object type.

A cast shall not be performed that removes any const or volati le qualification
from the type addressed by a pointer.

Limited dependence should be placed on C's operator precedence rules in
expressions.

The value of an expression shall be the same under any order of evaluation that the
standard permits. This rule is checked using worst-case assumptions. This means
that a violation will be reported when a possible alias may cause the result of an
expression to be evaluation order dependent.

The sizeoT operator shall not be used on expressions that contain side effects.
The right-hand operand of a logical && or | | operator shall not contain side effects.
The operands of a logical && or | | shall be primary-expressions.

The operands of logical operators (&&, | | and !) should be effectively Boolean.
Expressions that are effectively Boolean should not be used as operands to operators
other than (&&, || and !).

Bitwise operators shall not be applied to operands whose underlying type is signed.

The right-hand operand of a shift operator shall lie between zero and one less than
the width in bits of the underlying type of the left-hand operand. This violation will only
be checked when the shift count evaluates to a constant value at compile time.

The unary minus operator shall not be applied to an expression whose underlying
type is unsigned.

The comma operator shall not be used.
Evaluation of constant unsigned integer expressions should not lead to wrap-around.

The underlying bit representations of floating-point values shall not be used. A violation
is reported when a pointer to a floating-point type is converted to a pointer to an
integer type.

The increment (++) and decrement (--) operators should not be mixed with other
operators in an expression.

Control statement expressions

13.1
13.2

13.3
134

(R
(A)

R
R

Assignment operators shall not be used in expressions that yield a Boolean value.

Tests of a value against zero should be made explicit, unless the operand is effectively
Boolean.

Floating-point expressions shall not be tested for equality or inequality.

The controlling expression of a for statement shall not contain any objects of floating
type.

843

TASKING VX-toolset for TriCore User Guide

Control flow

13.5

13.6

13.7

(R

R

(R

141 (R)
142 (R)
143 (R)
144 (R)
145 (R)
146 (R)
147 (R)
148 (R)
149 (R)
14.10 (R)

The three expressions of a for statement shall be concerned only with loop control.
A violation is reported when the loop initialization or loop update expression modifies
an object that is not referenced in the loop test.

Numeric variables being used within a For loop for iteration counting shall not be
modified in the body of the loop.

Boolean operations whose results are invariant shall not be permitted.

There shall be no unreachable code.

All non-null statements shall either:
a) have at least one side effect however executed, or
b) cause control flow to change.

Before preprocessing, a null statement shall only occur on a line by itself; it may be
followed by a comment provided that the first character following the null statement
is a white-space character.

The goto statement shall not be used.
The continue statement shall not be used.

For any iteration statement there shall be at most one break statement used for loop
termination.

A function shall have a single point of exit at the end of the function.

The statement forming the body of a switch, while,do ... while or for
statement be a compound statement.

An if (expressi on) construct shall be followed by a compound statement. The
else keyword shall be followed by either a compound statement, or another i f
statement.

All i ... else if constructs shall be terminated with an else clause.

Switch statements

151 (R)
152 (R)
153 (R)
154 (R)
155 (R)

Functions
16.1 (R)

844

A switch label shall only be used when the most closely-enclosing compound statement
is the body of a switch statement.

An unconditional break statement shall terminate every non-empty switch clause.
The final clause of a switch statement shall be the default clause.

A switch expression shall not represent a value that is effectively Boolean.

Every switch statement shall have at least one case clause.

Functions shall not be defined with variable numbers of arguments.

16.2 (R)
163 (R)
16.4 (R)
16.5 (R)
16.6 (R)
16.7 (A
16.8 (R)
16.9 (R)
16.10 (R)

MISRA-C Rules

Functions shall not call themselves, either directly or indirectly. A violation will be
reported for direct or indirect recursive function calls in the source file being checked.
Recursion via functions in other source files, or recursion via function pointers is not
detected.

Identifiers shall be given for all of the parameters in a function prototype declaration.
The identifiers used in the declaration and definition of a function shall be identical.
Functions with no parameters shall be declared with parameter type void.

The number of arguments passed to a function shall match the number of parameters.

A pointer parameter in a function prototype should be declared as pointer to const
if the pointer is not used to modify the addressed object.

All exit paths from a function with non-void return type shall have an explicit return
statement with an expression.

A function identifier shall only be used with either a preceding &, or with a
parenthesized parameter list, which may be empty.

If a function returns error information, then that error information shall be tested. A
violation is reported when the return value of a function is ignored.

