TASKING.

TASKING VX-toolset for ARM
User Guide

MA101-800 (v5.2) July 24, 2015

Copyright © 2015 Altium BV.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only
and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the
document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic,
including translation into another language, except for brief excerpts in published reviews, is prohibited without the
express written permission of Altium BV. Unauthorized duplication of this work may also be prohibited by local statute.
Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium, TASKING,
and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other
registered or unregistered trademarks referenced herein are the property of their respective owners and no trademark
rights to the same are claimed.

Table of Contents

I O 1= T o > T TS 1
L1 DALA TYPES e 1
1.2. Changing the Alignment: __unaligned, __packed__and __align()ccooviiiiiiiiinnn. 2
1.3. Placing an Object at an Absolute ADdress: at()covvvriiiniriiiiee e 3
1.4. Accessing Hardware from €o.iuiniiiii i 4
1.5, Shift JIS Kanji SUPPOIT . ..eeititiit e e e e e 5
1.6. Using Assembly in the C SOUIrCe: _ aSM() .uvuerinininititi e e e aes 6
O N 1] o (= O 12
1.8. Pragmas to Control the ComPIiler ..ot e 15
1.9. Predefined PreproCeSSOr MACIOSvuiiiiiiiii et aeaaaas 21
1.20. SWILCH SEAIEMENT ...ttt 22
0 T 0 o 1o 0 P 24

1.11.1. Calling CONVENTIONuiuitititititet et et e e e e e e e et e e aaanan 24
1.12.2. Inlining FUNCHONS: INIINEoiiii e 24
1.11.3. Interrupt Functions / Exception Handlersccooiiiiiiiiciciiiiieeeas 26
1.11.4. INtriNSIC FUNCHONS ..ottt et ea e 28

B O - o 1= o = 39
2.1. C++ Language EXtension KEYWOIScuiuiiiiiiiiiiiiii e aaan 39
2.2, CH+ DialeCt ACCEPIEA ...vteiii it e 39

2.2.1. Default CHd MOUE ...enieiiie e 40
2.2.2. GNU CH MOGE ...t 41
2.2.3. ANachronisSmMs ACCEPIEA ... vvitit it e 42
2.3, NAMESPACE SUP PO ettt ettt ettt ettt 43
2.4. Template INStANTIAtIONiuiiii e 45
2.4.1. InStantiation MOGESuuinit e 46
2.4.2. Instantiation #pragma Dir€CIVESoviiiiiiiii e 46
2.4.3. IMPHCIt INCIUSION ...t e e 48
2.5, INlNING FUNCHONS ...t e e e e e e aans 48
2.6. EXtern INlinNe FUNCHONSuiiiiii e e 49
2.7. Pragmas to Control the C++ COMPIIErconiiii e 50
2.8. Predefined MACIOSiie it 50
2.9. Precompiled HEAAEIScuiuiiiti i e e e 54
2.9.1. Automatic Precompiled Header ProCessingccovvvuiiiiiiiiiiiiiiiiieananan 55
2.9.2. Manual Precompiled Header ProCeSSINGc.ouiuitiriririiiii e eeieieieiaaea 58
2.9.3. Other Ways to Control Precompiled Headerscccoiviiiiiiiiiiiiiiiieeeen 58
2.9.4. PerfOrManCE ISSUESuiuitiitii it 59

3. ASSEMBIY LANQUAGE ... vttt e e e e et et aas 61
3.1 ASSEMDBIY SYNAX .ttt 61
3.2. Assembler Significant Characterscc.oiiiiiiiiiii e 62
3.3. Operands of an Assembly INSTIUCHIONoviiii e 63
10 S V1] o Yo I NN =T = 63

3.4.1. Predefined Preprocessor SYmboISccouiiiiiiiie e 64
B D RIS IS Lttt 65
3.6. ASSEMDBIY EXPrESSIONS .ouviiiiiii e 65
3.6.1. NUMEIIC CONSLANES ..ottt aea e 66
B LG 0 {1 T 1 PP 66
3.6.3. EXPreSSioN OPEIALOISi.cuiuitiiteiet ettt eenas 67
3.7. WOrKing With SECHONScueiitei e 68

TASKING VX-toolset for ARM User Guide

3.8. Built-in Assembly FUNCLONS 69
3.9. ASSEMDIET DIFECHIVESe ettt 74
3.9.1. Overview of ASsembler DIFECHVESvuienieiiii e 75
3.9.2. Detailed Description of Assembler DIreCtivesoooviiiiiiiiiiiiiiiiiiieeene 76

I KO Y F- Tl (ol @] o [=T =i [0 o - S PP PRI 116
3.10.1. DEfiNiNG @ MACKO .. cuviitee e 116
3.10.2. CAlliNG @ MBCTO ...eneeeteee et e e 116
3.10.3. Using Operators for Macro ArgUMENLScuieirieiiiiieiiiieeeeeeeeeneens 117

3.11. GENETIC INSIIUCLIONS ... ettt ettt ettt ettt et e e enenas 120
3.11.1. ARM GeNeric INSIUCHIONSuvuitiit it 120
3.11.2. ARM and Thumb-2 32-bit Generic INStructionscccoveviiiiiiniiinienn. 121
3.11.3. Thumb 16-bit Generic INSrUCHIONSovuiriiii e 123
4.USING the C COMPIIET «..eee et 125
4. 1. COMPIlALION PIOCESSeiitiiie ettt 125
4.2. Calling the C COMPIIET ...t e eeaes 126
4.3. How the Compiler Searches Include Files ..o 128
4.4, Compiling fOr DEDUGGING ... vueriiteeie e e 129
4.5. Compiler OPtMIZALIONSttt 130
4.5.1. Generic Optimizations (frontend)c.coiiiiiiii e 131
4.5.2. Core Specific Optimizations (backend)cooiiiiiiiii 134
4.5.3. Optimize for Code Size or EXecution Speedccoeviiiiiiiiiiiiiiiieeenn 135

4.6. STAtIC COUE ANAIYSIS ... ettt 139
4.6.1. C Code Checking: CERT €uvuitiiiiiiiie ettt 140
4.6.2. C Code Checking: MISRA C ...t e 142

4.7. C COMPIlEr ErrOr MESSAGES ... cuviitetiiet ettt et ettt et e enes 143
5.USING the CH+ COMPIIET . ..e it et enes 145
5.1. Calling the CH+ COMPIIET ..o 145
5.2. How the C++ Compiler Searches Include Filesooiiiiiiiii e 147
5.3. C++ Compiler ErrOr MESSAQESueuiiiitiee ettt et nenes 148
6. USING the ASSEMDIETot e 151
B.1. ASSEMDIY PrOCESS ...ttt et e e 151
6.2. ASSEMDIET VEISIONS ... ettt 152
6.3. Calling the ASSEMDIET ... e 152
6.4. How the Assembler Searches Include Flesccviiiiiiiiiii e 153
6.5. Generating @ LISt File ..o 154
6.6. ASSEMDIET EITOr MESSAUES ... vuiniteiit ettt ettt 155
7. USING the LINKET ...ttt et 157
7.1, LINKING PrOCESS ...ttt ettt et e 157
7.01.1. Phase 1: LINKING ..onenteiteee et 159
7.01.2. Phase 2: LOCALING . ..ovenineteteei ettt et et 160

7.2. CalliNg the LINKET ... e e 161
7.3. LinKing WIth LIDraries ... e 162
7.3.1. How the Linker Searches Librariescoooiiiiiiiii e 165
7.3.2. How the Linker Extracts Objects from Librariescoooviiiiiiiiniiininennen. 166

7.4, Incremental LINKING et 166
7.5.1mMporting BiNAry FilES ... 167
7.6. LINKer OPtMIZALIONSvieniiii et e 168
7.7. Controlling the Linker With @ SCFPouiei e 169
7.7.1. Purpose of the Linker Script LANQUAQEocuveiiiiriiiiiiieeneeee e 169
T7.7.2. ECIPSE @NA LSL ...eiiit e e 170

TASKING VX-toolset for ARM User Guide

7.7.3. Structure of a Linker SCript Fileoouieiii e 172
7.7.4. The Architecture Definition ..o 174
7.7.5. The Derivative Definitionooiiiii e 176
7.7.6. The Processor Definitionot 177
7.7.7.The Memory Definition 178
7.7.8. The Section Layout Definition: Locating SeCtionScovvvevieiiiiiniiinieennn. 179

7.8, LINKEr LADEIS ... 181
7.9.Generating @aMap File ..o 182
7.20. LINKEr ErTOr MESSAUES ...uutueitiietitt et et ettt et ettt e 183
8. RUN-tIME ENVIFONIMENT ...ttt et ettt ettt e e enaenes 185
8.1, SEANUP COUB ...ttt e 185
8.2. Reset Handler and VeCtor Table ..o 186
8.3, CMSIS SUPPOIT ..ttt e 190
8.4, StACK AN HEAP ... v 191
9. USING the ULIITIES ... ettt ettt eae s 195
S B o] 0] (o] I = (oo £-1 1 o H PP PRP 195
9.2. Make ULIIItY @IMK ..o e 197
9.2.1. MAKEFIlE RUIES ..ot e 197
9.2.2. MAKETIIE DIFECHIVESveitee et et e 199
9.2.3. MACIO DEfINItIONS ... ot 199
9.2.4. MaKefile FUNCHONSttt e e e 201
9.2.5. ConditioN@l PrOCESSING ...ttt 202
9.2.6. MAKETIIE PAISINGietiiiie e 202
9.2.7. Makefile Command ProCESSINGvuiuiriiiiiiie e 203
9.2.8. Calling the amk Make ULIlItYcovvniriiii e 204

9.3. EClipSe CONSOIE ULIILYvnenieiit e e e 205
9.3.1. HeadlesSs BUIldouiiii e 205
9.3.2. Generating Makefiles from the Command Lineccocoiiiiiiiiiiiiniinnenne, 206

0.4, ATCRIVET o e 208
9.4.1. Calling the ArCRIVETo e 208
9.4.2. ArChiVer EXAMPIES ... e 210

9.5, HLL ODbjJECE DUMIPET ...ttt e ettt et e eaes 212
9.5, 1. INVOCALION . ..etee ettt ettt et e e 212
9.5.2. HLL DUmpP OUPUL FOIMAL ... oo 212

9.6. EXPire Cache ULIlILYouiiiriie e e 218
10. USING the DEDUGOET .. ettt ettt ettt nene e 219
10.1. Reading the Eclipse DOCUMENTALIONcuieieiiiiiie e 219
10.2. Creating a Customized Debug Configurationcocoeiiiiiiiiiiiiieee e 219
10.3. TroUBIESNOOING ... ettt e 225
10.4. TASKING DebUQ PEISPECLIVEouieeieieie e 226
10.4.1. DEDBUQG VIBW ...eii it 226
10.4.2. BreakpOointS VIEBWieeie ittt et e ee e 228
10.4.3. File System Simulation (FSS) VIEWvuiriiiiiiiiieee e 230
10.4.4. DiSASSEMDIY VIBWoiiiitii et 230
10.4.5. EXPrESSIONS VIEW ...ouiiiiiitiei ettt et e 231
10.4.6. MEMOIY VIBW ...ttt ettt ettt enees 231
10.4.7. Compare APPlICAtION VIBWvuiiiiiii e e 232
T0.4.8. HEAP VIBW .ottt et ettt 232
10.4.9. LOGGING VIBW ...ttt ettt ettt e ea 233
10.4.10. RTOS VIBW .ttt ettt ettt et et et e e 233

TASKING VX-toolset for ARM User Guide

10.4.10. REQISIEIS VIBW ...ttt et et et et et es 234
L0.4.12. TrACE VIBW ..ottt ettt et ettt ettt e es 235

10.5. Programming @ Flash DEVICEc.ouuiuiii e 236
5 [oTo 1 @ o1 i o] o I PPN 241
11.1. Configuring the Command Line ENVIroNMEeNtcooviiiiiiiniiniieneeieeeeee 247
11.2. C COMPIIEr OPLIONS ...eiietetet et e 248
11.3. C++ COMPIIEr OPLIONS ...ttt et 322
11.4. ASSEMDIET OPLIONS ...ttt et 459
115, LINKEE OPLIONS ...ttt e e et 501
11.6. Control Program OPLONSvuieiit ettt ettt 555
11.7. Parallel Make ULility OPLONSvueieiieeiee e 624
11.8. ArChIVET OPLIONS . ..vieiteei et et et 638
11.9. HLL Object DUMPEr OPLIONSuvietitiet et 653
11.10. Expire Cache ULlity OPONSvuitieiiieiie et 675
12. Influencing the BUild TIMeouii e 685
12,1 MIL LINKING -+ttt e e et e 685
12.2. OptimMIzation OPLIONSeuie e 685
12.3. AULOMALIC INNNING ..ot et 686
12.4. COAE COMPACLION ...ttt ettt et ettt et ens 686
12.5. COMPIIEr CACNE .. .ot 686
12.6. HEAUET FHlES .ot 687
12.7. Parallel BUIl ... e e 687
12.8. NUMDEr Of SECHONSiiei e 688
R T o) 11T o PRSPPI 689
13.1. What iS Profiling?ooeeii e 689
13.1.1. Methods of Profilingc.ooovuiriiii e 689