Pointers and arrays

x 171 (R)
x 172 (R)
173 (R)
174 (R)
175 (A)
176 (R)

Pointer arithmetic shall only be applied to pointers that address an array or array
element.

Pointer subtraction shall only be applied to pointers that address elements of the
same array.

>, >=, <, <= shall not be applied to pointer types except where they point to the same
array. In general, checking whether two pointers point to the same object is impossible.
The compiler will only report a violation for a relational operation with incompatible
pointer types.

Array indexing shall be the only allowed form of pointer arithmetic.

The declaration of objects should contain no more than 2 levels of pointer indirection.
A violation is reported when a pointer with three or more levels of indirection is
declared.

The address of an object with automatic storage shall not be assigned to another
object that may persist after the first object has ceased to exist.

Structures and unions

181 (R)
182 (R)
X 18.3 (R)
184 (R)

All structure or union types shall be complete at the end of a translation unit.
An object shall not be assigned to an overlapping object.

An area of memory shall not be reused for unrelated purposes.

Unions shall not be used.

845

TASKING VX-toolset for TriCore User Guide

Preprocessing directives

19.1

19.2

19.3

19.4

195

19.6

19.7

19.8

19.9

19.10

19.11

19.12

19.13
19.14

19.15

19.16

19.17

(A)
(A)
R
R

R
R
(A)
(R
R
(R)
(R
R

(A)
(R

(R)
(R

R

#include statements in a file should only be preceded by other preprocessor
directives or comments.

Non-standard characters should not occur in header file names in #include
directives.

The #include directive shall be followed by either a <filename> or "flename"
sequence.

C macros shall only expand to a braced initializer, a constant, a parenthesized
expression, a type qualifier, a storage class specifier, or a do-while-zero construct.

Macros shall not be #define'd or #undef'd within a block.

#undef shall not be used.

A function should be used in preference to a function-like macro.

A function-like macro shall not be invoked without all of its arguments.

Arguments to a function-like macro shall not contain tokens that look like preprocessing
directives. A violation is reported when the first token of an actual macro argument
is '#.

In the definition of a function-like macro each instance of a parameter shall be enclosed
in parentheses unless it is used as the operand of # or ##.

All macro identifiers in preprocessor directives shall be defined before use, except in
#ifdef and #ifndef preprocessor directives and the defined() operator.

There shall be at most one occurrence of the # or ## preprocessor operators in a
single macro definition.

The # and ## preprocessor operators should not be used.

The defined preprocessor operator shall only be used in one of the two standard
forms.

Precautions shall be taken in order to prevent the contents of a header file being
included twice.

Preprocessing directives shall be syntactically meaningful even when excluded by
the preprocessor.

All #else, #el i T and #endi T preprocessor directives shall reside in the same file
as the #i T or #ifdef directive to which they are related.

Standard libraries

846

20.1

20.2
20.3
20.4
20.5

R

R
(R
R
R

Reserved identifiers, macros and functions in the standard library, shall not be defined,
redefined or undefined.

The names of standard library macros, objects and functions shall not be reused.
The validity of values passed to library functions shall be checked.

Dynamic heap memory allocation shall not be used.

The error indicator errno shall not be used.

206 (R)
207 (R)
208 (R)
209 (R)
20.10 (R)
20.11 (R)
20.12 (R)

MISRA-C Rules

The macro offsetof, in library <stddef.h>, shall not be used.

The setjmp macro and the longjmp function shall not be used.

The signal handling facilities of <signal . h> shall not be used.

The input/output library <stdio.h> shall not be used in production code.

The library functions atof, atoi and atol from library <stdlib.h> shall not be
used.

The library functions abort, exit, getenv and system from library <stdlib.h>
shall not be used.

The time handling functions of library <time.h> shall not be used.

Run-time failures

X 21.1

R

Minimization of run-time failures shall be ensured by the use of at least one of:
a) static analysis tools/techniques;

b) dynamic analysis tools/techniques;

¢) explicit coding of checks to handle run-time faults.

847

TASKING VX-toolset for TriCore User Guide

848

	TASKING VX-toolset for TriCore User Guide
	Table of Contents
	Chapter 1. C Language
	1.1. Data Types
	1.1.1. Bit Data Type
	1.1.2. Fractional Types
	1.1.3. Packed Data Types
	1.1.4. Changing the Alignment: __align()

	1.2. Accessing Memory
	1.2.1. Memory Qualifiers
	1.2.2. Placing an Object at an Absolute Address: __at() and __atbit()

	1.3. Data Type Qualifiers
	1.3.1. Data Type Alignment: __align32
	1.3.2. Circular Buffers: __circ
	1.3.3. Accessing Hardware from C
	1.3.4. Saturation: __sat

	1.4. Using Assembly in the C Source: __asm()
	1.5. Attributes
	1.6. Pragmas to Control the Compiler
	1.7. Predefined Preprocessor Macros
	1.8. Switch Statement
	1.9. Functions
	1.9.1. Calling Convention
	1.9.2. Register Usage
	1.9.3. Inlining Functions: inline
	1.9.4. Interrupt and Trap Functions
	1.9.4.1. Defining an Interrupt Service Routine: __interrupt(), __interrupt_fast()
	1.9.4.2. Defining a Trap Service Routine: __trap(), __trap_fast()
	1.9.4.3. Defining a Trap Service Routine Class 6: __syscallfunc()
	1.9.4.4. Enabling Interrupt Requests: __enable_, __bisr_()

	1.9.5. Intrinsic Functions
	1.9.5.1. Minimum and Maximum of (Short) Integers
	1.9.5.2. Fractional Arithmetic Support
	1.9.5.3. Packed Data Type Support
	1.9.5.4. Interrupt Handling
	1.9.5.5. Insert Single Assembly Instruction
	1.9.5.6. Register Handling
	1.9.5.7. Insert / Extract Bit-fields and Bits
	1.9.5.8. Miscellaneous Intrinsic Functions

	1.10. Compiler Generated Sections
	1.10.1. Rename Sections
	1.10.2. Influence Section Definition
	1.10.3. Change Section Alignment

	Chapter 2. C++ Language
	2.1. C++ Language Extension Keywords
	2.2. C++ Dialect Accepted
	2.2.1. Standard Language Features Accepted
	2.2.2. C++0x Language Features Accepted
	2.2.3. Anachronisms Accepted
	2.2.4. Extensions Accepted in Normal C++ Mode

	2.3. GNU Extensions
	2.4. Namespace Support
	2.5. Template Instantiation
	2.5.1. Automatic Instantiation
	2.5.2. Instantiation Modes
	2.5.3. Instantiation #pragma Directives
	2.5.4. Implicit Inclusion
	2.5.5. Exported Templates
	2.5.5.1. Finding the Exported Template Definition
	2.5.5.2. Secondary Translation Units
	2.5.5.3. Libraries with Exported Templates

	2.6. Inlining Functions
	2.7. Extern Inline Functions
	2.8. Pragmas to Control the C++ Compiler
	2.9. Predefined Macros
	2.10. Precompiled Headers
	2.10.1. Automatic Precompiled Header Processing
	2.10.2. Manual Precompiled Header Processing
	2.10.3. Other Ways to Control Precompiled Headers
	2.10.4. Performance Issues

	Chapter 3. Assembly Language
	3.1. Assembly Syntax
	3.2. Assembler Significant Characters
	3.3. Operands of an Assembly Instruction
	3.4. Symbol Names
	3.4.1. Predefined Preprocessor Symbols

	3.5. Registers
	3.5.1. Special Function Registers

	3.6. Assembly Expressions
	3.6.1. Numeric Constants
	3.6.2. Strings
	3.6.3. Expression Operators

	3.7. Working with Sections
	3.8. Built-in Assembly Functions
	3.9. Assembler Directives and Controls
	3.9.1. Assembler Directives
	.ACCUM
	.ALIAS
	.ALIGN
	.ASCII, .ASCIIZ
	.BYTE
	.CALLS
	.COMMENT
	.DEFINE
	.DUP, .ENDM
	.DUPA, .ENDM
	.DUPC, .ENDM
	.DUPF, .ENDM
	.END
	.EQU
	.EXITM
	.EXTERN
	.FAIL
	.FLOAT, .DOUBLE
	.FRACT, .SFRACT
	.GLOBAL
	.IF, .ELIF, .ELSE, .ENDIF
	.INCLUDE
	.LOCAL
	.MACRO, .ENDM
	.MESSAGE
	.MISRAC
	.NAME
	.ORG
	.PMACRO
	.SDECL
	.SECT
	.SET
	.SIZE
	.SPACE
	.TYPE
	.UNDEF
	.WARNING
	.WEAK
	.WORD, .HALF