13.2. Profiling using Code Instrumentation (Dynamic Profiling)ccccooiviiiiiiiinnnnne. 690
13.2.1. Step 1: Build your Application for Profilingcoooviiiiiiiiien, 691
13.2.2. Step 2: Execute the AppliCationcviiiiiiiii e 693
13.2.3. Step 3: Displaying Profiling RESUILScooviiiii e 695

13.3. Profiling at Compile Time (Static Profiling)ccoviiiii e 698
13.3.1. Step 1: Build your Application with Static Profilingc.ccocoiviiiiiiiininne. 698
13.3.2. Step 2: Displaying Static Profiling ReSUltsc..cooiiiiiiiiiie, 699

I B o = 4 =T PP PRI 701
14.1. Using the CMSIS DSP LIDIArYccuvuieii e 703
14.2. LIbrary FUNCHONS ...t et e eens 703
T4.2.0. @SSO e 703
14.2.2. COMPIEX.N Lo 704
14.2.3. ctype.h and WCLYPE.N ..o 705
L4.2.4.dDG.N oo 706
14,25, ITNO.N L 706
T4.2.6. €XCEPLN o 707
LA, 2. 7. FCNEL N e 708
L4.2.8. BNV L 708
14.2.9. flOALN ..o 709
14.2.10. inttypes.h and Stdint.h ..o 709
I I A To Y PP 710
14.2.02.0S0646.1 ..ot 710
L4.2.03. TIMIES. N e e 710
L14.2.14. 10CAIE.IN ..o 710

Vi

TASKING VX-toolset for ARM User Guide

14.2.15. MAIIOC.N .o 711
14.2.16. math.h and tgmath.h ... 711
14,207, SE ML e 715
14.2.18. SIgNALIN oo 716
14.2.09. SEHANG.N .o 716
14.2.20. StADOOLN .o 717
14.2.20. StAAEf.N oo 717
14.2.22. SEAINEN o 717
14.2.23. stdio.h @and WChar.h ... 717
14.2.24. stdlib.h and WChar.h ... 725
14.2.25. string.h and Wehar.h ... 728
14.2.26. time.h and Wehar.h 730
T14.2.27. UNISEA.N oo 733
14.2.28. WCNAIN .o 733
14.2.29. WOLYPE. N o 734

14.3. C Library REENIIANCYuiniiiiii et et 735
15, LISt FIIE FOIMALS ... oeeiiit ettt et et ettt ettt et enenas 747
15.1. Assembler List File FOrMALc.ivuiuiiiii e 747
15.2. Linker Map File FOPMAL e 748
16. ODJECE File FOIMALSttt e e ettt et e enenas 757
16.1. ELF/DWARF ODJECT FOIMALouiieieciie et 757
16.2. Intel HEX RECOIA FOIMALoviieiit e 757
16.3. Motorola S-ReCOrd FOIMAL ..ot e 760
17. Linker SCript LANGUAGE (LSL) .. .uuiitiiit ettt ettt et 763
17.1. Structure of @ Linker SCript File ... 763
17.2. Syntax of the Linker SCript LANQUAGEovuirieiitieieee e 765
17.2.0. PrePIrOCESSING . cteueteeiet ettt et ettt ettt e e 765
17.2.2. LEXICAI SYNTAX ..ttt ettt et et 766
17.2.3. 1dentifiers @nd TAOS . ..vvvieiteie e 766
17.2.4, EXPIESSIONS ...vuetitiiti et ettt e 767
17.2.5. BUIlt-IN FUNCLIONS ...oveeieiic et 767
17.2.6. LSL Definitions in the Linker Script Filecoooiiiiiii e 770
17.2.7. Memory and Bus DefinitioNsc.vviiuieiiiiiii e 770
17.2.8. Architecture Definitioncoveiniiii e 772
17.2.9. Derivative Definitionc.ouiiiniii i 775
17.2.10. Processor Definition and Board Specificationccocovviiiiiiiiniiinenennn. 776
17.2.10. SECHON SEIUD .oniteit ittt et ettt e 776
17.2.12. Section Layout Definition ..o 776

17.3. EXPression EVAIUALIONvuieiitiei e 781
17.4. Semantics of the Architecture Definition ..o 782
17.4.1. Defining @an ArChiteCIUIEieirii i 783
17.4.2. Defining INtErnal BUSESo.iriiiie e 784
17.4.3. Defining AdAreSS SPACESuiriinie ittt 784
17,44, MAPPINGS vttt ettt et et 788

17.5. Semantics of the Derivative Definitioncooiiiiiii e, 791
17.5.1. Defining @ DErVALIVEcoiiriiii e 791
17.5.2. Instantiating Core ArChitECIUIrEScevuiriieitii e 792
17.5.3. Defining Internal Memory and BUSESccveiiiiiiiiiiiciieece e 793

17.6. Semantics of the Board SpecifiCationcocoiiiiiiiii e 794
17.6.1. DefiniNg @ PrOCESSONviieiiieii et e 794

Vii

TASKING VX-toolset for ARM User Guide

17.6.2. Instantiating DEerVALIVESc.iiuitiii e 795

17.6.3. Defining External Memory and BUSEScoveiiiiiiiiiiiiiiiieeeeeeeea 795

17.7. Semantics of the Section Setup Definitionc.coveiiiiiiii 796
17.7.1. SEttiNg UP 8 SECHIONvutieit ettt ettt 797

17.8. Semantics of the Section Layout Definitionccovviiiiiiii e 798
17.8.1. Defining @ SECHON LAYOULc.uvuiiieiiei e e 799

17.8.2. Creating and Locating Groups Of SECHONScovvviiiiiiiiiieiieeeeen 799

17.8.3. Creating or Modifying Special SECHONSc.oeuiuiiiiiiieic e 805

17.8.4. Creating SYMDOISooii 809

17.8.5. Conditional Group StateMENTSc.irieiiieii e 810

18. Debug Target Configuration FileSoouiiiiiii e 811
18.1. CuStOM BOArd SUPPOITttt ettt 811

18.2. Description of DTC Elements and AtrDULESooviiiiiiiii e 812

18.3. Special Resource Identifierso 814

19. CPU Problem Bypasses and CheCKSc.ouiiiii e 817
20. CERT C Secure Coding StANCAITc.ouiuitiiteei et naeaes 821
20.1. PreproCessor (PRE) ...t 821

20.2. Declarations and Initialization (DCL)vuitieieiiie e 822

20.3. EXPreSSioNS (EXP)uuiiiiii et e 823

20,4, INTEGEIS (INT) 1ettt ittt ettt et 824

20.5. Floating POINt (FLP)cuiiie e e 824

20.6. AITAYS (ARR) ..ottt 825

20.7. Characters and Strings (STR)uuiuiiiii e 825

20.8. Memory Management (MEM) e 825

20.9. ENVIronmMENt (ENV) ..ot e 826
20.20. SIGNAIS (SIG) .. ruenitieteet e 826
20.11. MISCEllaN@0US (MSC)uuieitiei et e 827

21 MISRA C RUIES ...t e 829
210 MISRA CiLO08 .ottt e 829

21.2. MISRA C:2004 ...ttt e e 833

21.3. MISRA Ci2012 ..ottt 841

viii

Chapter 1. C Language

This chapter describes the target specific features of the C language, including language extensions that
are not standard in ISO-C. For example, pragmas are a way to control the compiler from within the C
source.

The TASKING VX-toolset for ARM® C compiler fully supports the ISO-C standard and adds extra
possibilities to program the special functions of the target.

In addition to the standard C language, the compiler supports the following:

« attribute to specify alignment and absolute addresses

« intrinsic (built-in) functions that result in target specific assembly instructions
» pragmas to control the compiler from within the C source

» predefined macros

* the possibility to use assembly instructions in the C source

» keywords for inlining functions and programming interrupt routines

* libraries

All non-standard keywords have two leading underscores (__).

In this chapter the target specific characteristics of the C language are described, including the above
mentioned extensions.

1.1. DataTypes

The TASKING C compiler for the ARM supports the following data types.

C type Size Align Limits
_Bool 1 8 Oor1l
signed char 8 8 [-27, 27-1]
unsigned char 8 8 [0, 28-1]
short 16 16 [-2°, 27°-1)
unsigned short 16 16 [0, 216-1]
int 32 32 [-2%%, 2%
unsigned int 32 32 [0, 232-1]
enum 32 32 [-2° 2%
long 32 32 [-2%, 2%
unsigned long 32 32 [0, 232-1]

TASKING VX-toolset for ARM User Guide

C type Size Align Limits

long long 64 64 [-263, 263-1]

unsigned long long 64 64 [0, 264-1]

float (23-bit mantissa) 32 32 [-3.402E+38, —1.175E-38]
[+1.175E-38, +3.402E+38]

double 64 64 [-1.797E+308, -2.225E-308]

long double (52-bit mantissa) [+2.225E-308, +1.797E+308]

_Imaginary float 32 32 [-3.402E+38i, —1.175E-38i]
[+1.175E-38i, +3.402E+38i]

_Imaginary double 64 64 [-1.797E+308i, -2.225E-308i]

_Imaginary long double [+2.225E-308i, +1.797E+308i]

_Complex float 64 32 real part + imaginary part

_Complex double 128 64 real part + imaginary part

_Complex long double

pointer to data or function 32 32 [0, 232-1]

1.2. Changing the Alignment: __unaligned, _packed _and
__align()

Normally data, pointers and structure members are aligned according to the table in the previous section.

Suppress alignment

With the type qualifier __unal i gned you can specify to suppress the alignment of objects or structure
members. This can be useful to create compact data structures. In this case the alignment will be one bit
for bit-fields or one byte for other objects or structure members.

At the left side of a pointer declaration you can use the type qualifier __unal i gned to mark the pointer
value as potentially unaligned. This can be useful to access externally defined data. However the compiler
can generate less efficient instructions to dereference such a pointer, to avoid unaligned memory access.

You can always convert a normal pointer to an unaligned pointer. Conversions from an unaligned pointer
to an aligned pointer are also possible. However, the compiler will generate a warning in this situation,
with the exception of the following case: when the logical type of the destination pointer is char orvoi d,
no warning will be generated.

Example:

struct

{
char c;
__unaligned int i; /* aligned at offset 1 ! */

}os;

__unaligned int * up = & s.1i;

C Language

Packed structures

To prevent alignment gaps in structures, you can use the attribute __packed__ . When you use the
attribute __packed___directly after the keyword st r uct , all structure members are marked __unal i gned.
For example the following two declarations are the same:

struct __packed__

{

char c;

int * i;
} sl
struct
{

char __unaligned c;

int * _unaligned i; /* __unaligned at right side of

to pack pointer menber */

} s2;

The attribute __packed__ has the same effect as adding the type qualifier __unal i gned to the
declaration to suppress the standard alignment.

You can also use __packed___in a pointer declaration. In that case it affects the alignment of the pointer
itself, not the value of the pointer. The following two declarations are the same:

int * _ unaligned p;
int * p __ packed__;

Change alignment

With the attribute __al i gn(n) you can overrule the default alignment of objects or structure members
to n bytes.

1.3. Placing an Object at an Absolute Address: _ at()

With the attribute __at () you can specify an absolute address.

The compiler checks the address range, the alignment and if an object crosses a page boundary.
Examples

unsi gned char Display[80*24] _ at(0x2000);

The array Di spl ay is placed at address 0x2000. In the generated assembly, an absolute section is
created. On this position space is reserved for the variable Di spl ay.

int i __at(0x1000) = 1;

The variable i is placed at address 0x1000 and is initialized.

TASKING VX-toolset for ARM User Guide

void f(void) __at(Oxfoff + 1) { }

The function f is placed at address 0xf100.