	3.9.2. Assembler Controls
	$CASE
	$CPU_TCnum, $DMU_TCnum, $PMI_TCnum, $PMU_TCnum
	$DEBUG
	$FPU
	$HW_ONLY
	$IDENT
	$LIST ON/OFF
	$LIST "flags"
	$MMU
	$OBJECT
	$PAGE
	$PRCTL
	$STITLE
	$TITLE
	$WARNING OFF

	3.10. Macro Operations
	3.10.1. Defining a Macro
	3.10.2. Calling a Macro
	3.10.3. Using Operators for Macro Arguments

	Chapter 4. Using the C Compiler
	4.1. Compilation Process
	4.2. Calling the C Compiler
	4.3. The C Startup Code
	4.4. How the Compiler Searches Include Files
	4.5. Compiling for Debugging
	4.6. Compiler Optimizations
	4.6.1. Generic Optimizations (frontend)
	4.6.2. Core Specific Optimizations (backend)
	4.6.3. Optimize for Size or Speed

	4.7. Influencing the Build Time
	4.8. C Code Checking: MISRA-C
	4.9. C Compiler Error Messages

	Chapter 5. Using the C++ Compiler
	5.1. Calling the C++ Compiler
	5.2. How the C++ Compiler Searches Include Files
	5.3. C++ Compiler Error Messages

	Chapter 6. Profiling
	6.1. What is Profiling?
	6.1.1. Four Methods of Profiling

	6.2. Profiling using Code Instrumentation (Dynamic Profiling)
	6.2.1. Step 1: Build your Application for Profiling
	6.2.1.1. Profiling Modules and C Libraries
	6.2.1.2. Linking Profiling Libraries

	6.2.2. Step 2: Execute the Application
	6.2.3. Step 3: Displaying Profiling Results

	6.3. Profiling at Compile Time (Static Profiling)
	6.3.1. Step 1: Build your Application with Static Profiling
	6.3.2. Step 2: Displaying Static Profiling Results

	Chapter 7. Using the Assembler
	7.1. Assembly Process
	7.2. Calling the Assembler
	7.3. How the Assembler Searches Include Files
	7.4. Assembler Optimizations
	7.5. Generating a List File
	7.6. Assembler Error Messages

	Chapter 8. Using the Linker
	8.1. Linking Process
	8.1.1. Phase 1: Linking
	8.1.2. Phase 2: Locating

	8.2. Calling the Linker
	8.3. Linking with Libraries
	8.3.1. How the Linker Searches Libraries
	8.3.2. How the Linker Extracts Objects from Libraries

	8.4. Incremental Linking
	8.5. Importing Binary Files
	8.6. Linker Optimizations
	8.7. Controlling the Linker with a Script
	8.7.1. Purpose of the Linker Script Language
	8.7.2. Eclipse and LSL
	8.7.3. Structure of a Linker Script File
	8.7.4. The Architecture Definition
	8.7.5. The Derivative Definition
	8.7.6. The Processor Definition
	8.7.7. The Memory Definition
	8.7.8. The Section Layout Definition: Locating Sections

	8.8. Linker Labels
	8.9. Generating a Map File
	8.10. Linker Error Messages

	Chapter 9. Using the Utilities
	9.1. Control Program
	9.2. Make Utility mktc
	9.2.1. Calling the Make Utility
	9.2.2. Writing a Makefile
	9.2.2.1. Targets and Dependencies
	9.2.2.2. Makefile Rules
	9.2.2.3. Macro Definitions
	9.2.2.4. Makefile Functions
	9.2.2.5. Conditional Processing
	9.2.2.6. Comment, Include and Export Lines

	9.3. Make Utility amk
	9.3.1. Makefile Rules
	9.3.2. Makefile Directives
	9.3.3. Macro Definitions
	9.3.4. Makefile Parsing
	9.3.5. Makefile Command Processing
	9.3.6. Calling the amk Make Utility

	9.4. Archiver
	9.4.1. Calling the Archiver
	9.4.2. Archiver Examples

	Chapter 10. Using the Debugger
	10.1. Reading the Eclipse Documentation
	10.2. Creating a Customized Debug Configuration
	10.3. Troubleshooting
	10.4. TASKING Debug Perspective
	10.4.1. Debug View
	10.4.2. Breakpoints View
	10.4.3. File System Simulation (FSS) View
	10.4.4. Disassembly View
	10.4.5. Expressions View
	10.4.6. Memory View
	10.4.7. Compare Application View
	10.4.8. Heap View
	10.4.9. Logging View
	10.4.10. RTOS View
	10.4.11. TASKING Registers View
	10.4.12. Trace View

	10.5. Programming a Flash Device

	Chapter 11. Tool Options
	11.1. C Compiler Options
	C compiler option: --align
	C compiler option: --check
	C compiler option: --compact-max-size
	C compiler option: --core
	C compiler option: --cpu (-C)
	C compiler option: --debug-info (-g)
	C compiler option: --default-a0-size (-Z)
	C compiler option: --default-a1-size (-Y)
	C compiler option: --default-near-size (-N)
	C compiler option: --define (-D)
	C compiler option: --dep-file
	C compiler option: --diag
	C compiler option: --error-file
	C compiler option: --fp-trap
	C compiler option: --fpu-present
	C compiler option: --help (-?)
	C compiler option: --immediate-in-code
	C compiler option: --include-directory (-I)
	C compiler option: --include-file (-H)
	C compiler option: --indirect
	C compiler option: --indirect-runtime
	C compiler option: --inline
	C compiler option: --inline-max-incr / --inline-max-size
	C compiler option: --integer-enumeration
	C compiler option: --iso (-c)
	C compiler option: --keep-output-files (-k)
	C compiler option: --language (-A)
	C compiler option: --loop-alignment
	C compiler option: --make-target
	C compiler option: --max-call-depth
	C compiler option: --mil / --mil-split
	C compiler option: --misrac
	C compiler option: --misrac-advisory-warnings / --misrac-required-warnings
	C compiler option: --misrac-version
	C compiler option: --mmu-present / --mmu-on
	C compiler option: --no-default-section-alignment
	C compiler option: --no-double (-F)
	C compiler option: --no-stdinc
	C compiler option: --no-tasking-sfr
	C compiler option: --no-warnings (-w)
	C compiler option: --object-comment
	C compiler option: --optimize (-O)
	C compiler option: --option-file (-f)
	C compiler option: --output (-o)
	C compiler option: --preprocess (-E)
	C compiler option: --profile (-p)
	C compiler option: --rename-sections (-R)
	C compiler option: --runtime (-r)
	C compiler option: --section-name-with-symbol
	C compiler option: --section-per-data-object
	C compiler option: --silicon-bug
	C compiler option: --source (-s)
	C compiler option: --static
	C compiler option: --stdout (-n)
	C compiler option: --switch
	C compiler option: --tradeoff (-t)
	C compiler option: --uchar (-u)
	C compiler option: --undefine (-U)
	C compiler option: --unroll-factor
	C compiler option: --user-mode
	C compiler option: --verbose (-v)
	C compiler option: --version (-V)
	C compiler option: --warnings-as-errors