Restrictions

Take note of the following restrictions if you place a variable at an absolute address:
» The argument of the __at () attribute must be a constant address expression.

* You can place only global variables at absolute addresses. Parameters of functions, or automatic
variables within functions cannot be placed at absolute addresses.

» Avariable that is declared ext er n, is not allocated by the compiler in the current module. Hence it is
not possible to use the keyword __at () on an external variable. Use __at () at the definition of the
variable.

* You cannot place structure members at an absolute address.

» Absolute variables cannot overlap each other. If you declare two absolute variables at the same address,
the assembler and/or linker issues an error. The compiler does not check this.

1.4. Accessing Hardware from C

It is easy to access Special Function Registers (SFRs) that relate to peripherals from C. The SFRs are
defined in a special include file (*. h) as symbol nhames for use with the compiler.

The TASKING VX-toolset for ARM supports the Cortex Microcontroller Software Interface Standard
(CMSIS). You can find details about this standard on www.arm.com.

The product includes a full set of CMSIS files in the cnsi s directory under the product installation directory.
This includes SFR files for the various Cortex cores. The organization of the CMSIS files in the product
installation is as follows:

cnsi s/ Devi ce/ ARM CMSIS-CORE files for the supported ARM processors

cnsi s/DSP_Li b DSP Library Collection

cmsi s/ | ncl ude CMSIS-CORE header files

cnsi s/ RTOS/ Tenpl at e Contains the template header file cnsi s_os. h for a CMSIS-RTOS compliant
RTOS

When you include CMSIS SFR file in your source you must set an include search path to the appropriate
CMSIS directory.

Example of including an SFR file:

#i ncl ude " ARMCMB. h"

voi d main(voi d)

{

http://www.arm.com

C Language

NVI G- >I SER[0] = 1;
}

Compiler invocation:

ccarm - CARM/7M -1 "install ation_dir\cnsis\Devi ce\ ARM ARMCMB\ | ncl ude”
-I"installation_dir\cnsis\Include" file.c

When you use Eclipse you can easily add the include search paths by using the option Project »
Properties for » C/C++ Build » Settings » C/C++ Compiler » Add CMSIS include paths.

1.5. Shift JIS Kanji Support

In order to allow for Japanese character support on non-Japanese systems (like PCs), you can use the
Shift JIS Kanji Code standard. This standard combines two successive ASCII characters to represent
one Kaniji character. A valid Kanji combination is only possible within the following ranges:

* First (high) byte is in the range 0x81-0x9f or Oxe0-0xef.
» Second (low) byte is in the range 0x40-0x7e or 0x80-0xfc

Compiler option -Ak enables support for Shift JIS encoded Kanji multi-byte characters in strings and
(wide) character constants. Without this option, encodings with 0x5c as the second byte conflict with the
use of the backslash (\ ') as an escape character. Shift JIS in comments is supported regardless of this
option.

Note that Shift JIS also includes Katakana and Hiragana.
Example:

/1 Exanpl e usage of Shift JIS Kanji
/1 Do not switch off option -Ak
// At the position of the italic text you can
/1 put your Shift JI'S Kanji code
int i; // put Shift JIS Kanji here
char cl;
char c2;
unsi gned int ui;
const char mes[]="put Shift JIS Kanji here";
const unsigned int ar[5]={"K ,"a",
SANRIADY
/1 5 Japanese array

n.,

voi d mai n(voi d)

{
i=(int)cl;
i++, /* put Shift JIS Kanji here\
conti nuous conment */
c2=nes[9];
ui =ar[0];
}

TASKING VX-toolset for ARM User Guide

1.6. Using Assembly in the C Source: __asm()

With the keyword __asmyou can use assembly instructions in the C source and pass C variables as
operands to the assembly code. Be aware that C modules that contain assembly are not portable and
harder to compile in other environments.

The compiler does not interpret assembly blocks but passes the assembly code to the assembly source
file; they are regarded as a black box. So, it is your responsibility to make sure that the assembly block
is syntactically correct. Possible errors can only be detected by the assembler.

You need to tell the compiler exactly what happens in the inline assembly code because it uses that for
code generation and optimization. The compiler needs to know exactly which registers are written and
which registers are only read. For example, if the inline assembly writes to a register from which the
compiler assumes that it is only read, the generated code after the inline assembly is based on the fact
that the register still contains the same value as before the inline assembly. If that is not the case the
results may be unexpected. Also, an inline assembly statement using multiple input parameters may be
assigned the same register if the compiler finds that the input parameters contain the same value. As
long as this register is only read this is not a problem.

General syntax of the __asm keyword

__asn("instruction_tenplate"”
[: output_paramli st
[: input_param]li st
[: register_reserve_list]]]);

instruction_template Assembly instructions that may contain parameters from the input
list or output list in the form: %parm_nr
Y%parm_nr Parameter number in the range 0 .. 9.
output_param_list [["=[&]constraint_char" (C_expression)],...]
input_param_list [["constraint_char" (C_expression)],...]
& Says that an output operand is written to before the inputs are read,
so this output must not be the same register as any input.
constraint _char Constraint character: the type of register to be used for the
C_expression. See the table below.
C_expression Any C expression. For output parameters it must be an Ivalue, that
is, something that is legal to have on the left side of an assignment.
register_reserve_list [["register_name"],...]
register_name Name of the register you want to reserve. For example because this

register gets clobbered by the assembly code. The compiler will not
use this register for inputs or outputs. Note that reserving too many
registers can make register allocation impossible.

Specifying registers for C variables

With a constraint character you specify the register type for a parameter.

C Language

You can reserve the registers that are used in the assembly instructions, either in the parameter lists or
in the reserved register list (register_reserve_list). The compiler takes account of these lists, so no
unnecessary register saves and restores are placed around the inline assembly instructions.

Constraint Type Operand Remark
character
r general purpose register |rO .. r11, Ir Thumb mode r0 .. r7
number type of operand it is same as %number |Input constraint only. The number must
associated with refer to an output parameter. Indicates
that %enumber and number are the same
register.

If an input parameter is modified by the inline assembly then this input parameter must also be
added to the list of output parameters (see Example 6). If this is not the case, the resulting code
may behave differently than expected since the compiler assumes that an input parameter is not
being changed by the inline assembly.

Loops and conditional jumps

The compiler does not detect loops with multiple __asn{) statements or (conditional) jumps across
__asn() statements and will generate incorrect code for the registers involved.

If you want to create a loop with __asn{() , the whole loop must be contained in a single __asmn()
statement. The same counts for (conditional) jumps. As a rule of thumb, all references to a label in an
__asn() statement must be in that same statement. You can use numeric labels for these purposes.

Example 1: no input or output

A simple example without input or output parameters. You can use any instruction or label. When it is
required that a sequence of __asn{) statements generates a contiguous sequence of instructions, then
they can be best combined to a single __asn() statement. Compiler optimizations can insert instruction(s)
in between __asm() statements. Note that you can use standard C escape sequences. Use newline
characters \n’to continue on anew lineina__asn{) statement. For multi-line output, use tab characters
\t' to indent instructions.

__asn("nop\n"
"\'t nop");

Example 2: using output parameters

Assign the result of inline assembly to a variable. With the constraint r a general purpose register is
chosen for the parameter; the compiler decides which register it uses. The % in the instruction template
is replaced with the name of this register. The compiler generates code to assign the result to the output
variable.

int out;
void main(void)

{

TASKING VX-toolset for ARM User Guide

__asn("mov 9@, #Oxff"

"=r* (out));
}
Generated assembly code:
nov r 0, #0xf f
| dr ri,.L2
str ro,[r1, #0]
bx I'r
.Size main,$-min
.align 4
.L2:
. dw out

Example 3: using input parameters

Assign a variable to a register. A register is chosen for the parameter because of the constraint r ; the
compiler decides which register is best to use. The %® in the instruction template is replaced with the
name of this register. The compiler generates code to move the input variable to the input register. Because
there are no output parameters, the output parameter list is empty. Only the colon has to be present.

int in;
void initreg(void)

{
__asm("MV RO, %"

P (in))

}
Generated assembly code:
| dr ro,.L2
| dr ro,[rO0, #0]
MOV RO, r0
bx Ir
.size initreg,$-initreg
.align 4
.L2:
. dw in

Example 4: using input and output parameters

Add two C variables and assign the result to a third C variable. Registers are used for the input and output
parameters (constraint r , %9 for out , %4 for i n1, %2 for i n2 in the instruction template). The compiler
generates code to move the input expressions into the input registers and to assign the result to the output
variable.

int inl, in2, out;

voi d add32(void)

8

{
__asnm("add

nepn

wpn

}

C Language

%, %, %R
(out)
(inl),

-

T (in2))

Generated assembly code:

| dr

| dr

| dr

add rO,

| dr

str

bx

.Si ze

.align
.L2:

. dw

.section

. gl obal

.align
inl: .type

.size

. ds

. gl obal

.align
in2: .type

.size

. ds

. gl obal

.align
out: .type

.size

. ds

. endsec

r0,.L2
rl,[rO0, #0]
r0,[rO0, #4]
rl, r0

rl, . L2
r0,[r1, #8]

Ir

add32, $- add32
4

inl

. bss

inl

4

obj ect
inl, 4
4

in2

4

obj ect
in2, 4
4

out

4

obj ect
out, 4
4

Example 5: reserving registers

Sometimes an instruction knocks out certain specific registers. The most common example of this is a
function call, where the called function is allowed to do whatever it likes with some registers. If this is the

case, you can list

specific registers that get clobbered by an operation after the inputs.

Same as Example 4, but now register r 0 is a reserved register. You can do this by adding a reserved

register list (: "r

0"). As you can see in the generated assembly code, register r 0 is not used (the first

register used is r 1).

int inl, in2,

out ;

voi d add32(void)

TASKING VX-toolset for ARM User Guide

{
_asm "add %, %, "
© "=r" (out)
"r" (inl), "r" (in2)
"ro")
}
Generated assembly code:
| dr r2,.L2
| dr r2,[r1, #0]
| dr rl, [rl, #4]
add r1, r2, rl
| dr ro,.L2
str rl,[rO0, #8]
bx I'r
.size add32, $-add32
.align 4
.L2:
. dw inl

Example 6: use the same register for input and output

As input constraint you can use a number to refer to an output parameter. This tells the compiler that the
same register can be used for the input and output parameter. When the input and output parameter are
the same C expression, these will effectively be treated as if the input parameter is also used as output.
In that case it is allowed to write to this register. For example:

inline int foo(int parl, int par2, int * par3)
{
int retval ue;
__asn(
"add 92,9, 9%, 1sl #2\n\t"
"mov 9%, %2\ n\t"
"mov 99, 9%R"
"=&" (retvalue), "=r" (parl), "=r" (par2)
"1" (parl), "2" (par2), "r" (par3)

)
return retval ue;

}

int result,parm

voi d func(void)

{

result

}

= fo00(1000, 1000, &parnj;

10

C Language

In this example the "1" constraint for the input parameter par 1 refers to the output parameter par 1, and
similar for the "2" constraint and par 2. In the inline assembly %4 (par 1) and %2 (par 2) are written. This

is allowed because the compiler is aware of this.

This results in the following generated assembly code:

mov r 0, #1000
mov rl1,r0
Ildr r2,.L2
add r1,r0,r0,Isl #2
mov r2,rl
mov r3,rl
Idr r0,.L2+4
str r3,[r0, #0]
bx Ir

.L2:
.dw parm
.dw result

However, when the inline assembly would have been as given below, the compiler would have assumed
that %4 (par 1) and 92 (par 2) were read-only. Because of the i nl i ne keyword the compiler knows that
par 1 and par 2 both contain 1000. Therefore the compiler can optimize and assign the same register to

%4 and 92. This would have given an unexpected result.

__asm(
"add 92, %, %, sl #2\n\t"
"mov 98, R\ n\t"
"mov 99, "
"=&" (retval ue)
"r" (parl), "r" (par2), "r" (par3)

)

Generated assembly code:

ldr r0,.L2
mov r 1, #1000
add rl1,r1,r1,1sl #2 ; sane register,
mov rO0,rl
mov r2,rl
ldr rO0,.L2+4
str r2,[r0, #0] ;
bx Ir
.L2:
.dw parm
.dw result

but is expected read-only

cont ai ns unexpected result

11

TASKING VX-toolset for ARM User Guide

1.7. Attributes

You can use the keyword __attri but e__ to specify special attributes on declarations of variables,
functions, types, and fields.