	11.2. C++ Compiler Options
	C++ compiler option: --alternative-tokens
	C++ compiler option: --anachronisms
	C++ compiler option: --base-assign-op-is-default
	C++ compiler option: --building-runtime
	C++ compiler option: --c++0x
	C++ compiler option: --check
	C++ compiler option: --context-limit
	C++ compiler option: --core
	C++ compiler option: --cpu (-C)
	C++ compiler option: --create-pch
	C++ compiler option: --dep-file
	C++ compiler option: --define (-D)
	C++ compiler option: --dollar
	C++ compiler option: --embedded-c++
	C++ compiler option: --error-file
	C++ compiler option: --error-limit (-e)
	C++ compiler option: --exceptions (-x)
	C++ compiler option: --exported-template-file
	C++ compiler option: --extended-variadic-macros
	C++ compiler option: --force-vtbl
	C++ compiler option: --fpu-present
	C++ compiler option: --friend-injection
	C++ compiler option: --g++
	C++ compiler option: --gnu-version
	C++ compiler option: --guiding-decls
	C++ compiler option: --help (-?)
	C++ compiler option: --implicit-extern-c-type-conversion
	C++ compiler option: --implicit-include
	C++ compiler option: --incl-suffixes
	C++ compiler option: --include-directory (-I)
	C++ compiler option: --include-file (-H)
	C++ compiler option: --include-macros-file
	C++ compiler option: --init-priority
	C++ compiler option: --instantiate (-t)
	C++ compiler option: --integer-enumeration
	C++ compiler option: --io-streams
	C++ compiler option: --late-tiebreaker
	C++ compiler option: --list-file (-L)
	C++ compiler option: --long-lifetime-temps
	C++ compiler option: --long-long
	C++ compiler option: --make-target
	C++ compiler option: --mmu-present / --mmu-on
	C++ compiler option: --multibyte-chars
	C++ compiler option: --namespaces
	C++ compiler option: --no-arg-dep-lookup
	C++ compiler option: --no-array-new-and-delete
	C++ compiler option: --no-auto-instantiation
	C++ compiler option: --no-bool
	C++ compiler option: --no-class-name-injection
	C++ compiler option: --no-const-string-literals
	C++ compiler option: --no-dep-name
	C++ compiler option: --no-distinct-template-signatures
	C++ compiler option: --no-double (-F)
	C++ compiler option: --no-enum-overloading
	C++ compiler option: --no-explicit
	C++ compiler option: --no-export
	C++ compiler option: --no-extern-inline
	C++ compiler option: --no-for-init-diff-warning
	C++ compiler option: --no-implicit-typename
	C++ compiler option: --no-inlining
	C++ compiler option: --nonconst-ref-anachronism
	C++ compiler option: --nonstd-qualifier-deduction
	C++ compiler option: --nonstd-using-decl
	C++ compiler option: --no-parse-templates
	C++ compiler option: --no-pch-messages
	C++ compiler option: --no-preprocessing-only
	C++ compiler option: --no-stdinc / --no-stdstlinc
	C++ compiler option: --no-tasking-sfr
	C++ compiler option: --no-typename
	C++ compiler option: --no-use-before-set-warnings (-j)
	C++ compiler option: --no-warnings (-w)
	C++ compiler option: --old-for-init
	C++ compiler option: --old-line-commands
	C++ compiler option: --old-specializations
	C++ compiler option: --option-file (-f)
	C++ compiler option: --output (-o)
	C++ compiler option: --pch
	C++ compiler option: --pch-dir
	C++ compiler option: --pch-verbose
	C++ compiler option: --pending-instantiations
	C++ compiler option: --preprocess (-E)
	C++ compiler option: --remarks (-r)
	C++ compiler option: --remove-unneeded-entities
	C++ compiler option: --rtti
	C++ compiler option: --schar (-s)
	C++ compiler option: --special-subscript-cost
	C++ compiler option: --strict (-A)
	C++ compiler option: --strict-warnings (-a)
	C++ compiler option: --suppress-vtbl
	C++ compiler option: --sys-include
	C++ compiler option: --template-directory
	C++ compiler option: --timing
	C++ compiler option: --trace-includes
	C++ compiler option: --type-traits-helpers
	C++ compiler option: --uchar (-u)
	C++ compiler option: --undefine (-U)
	C++ compiler option: --use-pch
	C++ compiler option: --using-std
	C++ compiler option: --variadic-macros
	C++ compiler option: --version (-V)
	C++ compiler option: --warnings-as-errors
	C++ compiler option: --wchar_t-keyword
	C++ compiler option: --xref-file (-X)

	11.3. Assembler Options
	Assembler option: --case-insensitive (-c)
	Assembler option: --check
	Assembler option: --core
	Assembler option: --cpu (-C)
	Assembler option: --debug-info (-g)
	Assembler option: --define (-D)
	Assembler option: --diag
	Assembler option: --emit-locals
	Assembler option: --error-file
	Assembler option: --error-limit
	Assembler option: --fpu-present
	Assembler option: --help (-?)
	Assembler option: --include-directory (-I)
	Assembler option: --include-file (-H)
	Assembler option: --keep-output-files (-k)
	Assembler option: --list-file (-l)
	Assembler option: --list-format (-L)
	Assembler option: --mmu-present
	Assembler option: --no-tasking-sfr
	Assembler option: --no-warnings (-w)
	Assembler option: --optimize (-O)
	Assembler option: --option-file (-f)
	Assembler option: --output (-o)
	Assembler option: --page-length
	Assembler option: --page-width
	Assembler option: --preprocess (-E)
	Assembler option: --preprocessor-type (-m)
	Assembler option: --section-info (-t)
	Assembler option: --silicon-bug
	Assembler option: --symbol-scope (-i)
	Assembler option: --user-mode
	Assembler option: --version (-V)
	Assembler option: --warnings-as-errors

	11.4. Linker Options
	Linker option: --case-insensitive
	Linker option: --chip-output (-c)
	Linker option: --define (-D)
	Linker option: --diag
	Linker option: --error-file
	Linker option: --error-limit
	Linker option: --extern (-e)
	Linker option: --first-library-first
	Linker option: --global-type-checking
	Linker option: --help (-?)
	Linker option: --hex-format
	Linker option: --hex-record-size
	Linker option: --import-object
	Linker option: --include-directory (-I)
	Linker option: --incremental (-r)
	Linker option: --keep-output-files (-k)
	Linker option: --library (-l)
	Linker option: --library-directory (-L) / --ignore-default-library-path
	Linker option: --link-only
	Linker option: --lsl-check
	Linker option: --lsl-dump
	Linker option: --lsl-file (-d)
	Linker option: --map-file (-M)
	Linker option: --map-file-format (-m)
	Linker option: --misra-c-report
	Linker option: --munch
	Linker option: --non-romable
	Linker option: --no-rescan
	Linker option: --no-rom-copy (-N)
	Linker option: --no-warnings (-w)
	Linker option: --optimize (-O)
	Linker option: --option-file (-f)
	Linker option: --output (-o)
	Linker option: --print-mangled-symbols (-P)
	Linker option: --strip-debug (-S)
	Linker option: --user-provided-initialization-code (-i)
	Linker option: --verbose (-v) / --extra-verbose (-vv)
	Linker option: --version (-V)
	Linker option: --warnings-as-errors

	11.5. Control Program Options
	Control program option: --address-size
	Control program option: --case-insensitive
	Control program option: --check
	Control program option: --core
	Control program option: --cpu (-C)
	Control program option: --create (-c)
	Control program option: --debug-info (-g)
	Control program option: --define (-D)
	Control program option: --diag
	Control program option: --dry-run (-n)
	Control program option: --error-file
	Control program option: --exceptions
	Control program option: --force-c
	Control program option: --force-c++
	Control program option: --force-munch
	Control program option: --format
	Control program option: --fp-trap
	Control program option: --fpu-present
	Control program option: --help (-?)
	Control program option: --include-directory (-I)
	Control program option: --instantiate
	Control program option: --integer-enumeration
	Control program option: --io-streams
	Control program option: --iso
	Control program option: --keep-output-files (-k)
	Control program option: --keep-temporary-files (-t)
	Control program option: --library (-l)
	Control program option: --library-directory (-L) / --ignore-default-library-path
	Control program option: --link-only
	Control program option: --list-files
	Control program option: --lsl-file (-d)
	Control program option: --mil-link / --mil-split
	Control program option: --mmu-present
	Control program option: --no-auto-instantiation
	Control program option: --no-default-libraries
	Control program option: --no-double (-F)
	Control program option: --no-map-file
	Control program option: --no-tasking-sfr
	Control program option: --no-warnings (-w)
	Control program option: --option-file (-f)
	Control program option: --output (-o)
	Control program option: --pass (-W)
	Control program option: --preprocess (-E) / --no-preprocessing-only
	Control program option: --processors
	Control program option: --profile (-p)
	Control program option: --show-c++-warnings
	Control program option: --silicon-bug
	Control program option: --static
	Control program option: --uchar (-u)
	Control program option: --undefine (-U)
	Control program option: --use-double-precision-fp
	Control program option: --user-mode
	Control program option: --verbose (-v)
	Control program option: --version (-V)
	Control program option: --warnings-as-errors

	11.6. Make Utility Options
	Defining Macros
	Make utility option: -?
	Make utility option: -a
	Make utility option: -c
	Make utility option: -D / -DD
	Make utility option: -d/ -dd
	Make utility option: -e
	Make utility option: -err
	Make utility option: -f
	Make utility option: -G
	Make utility option: -i
	Make utility option: -K
	Make utility option: -k
	Make utility option: -m
	Make utility option: -n
	Make utility option: -p
	Make utility option: -q
	Make utility option: -r
	Make utility option: -S
	Make utility option: -s
	Make utility option: -t
	Make utility option: -time
	Make utility option: -V
	Make utility option: -W
	Make utility option: -w
	Make utility option: -x

	11.7. Parallel Make Utility Options
	Parallel make utility option: -?
	Parallel make utility option: -a
	Parallel make utility option: -f
	Parallel make utility option: -G
	Parallel make utility option: -j / -J
	Parallel make utility option: -k
	Parallel make utility option: -n
	Parallel make utility option: -s
	Parallel make utility option: -V

	11.8. Archiver Options
	Archiver option: --delete (-d)
	Archiver option: --dump (-p)
	Archiver option: --extract (-x)
	Archiver option: --help (-?)
	Archiver option: --move (-m)
	Archiver option: --option-file (-f)
	Archiver option: --print (-t)
	Archiver option: --replace (-r)
	Archiver option: --version (-V)
	Archiver option: --warning (-w)