Syntax:

attribute ((name,...))
or:

__hane__

The second syntax allows you to use attributes in header files without being concerned about a possible
macro of the same name.

alias("symbol")

Youcanuse __attribute_ ((alias("synbol"))) to specify that the function declaration appears
in the object file as an alias for another symbol. For example:

void _ f() { /* function body */; }
void f() __attribute_ ((weak, alias("__f")));

declares 'f ' to be a weak alias for'__f .

const

Youcanuse __attribute__ ((const)) to specify that a function has no side effects and will not
access global data. This can help the compiler to optimize code. See also attribute pur e.

The following kinds of functions should not be declared __const __:
« A function with pointer arguments which examines the data pointed to.

» A function that calls a non-const function.

export

Youcanuse __attribute_ ((export)) to specify that a variable/function has external linkage and
should not be removed. During MIL linking, the compiler treats external definitions at file scope as if they
were declared st at i c. As a result, unused variables/functions will be eliminated, and the alias checking
algorithm assumes that objects with static storage cannot be referenced from functions outside the current
module. During MIL linking not all uses of a variable/function can be known to the compiler. For example
when a variable is referenced in an assembly file or a (third-party) library. With the expor t attribute the
compiler will not perform optimizations that affect the unknown code.

int i __attribute__((export)); /* "i' has external |inkage */

12

C Language

flatten

Youcanuse __attribute__ ((flatten)) toforce inlining of all function calls in a function, including
nested function calls.

Unless inlining is impossible or disabled by __attri bute__((noinline)) for one of the calls, the
generated code for the function will not contain any function calls.

format(type,arg_string_index,arg_check_start)

Youcanuse __attribute__ ((format(type,arg_string_index,arg _check_start))) to
specify that functions take pri ntf, scanf,strfti ne or strf nmon style arguments and that calls to
these functions must be type-checked against the corresponding format string specification.

type determines how the format string is interpreted, and should be pri ntf, scanf,strftime or
strfron.

arg_string_index is a constant integral expression that specifies which argument in the declaration of the
user function is the format string argument.

arg_check_start is a constant integral expression that specifies the first argument to check against the
format string. If there are no arguments to check against the format string (that is, diagnostics should only
be performed on the format string syntax and semantics), arg_check_start should have a value of 0. For
strfti me-style formats, arg_check_start must be 0.

Example:
int foo(int i, const char * ny format, ...) _ attribute_((format(printf, 2, 3)));

The format string is the second argument of the function f oo and the arguments to check start with the
third argument.

leaf

Youcanuse __attribute__ ((leaf)) tospecify that a function is a leaf function. A leaf function is
an external function that does not call a function in the current compilation unit, directly or indirectly. The
attribute is intended for library functions to improve dataflow analysis. The attribute has no effect on
functions defined within the current compilation unit.

malloc

Youcanuse __attribute__((malloc)) toimprove optimization and error checking by telling the
compiler that:

» The return value of a call to such a function points to a memory location or can be a null pointer.

» Onreturn of such a call (before the return value is assigned to another variable in the caller), the memory
location mentioned above can be referenced only through the function return value; e.g., if the pointer
value is saved into another global variable in the call, the function is not qualified for the malloc attribute.

13

TASKING VX-toolset for ARM User Guide

» The lifetime of the memory location returned by such a function is defined as the period of program
execution between a) the point at which the call returns and b) the point at which the memory pointer
is passed to the corresponding deallocation function. Within the lifetime of the memory object, no other
calls to malloc routines should return the address of the same object or any address pointing into that
object.

noinline

Youcanuse __attribute__((noinline)) to preventa function from being considered for inlining.
Same as keyword __noi nl i ne or #pragnma noi nl i ne.

always_inline

With __attribute__((always_inline)) you force the compiler to inline the specified function,
regardless of the optimization strategy of the compiler itself. Same as keyword i nl i ne or #pr agna
i nline.

noreturn

Some standard C function, such as abort and exit cannot return. The C compiler knows this automatically.
Youcanuse __attribute__((noreturn)) to tell the compiler that a function never returns. For
example:

void fatal () __attribute__((noreturn));

void fatal (/* ... */)

{
/* Print error nessage */
exit(1);

}

The function f at al cannot return. The compiler can optimize without regard to what would happen if
f at al ever did return. This can produce slightly better code and it helps to avoid warnings of uninitialized
variables.

protect

Youcanuse__attribute_ ((protect)) toexclude avariable/function from the duplicate/unreferenced
section removal optimization in the linker. When you use this attribute, the compiler will add the "protect”
section attribute to the symbol's section. Example:

int i __attribute__ ((protect));

Note that the protect attribute will not prevent the compiler from removing an unused variable/function
(see the used symbol attribute).

This attribute is the same as #pr agna pr ot ect/ endpr ot ect .

14

C Language

pure

Youcanuse __attribute__ ((pure)) to specify that a function has no side effects, although it may
read global data. Such pure functions can be subject to common subexpression elimination and loop
optimization. See also attribute const .

section("section_name")

Youcanuse __attribute__((section("nane"))) to specify that a function must appear in the
object file in a particular section. For example:

extern void foobar(void) __attribute__((section("bar")));
puts the function f oobar in the section named bar .

See also #pragnma secti on.

used

Youcanuse __attribute__((used)) to prevent an unused symbol from being removed, by both the
compiler and the linker. Example:

static const char copyright[] __attribute_ ((used)) = "Copyright 2010 Al tium BV";

When there is no C code referring to the copyr i ght variable, the compiler will normally remove it. The
__attribute__((used)) symbol attribute prevents this. Because the linker should also not remove
this symbol, __attribute__ ((used)) implies__attribute__((protect)).

unused

Youcanuse __attribute__((unused)) to specify that a variable or function is possibly unused. The
compiler will not issue warning messages about unused variables or functions.

weak

Youcanuse __attribute__ ((weak)) to specify that the symbol resulting from the function declaration
or variable must appear in the object file as a weak symbol, rather than a global one. This is primarily
useful when you are writing library functions which can be overwritten in user code without causing
duplicate name errors.

See also #pragma weak.
1.8. Pragmas to Control the Compiler

Pragmas are keywords in the C source that control the behavior of the compiler. Pragmas overrule
compiler options. Put pragmas in your C source where you want them to take effect. Unless stated

15

TASKING VX-toolset for ARM User Guide

otherwise, a pragma is in effect from the point where it is included to the end of the compilation unit or

until another pragma changes its status.

The syntax is:

#pragma [l abel :] pragma- spec pragma-argunents [on | off | default | restore]

or:

_Pragma("[I|abel :]pragna-spec pragma-argunments [on | off | default | restore]")

Some pragmas can accept the following special arguments:

on switch the flag on (same as without argument)
of f switch the flag off

def aul t set the pragma to the initial value

restore restore the previous value of the pragma

Label pragmas

Some pragmas support a label prefix of the form "label:" between #pr agnma and the pragma name. Such
a label prefix limits the effect of the pragma to the statement following a label with the specified name.
The r est or e argument on a pragma with a label prefix has a special meaning: it removes the most
recent definition of the pragma for that label.

You can see a label pragma as a kind of macro mechanism that inserts a pragma in front of the statement
after the label, and that adds a corresponding #pragnma ... rest ore after the statement.

Compared to regular pragmas, label pragmas offer the following advantages:

» The pragma text does not clutter the code, it can be defined anywhere before a function, or even in a
header file. So, the pragma setting and the source code are uncoupled. When you use different header
files, you can experiment with a different set of pragmas without altering the source code.

» The pragma has an implicit end: the end of the statement (can be a loop) or block. So, no need for
pragma restore / endoptimize etc.

Example:
#pragma | abl: optimze P
vol atile int v;

void f(void)

labl: for(i=1; i<10; i++)

16

C Language

{
/* the entire for loop is part of the pragma optim ze */
a +=i;

Supported pragmas

The compiler recognizes the following pragmas, other pragmas are ignored. Pragmas marked with (*)
support a label prefix.

alias symbol=defined_symbol

Define symbol as an alias for defined_symbol. It corresponds to a . ALI AS directive at assembly level.
The symbol should not be defined elsewhere, and defined_symbol should be defined with static storage
duration (not extern or automatic).

call {near | far | default | restore} (*)

By default, functions are called with 26-bit PC-relative calls. This near call is directly coded into the
instruction, resulting in higher execution speed and smaller code size. The destination address of a near
call must be located within +/-32 MB from the program counter.

The other call mode is a 32-bit indirect call. With far calls you can address the full range of memory. The
address is first loaded into a register after which the call is executed.

See C compiler option --call (-m).
compactmaxmatch {value | default | restore} (*)

With this pragma you can control the maximum size of a match.

See C compiler option --compact-max-size.

extension isuffix [on | off | default | restore] (*)

Enables a language extension to specify imaginary floating-point constants. With this extension, you can

float O0.5i

extern symbol

Normally, when you use the C keyword ext er n, the compiler generates an . EXTERN directive in the
generated assembly source. However, if the compiler does not find any references to the ext er n symbol
in the C module, it optimizes the assembly source by leaving the . EXTERN directive out.

With this pragma you can force an external reference (. EXTERN assembler directive), even when the
symbol is not used in the module.

17

TASKING VX-toolset for ARM User Guide

fp_negzero [on | off | default | restore] (*)

With this pragma you can control the +negzero flag of C compiler option --fp-model.
fp_rewrite [on | off | default | restore] (*)

With this pragma you can control the +rewrite flag of C compiler option --fp-model.
inline / noinline / smartinline

See Section 1.11.2, Inlining Functions: inline.

inline_max_incr / inline_max_size {value | default | restore} (*)

With these pragmas you can control the automatic function inlining optimization process of the compiler.
It has only effect when you have enabled the inlining optimization (--optimize=+inline (-Oi)).

See C compiler options --inline-max-incr and --inline-max-size.

macro / nomacro [on | off | default | restore] (*)

Turns macro expansion on or off. By default, macro expansion is enabled.
maxcalldepth {value | default | restore} (*)

With this pragma you can control the maximum call depth. Default is infinite (-1).

See C compiler option --max-call-depth.

message "message" ...

Print the message string(s) on standard output.

nomisrac [nr,...] [default | restore] (*)

Without arguments, this pragma disables MISRA C checking. Alternatively, you can specify a
comma-separated list of MISRA C rules to disable.

See C compiler option --misrac and Section 4.6.2, C Code Checking: MISRA C.
optimize [flags | default | restore] (*) / endoptimize

You can overrule the C compiler option --optimize for the code between the pragmas opt i ni ze and
endopt i m ze. The pragma works the same as C compiler option --optimize.

See Section 4.5, Compiler Optimizations.

18

C Language

profile [flags | default | restore] (*) / endprofile
Control the profile settings. The pragma works the same as C compiler option --profile. Note that this

pragma will only be checked at the start of a function. endpr of i | e switches back to the previous profiling
settings.

profiling [on | off | default | restore] (*)

If profiling is enabled on the command line (C compiler option --profile), you can disable part of your
source code for profiling with the pragmas profili ng of f and profili ng.

protect [on | off | default | restore] (*) / endprotect
With these pragmas you can protect sections against linker optimizations. This excludes a section from

unreferenced section removal and duplicate section removal by the linker. endpr ot ect restores the
default section protection.

runtime [flags | default | restore] (*)

With this pragma you can control the generation of additional code to check for a number of errors at
run-time. The pragma argument syntax is the same as for the arguments of the C compiler option --runtime.
You can use this pragma to control the run-time checks for individual statements. In addition, objects
declared when the "bounds" sub-option is disabled are not bounds checked. The "malloc" sub-option

cannot be controlled at statement level, as it only extracts an alternative malloc implementation from the
library.

section [name=]{suffix |-f|-m|-fm} [default | restore] (*) / endsection

Rename sections by adding a sulffix to all section names specified with name, or restore default section
naming. If you specify only a suffix (without a name), the suffix is added to all section names. See C
compiler option --rename-sections and assembler directive . SECTI ON for more information.

section_code_init [on | off | default | restore] (*) / section_no_code_init

Copy or do not copy code sections from ROM to RAM at application startup.

section_const_init [on | off | default | restore] (*) / section_no_const_init

Copy or do not copy read-only data sections from ROM to RAM at application startup.

silicon_bug [bug,...] [default | restore] (*)

Without arguments, all silicon bug workarounds are enabled. Alternatively, you can specify a
comma-separated list of silicon bug workarounds.

See C compiler option --silicon-bug and Chapter 19, CPU Problem Bypasses and Checks.

19

TASKING VX-toolset for ARM User Guide

source [on | off | default | restore] (*) / nosource
With these pragmas you can choose which C source lines must be listed as comments in assembly output.

See C compiler option --source.

stdinc [on | off | default | restore] (*)

This pragma changes the behavior of the #i ncl ude directive. When set, the C compiler options
--include-directory and --no-stdinc are ignored.

linear_switch / jump_switch / binary_switch / smart_switch / tbb_switch
/ tbh_switch / no_tbh_switch

With these pragmas you can overrule the compiler chosen switch method:

| i near _swi tch Force jump chain code. A jump chain is comparable with an if/else-if/else-if/else
construction.

jump_switch Force jump table code. A jump table is a table filled with jump instructions for each
possible switch value. The switch argument is used as an index to jump within this
table.

bi nary_sw tch Force binary lookup table code. A binary search table is a table filled with a value
to compare the switch argument with and a target address to jump to.

smart_sw tch Let the compiler decide the switch method used.

tbb_swi tch Force use of the t bb instruction. Uses a table of 8-bit jump offsets.
tbh_switch Force use of the t bh instruction. Uses a table of 8-bit jump offsets.
no_tbh _switch Sameassnart_swi tch, butdo notuse thet bh instruction.

See Section 1.10, Switch Statement.
tradeoff {level | default | restore} (*)
Specify tradeoff between speed (0) and size (4). See C compiler option --tradeoff

warning [number,...] [default | restore] (*)

With this pragma you can disable warning messages. If you do not specify a warning number, all warnings
will be suppressed.

weak symbol

Mark a symbol as "weak" (. WEAK assembler directive). The symbol must have external linkage, which
means a global or external object or function. A static symbol cannot be declared weak.

A weak external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference. When a weak external reference cannot be resolved, the null pointer is substituted.

20

C Language

A weak definition can be overruled by a normal global definition. The linker will not complain about the
duplicate definition, and ignore the weak definition.

1.9. Predefined Preprocessor Macros

The TASKING C compiler supports the predefined macros as defined in the table below. The macros are
useful to create conditional C code.

Macro Description

__ARM__ Expands to 1 for the ARM toolset, otherwise unrecognized as macro.

__BIG_ENDIAN__ Expands to 1 if big-endian mode is selected (option --endianness=big),
otherwise unrecognized as macro.

__BUILD__ Identifies the build number of the compiler, composed of decimal digits for
the build number, three digits for the major branch number and three digits
for the minor branch number. For example, if you use build 1.22.1 of the
compiler, _ BUILD__ expands to 1022001. If there is no branch number,
the branch digits expand to zero. For example, build 127 results in
127000000.

_ CARM__ Expands to 1 for the ARM toolset, otherwise unrecognized as macro.

__CPU__ Expands to the ARM architecture name (option --cpu=arch). When no --cpu
is supplied, this symbol is not defined. For example, if --cpu=ARMV7M is
specified, the symbol __CPU__ expands to ARM/7M

__CPU_arch__ A symbol is defined depending on the option --cpu=arch. The arch is
converted to uppercase. For example, if --cpu=ARMvV7M is specified, the
symbol __CPU_ARMV7M__is defined. When no --cpu is supplied, this symbol
__CPU_ARWTM _ is the default.

__DATE___ Expands to the compilation date: “mmm dd yyyy".

_ DOUBLE_FP__ Expands to 1 if you used option --fp-model=-float, otherwise unrecognized
as macro.

__DSPC__ Indicates conformation to the DSP-C standard. It expands to 1.

__DSPC_VERSION__

Expands to the decimal constant 200001L.

__FILE__

Expands to the current source file name.

__FPU_fpu__ A symbol is defined depending on the option --fpu=fpu. The fpu is converted
to uppercase and the lowercase “v" and the "-' will be removed. For example,
if --fpu=VFPv3-sp is specified, the symbol __FPU_VFP3SP___ is defined.
When no --fpu is supplied, the symbol __ FPU_NONE__ is the default.

__FPU_VFP__ Expands to 1 if one the options --fpu=fpu is specified and fpu is not NONE.

__LINE__ Expands to the line number of the line where this macro is called.

_ LITTLE_ENDIAN__

Expands to 1 if little-endian mode is selected (option --endianness=little),
otherwise unrecognized as macro. This is the default.

__ MISRAC_VERSION__

Expands to the MISRA C version used 1998, 2004 or 2012 (option
--misrac-version). The default is 2004.

21

TASKING VX-toolset for ARM User Guide

Macro Description
_ PROF_ENABLE_ Expands to 1 if profiling is enabled, otherwise expands to 0.
__REVISION___ Expands to the revision number of the compiler. Digits are represented as

they are; characters (for prototypes, alphas, betas) are represented by -1.
Examples: v1.0r1 -> 1, v1.0rb -> -1

__SINGLE_FP___ Expands to 1 if you used option --fp-model=+float (Treat ‘double’ as ‘float’),
otherwise unrecognized as macro.

__STDC__ Identifies the level of ANSI standard. The macro expands to 1 if you set
option --language (Control language extensions), otherwise expands to 0.

__STDC_HOSTED__ Always expands to 0, indicating the implementation is not a hosted
implementation.

__STDC_VERSION__ Identifies the 1ISO-C version number. Expands to 199901L for ISO C99 or
199409L for ISO C90.

__TASKING__ Identifies the compiler as a TASKING compiler. Expands to 1 if a TASKING
compiler is used.

_ _THUMB__ Expands to 1 if you used option --thumb, otherwise unrecognized as macro.

__TIME__ Expands to the compilation time: “hh:mm:ss”

_ VERSION__ Identifies the version number of the compiler. For example, if you use version

3.0r1 of the compiler, _ VERSION__ expands to 3000 (dot and revision
number are omitted, minor version number in 3 digits).

Example

#ifdef __CARM _
/* this part is only conmpiled for the ARM */

#endi f

1.10. Switch Statement

The TASKING C compiler supports three ways of code generation for a switch statement: a jump chain
(linear switch), a jump table or a binary search table.

A jump chain is comparable with an if/else-if/else-if/else construction. A jump table is a table filled with
jump instructions for each possible switch value. The switch argument is used as an index to jump within
this table. A binary search table is a table filled with a value to compare the switch argument with and a
target address to jump to.

#pragma smart _sw t ch is the default of the compiler. The compiler will automatically choose the most
efficient switch implementation based on code and data size and execution speed. With the C compiler
option --tradeoff you can tell the compiler to put more emphasis on speed than on memory size.

For a switch with a long type argument, only linear code is used.

For an int type argument, a jump table switch is only used when the table of cases is not too sparse.

22

C Language

Especially for large switch statements, the jump table approach executes faster than the binary search
table approach. Also the jump table has a predictable behavior in execution speed: independent of the
switch argument, every case is reached in the same execution time. However, when the case labels are
distributed far apart, the jump table becomes sparse, wasting code memory. The compiler will not use
the jump table method when the waste becomes excessive.

With a small number of cases, the jump chain method can be faster in execution and shorter in size.
For ARMV7M a switch using the t bh instruction gets priority over a normal switch table implementation.
How to overrule the default switch method

You can overrule the compiler chosen switch method by using a pragma:

#pragma |inear_switch force jump chain code

#pragma junp_swi tch force jump table code

#pragma bi nary_switch force binary search table code

#pragma smart_swi tch let the compiler decide the switch method used

#pragma tbb_sw tch force use of t bb instruction (uses a table of 8-bit jump offsets)
#pragnma tbh_swi tch force use of t bh instruction (uses a table of 16-bit jump offsets)

#pragma no_tbh_switch sameassmart_swi tch, but do not use t bh instruction

Using a pragma cannot overrule the restrictions as described earlier.

The switch pragmas must be placed before the swi t ch statement. Nested swi t ch statements use the
same switch method, unless the nested swi t ch is implemented in a separate function which is preceded
by a different switch pragma.

Example:
/* place pragma before function body */
#pragnma junp_swi tch

voi d test(unsigned char val)
{ I'* function containing the switch */
switch (val)

{
}

/* use junp table */

23

TASKING VX-toolset for ARM User Guide

1.11. Functions

1.11.1. Calling Convention

Parameter passing

A lot of execution time of an application is spent transferring parameters between functions. The fastest
parameter transport is via registers. Therefore, function parameters are first passed via registers. If no
more registers are available for a parameter, the compiler pushes parameters on the stack.

Registers available for parameter passing are r0, rl, r2 and r3.

Parameter type Registers used for parameters

_Bool, char, short, int, long, float, 32-bit |RO, R1, R2, R3
pointer, 32—bit struct

long long, double, 64—bit struct ROR1, R1R2, R2R3

The parameters are processed from left to right. The first not used and fitting register is used. Registers
are searched for in the order listed above. When a parameter is > 64 bit, or all registers are used, parameter
passing continues on the stack. The stack grows from higher towards lower addresses. The first parameter
is pushed at the lowest stack address. The alignment on the stack depends on the data type as listed in
Section 1.1, Data Types.

Examples:
void funcl(int a, char * b, char ¢); /* RORL R */
void func2(long long d, char e); /* RORL R2 */

voi d func4(double f, long long g, char h);
/* ROR1 R2R3 stack */

Function return values

The C compiler uses registers to store C function return values, depending on the function return types.

Return type Register

_Bool, char, short, int, long, float, 32—hit |RO
pointer, 32—bit struct

long long, double, 64-bit struct ROR1

Obijects larger than 64 bits are returned via the stack.

1.11.2. Inlining Functions: inline

With the C compiler option --optimize=+inline, the C compiler automatically inlines small functions in
order to reduce execution time (smart inlining). The compiler inserts the function body at the place the
function is called. The C compiler decides which functions will be inlined. You can overrule this behavior
with the two keywords i nl i ne (ISO-C) and __noi nl i ne.

24

C Language

With the i nl i ne keyword you force the compiler to inline the specified function, regardless of the
optimization strategy of the compiler itself:

inline unsigned int abs(int val)

{
unsi gned int abs_val = val;
if (val < 0) abs_val = -val;
return abs val;

}

If a function with the keyword i nl i ne is not called at all, the compiler does not generate code for it.

You must define inline functions in the same source module as in which you call the function, because
the compiler only inlines a function in the module that contains the function definition. When you need to
call the inline function from several source modules, you must include the definition of the inline function
in each module (for example using a header file).

With the __noi nl i ne keyword, you prevent a function from being inlined:

__noinline unsigned int abs(int val)

{
unsigned int abs_val = val;
if (val < 0) abs_val = -val;
return abs_val;

}

Using pragmas: inline, noinline, smartinline

Instead of the i nl i ne qualifier, you can also use #pr agna i nl i ne and #pr agna noi nl i ne to inline
a function body:

#pragma inline
unsi gned int abs(int val)

{
unsi gned int abs_val = val;
if (val < 0) abs_val = -val;
return abs val;

}

#pragma noinline
void main(void)
{ . .

int i;

i = abs(-1);
}

If a function has an i nl i ne/__noi nl i ne function qualifier, then this qualifier will overrule the current
pragma setting.

With the #pr agma noi nl i ne /#pragma smarti nl i ne you can temporarily disable the default behavior

that the C compiler automatically inlines small functions when you turn on the C compiler option
--optimize=+inline.

25

TASKING VX-toolset for ARM User Guide

With the C compiler options --inline-max-incr and --inline-max-size you have more control over the
automatic function inlining process of the compiler.

Combining inline with __asm to create intrinsic functions

With the keyword __asmit is possible to use assembly instructions in the body of an inline function.
Because the compiler inserts the (assembly) body at the place the function is called, you can create your
own intrinsic function. See Section 1.11.4.2, Writing Your Own Intrinsic Function.

1.11.3. Interrupt Functions / Exception Handlers

The TASKING C compiler supports a number of function qualifiers and keywords to program exception
handlers. An exception handler (or: interrupt function) is called when an exception occurs.

The ARM supports seven types of exceptions. The next table lists the types of exceptions and the processor
mode that is used to process that exception. When an exception occurs, execution is forced from a fixed
memory address corresponding to the type of exception. These fixed addresses are called the exception

vectors.

Exception type Mode Normal address |[High vector Function type qualifier
address

Reset Supervisor 0x00000000 OxFFFF0000

Undefined Undefined 0x00000004 OxFFFF0004 __interrupt_und

instructions

Supervisor call Supervisor 0x00000008 OxFFFF0008 __interrupt_svc

(software interrupt)

Prefetch abort Abort 0x0000000C OxFFFF0O00C __interrupt_iabt

Data abort Abort 0x00000010 OxFFFF0010 __interrupt_dabt

IRQ (interrupt) IRQ 0x00000018 OxFFFF0018 __interrupt_irq

FIQ (fast interrupt) |FIQ 0x0000001C OxFFFF001C __interrupt_fiq

ARMv6-M and ARMv7-M (M-profile architectures) have a different exception model. Read the
ARM Architecture Reference Manual for details.