	Chapter 12. Libraries
	12.1. Library Functions
	12.1.1. assert.h
	12.1.2. complex.h
	12.1.3. cstart.h
	12.1.4. ctype.h and wctype.h
	12.1.5. dbg.h
	12.1.6. errno.h
	12.1.7. fcntl.h
	12.1.8. fenv.h
	12.1.9. float.h
	12.1.10. fpbits.h
	12.1.11. inttypes.h and stdint.h
	12.1.12. io.h
	12.1.13. iso646.h
	12.1.14. limits.h
	12.1.15. locale.h
	12.1.16. malloc.h
	12.1.17. math.h and tgmath.h
	12.1.18. setjmp.h
	12.1.19. signal.h
	12.1.20. stdarg.h
	12.1.21. stdbool.h
	12.1.22. stddef.h
	12.1.23. stdint.h
	12.1.24. stdio.h and wchar.h
	12.1.25. stdlib.h and wchar.h
	12.1.26. string.h and wchar.h
	12.1.27. time.h and wchar.h
	12.1.28. unistd.h
	12.1.29. wchar.h
	12.1.30. wctype.h

	12.2. C Library Reentrancy

	Chapter 13. List File Formats
	13.1. Assembler List File Format
	13.2. Linker Map File Format

	Chapter 14. Object File Formats
	14.1. ELF/DWARF Object Format
	14.2. Intel Hex Record Format
	14.3. Motorola S-Record Format

	Chapter 15. Linker Script Language (LSL)
	15.1. Structure of a Linker Script File
	15.2. Syntax of the Linker Script Language
	15.2.1. Preprocessing
	15.2.2. Lexical Syntax
	15.2.3. Identifiers and Tags
	15.2.4. Expressions
	15.2.5. Built-in Functions
	15.2.6. LSL Definitions in the Linker Script File
	15.2.7. Memory and Bus Definitions
	15.2.8. Architecture Definition
	15.2.9. Derivative Definition
	15.2.10. Processor Definition and Board Specification
	15.2.11. Section Layout Definition and Section Setup

	15.3. Expression Evaluation
	15.4. Semantics of the Architecture Definition
	15.4.1. Defining an Architecture
	15.4.2. Defining Internal Buses
	15.4.3. Defining Address Spaces
	15.4.4. Mappings

	15.5. Semantics of the Derivative Definition
	15.5.1. Defining a Derivative
	15.5.2. Instantiating Core Architectures
	15.5.3. Defining Internal Memory and Buses

	15.6. Semantics of the Board Specification
	15.6.1. Defining a Processor
	15.6.2. Instantiating Derivatives
	15.6.3. Defining External Memory and Buses

	15.7. Semantics of the Section Setup Definition
	15.7.1. Setting up a Section

	15.8. Semantics of the Section Layout Definition
	15.8.1. Defining a Section Layout
	15.8.2. Creating and Locating Groups of Sections
	15.8.3. Creating or Modifying Special Sections
	15.8.4. Creating Symbols
	15.8.5. Conditional Group Statements

	Chapter 16. Debug Target Configuration Files
	16.1. Custom Board Support
	16.2. Description of DTC Elements and Attributes
	16.3. Special Resource Identifiers
	16.4. Initialize Elements

	Chapter 17. CPU Problem Bypasses and Checks
	CPU_TC.013
	CPU_TC.018
	CPU_TC.021
	CPU_TC.023
	CPU_TC.024
	CPU_TC.030
	CPU_TC.031
	CPU_TC.033
	CPU_TC.034
	CPU_TC.043
	CPU_TC.048
	CPU_TC.050
	CPU_TC.051
	CPU_TC.052
	CPU_TC.060
	CPU_TC.065
	CPU_TC.068
	CPU_TC.069
	CPU_TC.070
	CPU_TC.071
	CPU_TC.072
	CPU_TC.074
	CPU_TC.081
	CPU_TC.082
	CPU_TC.083
	CPU_TC.094
	CPU_TC.095
	CPU_TC.096
	CPU_TC.103
	CPU_TC.104
	CPU_TC.105
	CPU_TC.106
	CPU_TC.108
	CPU_TC.109
	DMU_TC.001
	PMI_TC.003
	PMU_TC.004

	Chapter 18. MISRA-C Rules
	18.1. MISRA-C:1998
	18.2. MISRA-C:2004