1.11.3.1. Defining an Exception Handler: __interrupt Keywords

You can define six types of exception handlers with the function type qualifiers __i nt er rupt _und,
__interrupt_svc,__interrupt_iabt, interrupt_dabt,_ _interrupt_irqgand
__interrupt_fiqg.You can also use the general __i nt errupt () function qualifier.

Interrupt functions and other exception handlers cannot return anything and must have a void argument

type list:

void __interrupt_xxx
isr(void)

{

26

C Language

void __interrupt(n)
isr2(void)
{

Example

void __interrupt_irq serial _receive(void)

{
}

Vector symbols

When you use one or more of these __i nt er r upt _xxx function qualifiers, the compiler generates a
corresponding vector symbol to designate the start of an exception handler function. The linker uses this
symbol to automatically generate the exception vector.

Function type qualifier Vector symbol Vector symbol M-profile
__interrupt_und _vector_1 -

__interrupt_svc _vector_2 _vector_11
__interrupt_iabt _vector_3 -

__interrupt_dabt _vector_4 -

_interrupt_irq _vector_6 -

__interrupt_fiq _vector_7 -

__interrupt(n) _vector_n _vector_n

Note that the reset handler is designated by the symbol _START instead of _vect or _0 (_vect or _1 for
M-profile architectures).

You can prevent the compiler from generating the _vect or _n symbol by specifying the function qualifier
__novect or . This can be necessary if you have more than one interrupt handler for the same exception,
for example for different IRQ's or for different run-time phases of your application. Without the __novect or
function qualifier the compiler generates the _vect or _n symbol multiple times, which results in a link
error.

void __interrupt_irq __novector another_handl er(void)

{
}

/1 used __novector to prevent nultiple _vector_6 synbols

27

TASKING VX-toolset for ARM User Guide

Enable interrupts in exception handlers (not for M-profile architectures)

Normally interrupts are disabled when an exception handler is entered. With the function qualifier
__nesting_enabl ed you can force that the link register (LR) is saved and that interrupts are enabled.
For example:

void __interrupt_svc __nesting_enabled svc(int n)
{ if (n==2)
__svc(3);
}
, c

1.11.3.2. Interrupt Frame: __ frame()

With the function type qualifier __f rane() you can specify which registers and SFRs must be saved for
a particular interrupt function. Only the specified registers will be pushed and popped from the stack. If
you do not specify the function qualifier __f rame() , the C compiler determines which registers must be
pushed and popped. The syntax is:

void __interrupt_xxx

_ frame(reg[, reg]...) isr(void)
{
}

where, reg can be any register defined as an SFR. The compiler generates a warning if some registers
are missing which are normally required to be pushed and popped in an interrupt function prolog and
epilog to avoid run-time problems.

Example

_interrupt_irq _ frame(R4,R5, R6) void alarm(void)
{

1.11.4. Intrinsic Functions

Some specific assembly instructions have no equivalence in C. Intrinsic functions give the possibility to
use these instructions. Intrinsic functions are predefined functions that are recognized by the compiler.
The compiler generates the most efficient assembly code for these functions.

The compiler always inlines the corresponding assembly instructions in the assembly source (rather than

calling it as a function). This avoids parameter passing and register saving instructions which are normally
necessary during function calls.

28

C Language

Intrinsic functions produce very efficient assembly code. Though it is possible to inline assembly code by
hand, intrinsic functions use registers even more efficiently. At the same time your C source remains very
readable.

You can use intrinsic functions in C as if they were ordinary C (library) functions. All intrinsics begin with
a double underscore character (__).

On the command line you can see a list of intrinsic functions with the following command:
carm --hel p=intrinsics

The TASKING ARM C compiler recognizes the following intrinsic functions:

__alloc
void * volatile __alloc(__size_t size);

Allocate memory. Returns a pointer to space of si ze bytes on the stack of the calling function. Memory
allocated through this function is freed when the calling function returns. This function is used internally
for variable length arrays, it is not to be used by end users.

_ free
void volatile _ _free(void * p);

Deallocate the memory pointed to by p. p must point to memory earlier allocated by acallto __al | oc() .

__hop

void __nop(void);
Generate a NOP instruction.
__get_return_address

__codeptr volatile __get_return_address(void);

Used by the compiler for profiling when you compile with the option --profile. Returns the return address
of a function.

__remap_pc
void volatile __remap_pc(void);

Load the 'real' program address. This intrinsic is used in the startup code to assure that the reset handler
is immune for any ROM/RAM remapping.

__setsp
void volatile __setsp(__data void * stack);

Initialize the stack pointer with 'stack'’.

29

TASKING VX-toolset for ARM User Guide

__getspsr
unsigned int volatile __getspsr(void);

Get the value of the SPSR status register. Returns the value of the status register SPSR.

__setspsr

unsigned int volatile __setspsr(int set, int clear);

Set or clear bits in the SPSR status register. Returns the new value of the SPSR status register.
Example:

#defi ne SR_F 0x00000040
#define SR | 0x00000080

i = __setspsr (0, SRF | SRI);

if (i &(SRF| SRI))

{
exit (6); /* Interrupt flags not correct */
}
if (__getspsr () & (SR F | SR1))
{
exit (7); /* Interrupt flags not correct */
}
__getcpsr

unsigned int volatile __getcpsr(void);

Get the value of the CPSR status register. Returns the value of the status register CPSR.

__setcpsr

unsigned int volatile __setcpsr(int set, int clear);

Set or clear bits in the CPSR status register. Returns the new value of the CPSR status register.
__Qgetapsr

unsigned int volatile __getapsr(void);

Get the value of the APSR status register (ARMv6-M and ARMv7-M). Returns the value of the status
register APSR.

__setapsr

unsigned int volatile __setapsr(int set, int clear);

30

C Language

Set or clear bits in the APSR status register (ARMv6-M and ARMv7-M). Returns the new value of the
APSR status register.

__getipsr
unsigned int volatile __getipsr(void);

Get the value of the IPSR status register (ARMv6-M and ARMv7-M). Returns the value of the status
register IPSR.

__svC

void volatile __svc(int nunber);

Generate a supervisor call (software interrupt). Number must be a constant value.

1.11.4.1. CMSIS Intrinsics

The TASKING VX-toolset for ARM supports the Cortex Micro-controller Software Interface Standard
(CMSIS). You can find details about this standard on www.arm.com.

The required functions as defined in the CMSIS are supported by the compiler as intrinsic functions and
do not have any implementation in the CMSIS-CORE files. The implemented intrinsic functions are:

CMSIS core register access

__enable_irq

void volatile __enable_irq(void);

Global Interrupt enable (using the instruction CPSI E i).
__disable_irq

void volatile __disable_irq(void);

Global Interrupt disable (using the instruction CPSI D i).
__set_PRIMASK

void volatile __set_ PRI MASK(unsigned int value);
Assign value to Priority Mask Register (using the instruction MSR).
__get_PRIMASK

unsi gned int __get_PRI MASK(void);

Return Priority Mask Register (using the instruction MRS).

31

http://www.arm.com

TASKING VX-toolset for ARM User Guide

__enable_fault_irq

void volatile __enable_fault_irqg(void);

Global Fault exception and Interrupt enable (using the instruction CPSI E f).
__disable_fault_irq

void volatile __disable_fault_irq(void);

Global Fault exception and Interrupt disable (using the instruction CPSI D f).
__set_ FAULTMASK

void volatile __set FAULTMASK(unsigned int value);
Assign value to Fault Mask Register (using the instruction MSR).
__get_FAULTMASK

unsigned int __get FAULTMASK(void);

Return Fault Mask Register (using the instruction MRS).
__set_BASEPRI

void volatile __set BASEPRI (unsigned int value);
Set Base Priority (using the instruction VSR).

__get_BASEPRI

unsi gned int _ get_BASEPRI(void);

Return Base Priority (using the instruction MRS).

__set_ CONTROL

void volatile __set CONTROL(unsigned int value);
Set CONTROL register value (using the instruction MSR).
__get_CONTROL

unsigned int _ get CONTROL(void);

Return Control Register Value (using the instruction VRS).
__set_PSP

void volatile __set_ PSP(unsigned int value);

Set Process Stack Pointer value (using the instruction MSR).

32

C Language

__get_PSP

unsigned int _ get PSP(void);

Return Process Stack Pointer (using the instruction MRS).
__set_MSP

void volatile __set_MSP(unsigned int value);
Set Main Stack Pointer (using the instruction MSR).
__get_MSP

unsigned int _ get MSP(void);

Return Main Stack Pointer (using the instruction MRS).
CMSIS core instruction access

__NOP
void volatile __NOP(void);
No Operation. This instruction does nothing. You can use this instruction for code alignment purposes.

__WFI
void volatile __ WI(void);
Wait for Interrupt. Suspends execution until one of a number of events occurs.

__WFE
void volatile __ WE(void);
Wait for Event. Permits the processor to enter a low-power state until one of a number of events occurs.

__SEV

void volatile __SEV(void);

Set Event. Causes an event to be signaled to the CPU.
__IsB

void volatile __ISB(void);

Instruction Synchronization Barrier. Flushes the pipeline in the processor, so that all instructions following
the ISB are fetched from cache or memory, after the instruction has been completed.

33

TASKING VX-toolset for ARM User Guide

__DSB
void volatile __DSB(void);

Data Synchronization Barrier. This function acts as a special kind of Data Memory Barrier. It completes
when all explicit memory accesses before this instruction have been completed.

__DMB

void volatile __DMB(void);

Data Memory Barrier. This function ensures the apparent order of the explicit memory operations before
and after the instruction, without ensuring their completion.

__REV

unsigned int _ REV(unsigned int value);
Reverse byte order in integer val ue.

__REV16

unsigned int _ REV16(unsigned short value);
Reverse byte order in unsigned short val ue.

__REVSH

signed int _ REVSH(signed int value);
Reverse byte order in signed short val ue with sign extension to integer.
__RBIT

unsi gned int __RBIT(unsigned int value);
Reverse bit order of val ue.

__ROR

unsigned int _ ROR(unsigned int op, unsigned int shift);

Rotate Right in unsigned value (32 bit). This function Rotate Right (immediate) provides the value of the
contents of a register rotated by a variable number of bits.

__LDREXB
unsi gned vol atile char __LDREXB(unsigned char * addr);

Load exclusive byte. This function performs an exclusive LDR command for 8-bit values.

34

C Language

__LDREXH

unsi gned vol atile short _ LDREXH(unsigned short * addr);

Load exclusive half-word. This function performs an exclusive LDR command for 16-bit values.
__LDREXW

unsigned int volatile __ LDREXW unsigned int * addr);

Load exclusive word. This function performs an exclusive LDR command for 32-bit values.

__STREXB

unsigned int volatile _ STREXB(unsigned char value, unsigned char * addr);
Store exclusive byte. This function performs an exclusive STR command for 8-bit values.

__STREXH

unsigned int volatile __ STREXH(unsigned short value, unsigned short * addr);
Store exclusive half-word. This function performs an exclusive STR command for 16-bit values.
__STREXW

unsigned int volatile __ STREXW unsigned int value, unsigned int * addr);
Store exclusive word. This function performs an exclusive STR command for 32-bit values.

__CLREX

void volatile _ CLREX(void);

Remove the exclusive lock created by _ LDREXB, __LDREXH, or __LDREXW

__RRX

unsigned int volatile _ RRX(unsigned int value);

Rotate Right with Extend (32-bit). This function moves each bit of a bit string right by one bit. The carry
input is shifted in at the left end of the bit string.

__LDRBT

unsi gned char volatile _ LDRBT(unsigned char *addr);

LDRT Unprivileged (8-bit). This function performs an Unprivileged LDRT command for 8-bit values.
__LDRHT

unsi gned vol atile short _ LDRHT(unsigned short *addr);

35

TASKING VX-toolset for ARM User Guide

LDRT Unprivileged (16-bit). This function performs an Unprivileged LDRT command for 16-bit values.
__LDRT

unsi gned char volatile __LDRT(unsigned int *addr);

LDRT Unprivileged (32-bit). This function performs an Unprivileged LDRT command for 32-bit values.
__STRBT

void volatile __STRBT(unsigned char val ue, unsigned char *addr);

STRT Unprivileged (8-bit). This function performs an Unprivileged STRT command for 8-bit values.
__STRHT

void volatile __STRHT(unsigned short val ue, unsigned short *addr);

STRT Unprivileged (16-bit). This function performs an Unprivileged STRT command for 16-bit values.
__STRT

void volatile __STRT(unsigned int value, unsigned int *addr);

STRT Unprivileged (32-bit). This function performs an Unprivileged STRT command for 32-bit values.
__BKPT

void volatile __BKPT(unsigned short int);

Set Breakpoint. This function causes the processor to enter Debug state. Debug tools can use this to
investigate system state when the instruction at a particular address is reached.

_CLZ

unsi gned char __CLZ(unsigned int value);

Count leading zeros. This function counts the number of leading zeros of a data value.
__SSAT

int _ SSAT(int value, unsigned int sat);

Signed Saturate. This function saturates a signed value.

__USAT

unsigned int __ USAT(unsigned int value, unsigned int sat);

Unsigned Saturate. This function saturates an unsigned value.

36

C Language

1.11.4.2. Writing Your Own Intrinsic Function

Because you can use any assembly instruction with the __asm() keyword, you can use the __asn()
keyword to create your own intrinsic functions. The essence of an intrinsic function is that it is inlined.

1. First write a function with assembly in the body using the keyword __asn{) . See Section 1.6, Using
Assembly in the C Source: __asm()

2. Next make sure that the function is inlined rather than being called. You can do this with the function
qualifieri nl i ne. This qualifier is discussed in more detail in Section 1.11.2, Inlining Functions: inline.

inline int _ nmy_pow int base, int power)

{
int result;
__asn("movs 9%, #1\ n"
"L:\n\t"
"subs 9%, 9%, #1\n\t"
"l 9%, 90, 9d\n\t"
"bne Ip\n\t”
"=& " (result)
"r"(base), "r"(power));
return result;
}
int main(voi d)
{
int result;
/1 call to function __ny_pow
result = nmy_pow 3, 2);
return result;
}
Generated assembly code (compiled for ARMv7M):
mai n: .type func
; __ny_pow code is inlined here
mv ril, #2
mv r2, #3

movs rO0, #1

subs rl1,r1,#1
nmul ro,r0,r2
bne 1p

As you can see, the generated assembly code for the function __my_powis inlined rather than called.
Numeric labels are used for the loop.

37

TASKING VX-toolset for ARM User Guide

38

Chapter 2. C++ Language

The TASKING C++ compiler (cparm) offers a new approach to high-level language programming for your
ARM architecture. The C++ compiler accepts the C++ language as defined by the ISO/IEC 14882:2003
standard. It also accepts the language extensions of the C compiler (see Chapter 1, C Language).

This chapter describes the C++ language implementation and some specific features.

Note that the C++ language itself is not described in this document. For more information on the C++
language, see

» The C++ Programming Language (second edition) by Bjarne Straustrup (1991, Addison Wesley)
* ISO/IEC 14882:1998 C++ standard [ANSI]

» ISO/IEC 14882:2003 C++ standard [ISO/IEC]

* ISO/IEC 14882:2011 C++ standard [ISO/IEC]

» ISO/IEC 14882:2014 C++ standard [ISO/IEC]

More information on the standards can be found at http://www.iso.org/

2.1. C++ Language Extension Keywords

The C++ compiler supports the same language extension keywords as the C compiler. When option
--strict is used, the extensions will be disabled.

pragmas

The C++ compiler supports the pragmas as explained in Section 2.7, Pragmas to Control the C++ Compiler.
Pragmas give directions to the code generator of the compiler.

2.2. C++ Dialect Accepted

The C++ compiler accepts the complete C++ language as defined by the ISO/IEC 14882:2003 standard.

With option --c++11 the C++ compiler accepts the complete C++11 language as defined by the ISO/IEC
14882:2011 standard.

With option --c++14 the C++ compiler accepts the complete C++14 language as defined by the ISO/IEC
14882:2014 standard.

Command line options are also available to enable and disable anachronisms and strict
standard-conformance checking.

39

http://www.iso.org/

TASKING VX-toolset for ARM User Guide

2.2.1. Default C++ Mode

The following extensions are accepted in default C++ mode. Most of these are also accepted in any other
C++ mode (except when strict ANSI/ISO violations are diagnosed as errors or were explicitly noted):

» Afri end declaration for a class may omit the cl ass keyword:

class A {
friend B; // Should be "friend class B"

H

» Constants of scalar type may be defined within classes:

class A{
const int size = 10;
int a[size];

I

* In the declaration of a class member, a qualified name may be used:

struct A {
int A:f(); // Should be int f();

H

 Therestrict keyword is allowed.

* Aconst qualified object with file scope or namespace scope and the __at () attribute will have external
linkage, unless explicitly declared st at i ¢. Examples:

const int i = 5; /1 internal |inkage
const int j __at(0x1234) = 10; /1 external |inkage
static const int k __at(0x1236) = 15; // internal |inkage

Note that no warning is generated when 'j ' is not used.

* Implicit type conversion between a pointer to an ext ern " C' function and a pointer to an ext er n
" C++" function is permitted. Here's an example:

extern "C" void f(); // f's type has extern "C' |inkage
void (*pf)() // pf points to an extern "C++" function
= &f; /1 error unless inmplicit conversion is
/1 allowed

This extension is allowed in environments where C and C++ functions share the same calling
conventions. It is enabled by default.

« A"?" operator whose second and third operands are string literals or wide string literals can be implicitly
converted to "char *"or"wchar _t *".(Recall that in C++ string literals are const . There is a
deprecated implicit conversion that allows conversion of a string literal to "char *", dropping the const .

40

C++ Language
That conversion, however, applies only to simple string literals. Allowing it for the result of a "?" operation
is an extension.)
char *p = x ? "abc" : "def";
Default arguments may be specified for function parameters other than those of a top-level function

declaration (e.g., they are accepted on t ypedef declarations and on pointer-to-function and
pointer-to-member-function declarations).

Non-static local variables of an enclosing function can be referenced in a non-evaluated expression
(e.g., asi zeof expression) inside a local class. A warning is issued.

In default C++ mode, the friend class syntax is extended to allow nonclass types as well as class types
expressed through a typedef or without an elaborated type name. For example:

typedef struct S ST;

class C {
friend S; /1 OK (requires S to be in scope).
friend ST; /1 OK (same as "friend S;").
friend int; /1 OK (no effect).

friend S const; // Error: cv-qualifiers cannot
/1 appear directly.

b

In default C++ mode, mixed string literal concatenations are accepted. (This is a feature carried over
from C99 and also available in GNU modes).

wchar _t *str = "a" L"b"; // OK, sane as L"ab".

In default C++ mode, variadic macros are accepted. (This is a feature carried over from C99 and also
available in GNU modes.)

In default C++ mode, empty macro arguments are accepted (a feature carried over from C99).

A trailing comma in the definition of an enumeration type is silently accepted (a feature carried over
from C99):

enumE { e, };

2.2.2. GNU C++ Mode

The C++ compiler can be configured to support GNU C++ (command line option --g++). In GNU C++
mode, many extensions provided by the GNU C++ compiler are accepted.

Because the GNU C++ compiler frequently changes behavior between releases, the C++ compiler provides
an option (--gnu_version) to specify a specific version of GCC to emulate. Generally speaking, features
and bugs are emulated to exactly match each known version of GCC, but occasionally the emulation is
approximate and in such cases the C++ compiler is often a little more permissive than GCC on the principle
that it is more important to accept source that GCC accepts than to diagnose every case that GCC

41

TASKING VX-toolset for ARM User Guide

diagnoses. The C++ compiler does not, however, attempt to emulate every GCC command line option;
in particular, GCC options to be extra-permissive are not emulated (however, the severity of specific error
diagnostics can sometimes be decreased to accept constructs that are not by-default allowed in GNU
emulation mode).

The following GNU extensions are not supported:

The forward declaration of function parameters (so they can participate in variable-length array
parameters).

GNU-style complex integral types (complex floating-point types are supported)
Nested functions

Local structs with variable-length array fields.

2.2.3. Anachronisms Accepted

The following anachronisms are accepted when anachronisms are enabled (with --anachronisms):

over | oad is allowed in function declarations. It is accepted and ignored.

Definitions are not required for static data members that can be initialized using default initialization.
The anachronism does not apply to static data members of template classes; they must always be
defined.

The number of elements in an array may be specified in an array del et e operation. The value is
ignored.

A single oper at or ++() and oper at or - - () function can be used to overload both prefix and postfix
operations.

The base class hame may be omitted in a base class initializer if there is only one immediate base
class.

Assignment to t hi s in constructors and destructors is allowed. This is allowed only if anachronisms
are enabled and the "assignment to t hi s" configuration parameter is enabled.

A bound function pointer (a pointer to a member function for a given object) can be cast to a pointer to
a function.

A nested class name may be used as a non-nested class hame provided no other class of that name
has been declared. The anachronism is not applied to template classes.

A reference to a non-const type may be initialized from a value of a different type. A temporary is
created, it is initialized from the (converted) initial value, and the reference is set to the temporary.

A reference to a non-const class type may be initialized from an rvalue of the class type or a derived
class thereof. No (additional) temporary is used.

A function with old-style parameter declarations is allowed and may participate in function overloading
as though it were prototyped. Default argument promotion is not applied to parameter types of such

42

C++ Language

functions when the check for compatibility is done, so that the following declares the overloading of
two functions named f :

int f(int);
int f(x) char x; { return x; }

Note that in C this code is legal but has a different meaning: a tentative declaration of f is followed by
its definition.

* When option --nonconst-ref-anachronism is set, a reference to a non-const class can be bound to a
class rvalue of the same type or a derived type thereof.

struct A {
A(int);
A oper at or =(A&) ;
A operat or +(const A&);

b
mei n () {

b(l)

= A(1) + A(2); /] Alowed as anachroni sm
}

2.3. Namespace Support

Namespaces are enabled by default. You can use the command line option --no-namespaces to disable
the features.

When doing name lookup in a template instantiation, some names must be found in the context of the
template definition while others may also be found in the context of the template instantiation. The C++
compiler implements two different instantiation lookup algorithms: the one mandated by the standard
(referred to as "dependent name lookup"), and the one that existed before dependent name lookup was
implemented.

Dependent name lookup is done in strict mode (unless explicitly disabled by another command line option)
or when dependent name processing is enabled by either a configuration flag or command line option.

Dependent Name Processing

When doing dependent name lookup, the C++ compiler implements the instantiation name lookup rules
specified in the standard. This processing requires that non-class prototype instantiations be done. This
in turn requires that the code be written using the t ypenane and t enpl at e keywords as required by
the standard.

Lookup Using the Referencing Context
When not using dependent name lookup, the C++ compiler uses a name lookup algorithm that

approximates the two-phase lookup rule of the standard, but does so in such a way that is more compatible
with existing code and existing compilers.

43

TASKING VX-toolset for ARM User Guide

When a name is looked up as part of a template instantiation but is not found in the local context of the
instantiation, it is looked up in a synthesized instantiation context that includes both names from the
context of the template definition and names from the context of the instantiation. Here's an example:

namespace N {
int g(int);
int x = 0;
tenpl ate <class T> struct A {
TFf(Tt) { return g(t); }
Tf() { return x; }

s
}
namespace M {
int x = 99;
doubl e g(doubl e);
N : A<int> ai;
int i =ai.f(0); Il N:A<int>:f(int) calls
/1 N :g(int)
int i2=ai.f(); Il N:A<int>:f() returns
Il 0 (= N:x)
N: : A<doubl e> ad;
double d = ad.f(0); // N :A<doubl e>::f(doubl e)
/1l calls M:g(double)
double d2 = ad.f(); // N :A<double>: :f() also
/Il returns 0 (= N :x)
}

The lookup of names in template instantiations does not conform to the rules in the standard in the
following respects:

 Although only names from the template definition context are considered for names that are not functions,
the lookup is not limited to those names visible at the point at which the template was defined.

* Functions from the context in which the template was referenced are considered for all function calls
in the template. Functions from the referencing context should only be visible for "dependent” function
calls.

Argument Dependent Lookup

When argument-dependent lookup is enabled (this is the default), functions made visible using
argument-dependent lookup overload with those made visible by normal lookup. The standard requires
that this overloading occurs even when the name found by normal lookup is a block ext er n declaration.
The C++ compiler does this overloading, but in default mode, argument-dependent lookup is suppressed
when the normal lookup finds a block ext er n.

This means a program can have different behavior, depending on whether it is compiled with or without

argument-dependent lookup --no-arg-dep-lookup, even if the program makes no use of namespaces.
For example:

44

C++ Language

struct A{ };
A operator+(A, double);
void f() {
A ail;
A operator+(A, int);
al + 1.0; // calls operator+(A, double)
/1l with arg-dependent | ookup enabl ed but
/1l otherwi se calls operator+(A, int);

2.4. Template Instantiation

The C++ language includes the concept of templates. A template is a description of a class or function
that is a model for a family of related classes or functions.® For example, one can write a template for a
St ack class, and then use a stack of integers, a stack of floats, and a stack of some user-defined type.
In the source, these might be written St ack<i nt >, St ack<f | oat >, and St ack<X>. From a single
source description of the template for a stack, the compiler can create instantiations of the template for
each of the types required.

The instantiation of a class template is always done as soon as it is needed in a compilation. However,
the instantiations of template functions, member functions of template classes, and static data members
of template classes (hereafter referred to as template entities) are not necessarily done immediately, for
several reasons:

* One would like to end up with only one copy of each instantiated entity across all the object files that
make up a program. (This of course applies to entities with external linkage.)

* The language allows one to write a specialization of a template entity, i.e., a specific version to be used
in place of a version generated from the template for a specific data type. (One could, for example,
write a version of St ack<i nt >, or of just St ack<i nt >: : push, that replaces the template-generated
version; often, such a specialization provides a more efficient representation for a particular data type.)
Since the compiler cannot know, when compiling a reference to a template entity, if a specialization for
that entity will be provided in another compilation, it cannot do the instantiation automatically in any
source file that references it.

» The language also dictates that template functions that are not referenced should not be compiled,
that, in fact, such functions might contain semantic errors that would prevent them from being compiled.
Therefore, a reference to a template class should not automatically instantiate all the member functions
of that class.

(It should be noted that certain template entities are always instantiated when used, e.g., inline functions.)

From these requirements, one can see that if the compiler is responsible for doing all the instantiations
automatically, it can only do so on a program-wide basis. That is, the compiler cannot make decisions
about instantiation of template entities until it has seen all the source files that make up a complete
program.

ISince templates are descriptions of entities (typically, classes) that are parameterizable according to the types they operate upon,
they are sometimes called parameterized types.

45

TASKING VX-toolset for ARM User Guide

This C++ compiler provides an instantiation mechanism that does automatic instantiation at link time. For
cases where you want more explicit control over instantiation, the C++ compiler also provides instantiation
modes and instantiation pragmas, which can be used to exert fine-grained control over the instantiation
process.

2.4.1. Instantiation Modes

Normally, when a file is compiled, template entities are instantiated everywhere where they are used.
The overall instantiation mode can, however, be changed by a command line option:

--instantiate=used

Instantiate those template entities that were used in the compilation. This will include all static data
members for which there are template definitions. This is the default.

--instantiate=all

Instantiate all template entities declared or referenced in the compilation unit. For each fully instantiated
template class, all of its member functions and static data members will be instantiated whether or not
they were used. Non-member template functions will be instantiated even if the only reference was a
declaration.

--instantiate=local

Similar to --instantiate=used except that the functions are given internal linkage. This is intended to
provide a very simple mechanism for those getting started with templates. The compiler will instantiate
the functions that are used in each compilation unit as local functions, and the program will link and run
correctly (barring problems due to multiple copies of local static variables.) However, one may end up
with many copies of the instantiated functions, so this is not suitable for production use. --instantiate=local
cannot be used in conjunction with automatic template instantiation. If automatic instantiation is enabled
by default, it will be disabled by the --instantiate=local option.

In the case where the ccarm command is given a single file to compile and link, e.g.,
ccarmtest.cc

the compiler knows that all instantiations will have to be done in the single source file. Therefore, it uses
the --instantiate=used mode and suppresses automatic instantiation.

2.4.2. Instantiation #pragma Directives

Instantiation pragmas can be used to control the instantiation of specific template entities or sets of
template entities. There are three instantiation pragmas:

* The instantiate pragma causes a specified entity to be instantiated.

» The do_not_instantiate pragma suppresses the instantiation of a specified entity. It is typically used
to suppress the instantiation of an entity for which a specific definition will be supplied.

» The can_instantiate pragma indicates that a specified entity can be instantiated in the current
compilation, but need not be; it is used in conjunction with automatic instantiation, to indicate potential
sites for instantiation if the template entity turns out to be required.

46

C++ Language

The argument to the instantiation pragma may be:

« atemplate class name A<i nt >

» atemplate class declaration cl ass A<i nt >

» a member function name A<i nt >: : f

* a static data member name A<i nt >: : i

« a static data declarationi nt A<int>::i

» a member function declaration voi d A<i nt>::f (int, char)
» atemplate function declaration char* f(int, fl oat)

A pragma in which the argument is a template class name (e.g., A<i nt >orcl ass A<i nt >)is equivalent
to repeating the pragma for each member function and static data member declared in the class. When

instantiating an entire class a given member function or static data member may be excluded using the

do_not_instantiate pragma. For example,

#pragma instantiate A<int>
#pragma do_not _instantiate A<int>::f

The template definition of a template entity must be present in the compilation for an instantiation to occur.
If an instantiation is explicitly requested by use of the instantiate pragma and no template definition is
available or a specific definition is provided, an error is issued.

templ ate <class T> void f1(T); // No body provided
templ ate <class T> void g1(T); // No body provided

void f1(int) {} // Specific definition
void main()
{ . .
int i;
doubl e d;
f1(i);
f1(d);
g1(i);
g1(d);
}

#pragma instantiate void f1(int) // error - specific
/1 definition

#pragma instantiate void gl(int) // error - no body
/1 provided

f 1(doubl e) and g1(doubl e) will not be instantiated (because no bodies were supplied) but no errors
will be produced during the compilation (if no bodies are supplied at link time, a linker error will be
produced).

47

TASKING VX-toolset for ARM User Guide

A member function name (e.g., A<i nt >: : f) can only be used as a pragma argument if it refers to a
single user defined member function (i.e., not an overloaded function). Compiler-generated functions are
not considered, so a name may refer to a user defined constructor even if a compiler-generated copy
constructor of the same name exists. Overloaded member functions can be instantiated by providing the
complete member function declaration, as in

#pragma instantiate char* A<int>::f(int, char?*)

The argument to an instantiation pragma may not be a compiler-generated function, an inline function,
or a pure virtual function.

2.4.3. Implicit Inclusion

When implicit inclusion is enabled, the C++ compiler is given permission to assume that if it needs a
definition to instantiate a template entity declared in a . h file it can implicitly include the corresponding

. cc file to get the source code for the definition. For example, if a template entity ABC: : f is declared in
file xyz. h, and an instantiation of ABC: : f is required in a compilation but no definition of ABC: : f appears
in the source code processed by the compilation, the compiler will look to see if a file xyz. cc exists, and
if so it will process it as if it were included at the end of the main source file.

To find the template definition file for a given template entity the C++ compiler needs to know the path
name specified in the original include of the file in which the template was declared and whether the file
was included using the system include syntax (e.g., #i ncl ude <fi | e. h>).This information is not
available for preprocessed source containing #l i ne directives. Consequently, the C++ compiler will not
attempt implicit inclusion for source code containing #| i ne directives.

The file to be implicitly included is found by replacing the file suffix with each of the suffixes specified in
the instantiation file suffix list. The normal include search path mechanism is then used to look for the file
to be implicitly included.

By default, the list of definition file suffixes tried is . c, . cc, . cpp, and . cxx.

Implicit inclusion works well alongside automatic instantiation, but the two are independent. They can be
enabled or disabled independently, and implicit inclusion is still useful when automatic instantiation is not
done.

The implicit inclusion mode can be turned on by the command line option --implicit-include.

Implicit inclusions are only performed during the normal compilation of a file, (i.e., not when doing only
preprocessing). A common means of investigating certain kinds of problems is to produce a preprocessed
source file that can be inspected. When using implicit inclusion it is sometimes desirable for the
preprocessed source file to include any implicitly included files. This may be done using the command
line option --no-preprocessing-only. This causes the preprocessed output to be generated as part of a
normal compilation. When implicit inclusion is being used, the implicitly included files will appear as part
of the preprocessed output in the precise location at which they were included in the compilation.

2.5. Inlining Functions

The C++ compiler supports a minimal form of function inlining. When the C++ compiler encounters a call
of a function declared i nl i ne it can replace the call with the body of the function with the parameters

48

C++ Language

replaced by the corresponding arguments. When a function call occurs as a statement, the statements
of the function body are inserted in place of the call. When the function call occurs within an expression,
the body of the function is rewritten as one large expression and that expression is inserted in the proper
place in the containing expression. It is not always possible to do this sort of inlining: there are certain
constructs (e.g. loops and inline assembly) that cannot be rendered in expression form. Even when inlining
is done at the statement level, there are certain constructs that are not practical to inline. Calls that cannot
be inlined are left in their original call form, and an out-of-line copy of the function is used. When enabled,
a remark is issued.

When the C++ compiler decides not to inline a function, the keyword i nl i ne is passed to the generated
C file. This allows for the C compiler to decide again whether to inline a function or not.

A function is disqualified for inlining immediately if any of the following are true:
» The function has local static variables.

» The function has local constants.

» The function has local types.

» The function has block scopes.

» The function includes pragmas.

» The function has a variable argument list.

2.6. Extern Inline Functions

Depending on the way in which the C++ compiler is configured, out-of-line copies of ext ern inli ne
functions are either implemented using static functions, or are instantiated using a mechanism like the
template instantiation mechanism. Note that out-of-line copies of inline functions are only required in
cases where the function cannot be inlined, or when the address of the function is taken (whether explicitly
by the user, by implicitly generated functions, or by compiler-generated data structures such as virtual
function tables or exception handling tables).

When static functions are used, local static variables of the functions are promoted to global variables
with specially encoded names, so that even though there may be multiple copies of the code, there is
only one copy of such global variables. This mechanism does not strictly conform to the standard because
the address of an extern inline function is not constant across translation units.

When the instantiation mechanism is used, the address of an extern inline function is constant across
translation units, but at the cost of requiring the use of one of the template instantiation mechanisms,
even for programs that don't use templates. Definitions of extern inline functions can be provided either
through use of the automatic instantiation mechanism or by use of the --instantiate=used or
--instantiate=all instantiation modes. There is no mechanism to manually control the definition of extern
inline function bodies.

49

TASKING VX-toolset for ARM User Guide

2.7. Pragmas to Control the C++ Compiler

Pragmas are keywords in the C++ source that control the behavior of the compiler. Pragmas overrule
compiler options.

The syntax is:
#pragma pragnme- spec

The C++ compiler supports the following pragmas:

instantiate / do_not_instantiate / can_instantiate

These are template instantiation pragmas. They are described in detail in Section 2.4.2, Instantiation
#pragma Directives.

hdrstop / no_pch

These are precompiled header pragmas. They are described in detail in Section 2.9, Precompiled Headers.

once

When placed at the beginning of a header file, indicates that the file is written in such a way that including
it several times has the same effect as including it once. Thus, if the C++ compiler sees #pr agma once
at the start of a header file, it will skip over it if the file is #included again.

A typical idiom is to place an #ifndef guard around the body of the file, with a #define of the guard variable
after the #ifndef:

#pragma once /1 optional
#i f ndef FILE_H
#define FILE H
body of the header file ...
#endi f

The #pragna once is marked as optional in this example, because the C++ compiler recognizes the

#i f ndef idiom and does the optimization even in its absence. #pr agnma once is accepted for compatibility
with other compilers and to allow the programmer to use other guard-code idioms.

2.8. Predefined Macros

The C++ compiler defines a number of preprocessing macros. Many of them are only defined under
certain circumstances. This section describes the macros that are provided and the circumstances under
which they are defined.

50

C++ Language

Macro

Description

__ABI_COMPATIBILITY_VERSION

Defines the ABI compatibility version being
used. This macro is set to 9999, which means
the latest version. This macro is used when
building the C++ library.

__ABI_CHANGES_FOR_RTTI

This macro is set to TRUE, meaning that the
ABI changes for RTTI are implemented. This
macro is used when building the C++ library.

__ABI_CHANGES_FOR_ARRAY_NEW_AND_DELETE

This macro is set to TRUE, meaning that the
ABI changes for array new and delete are
implemented. This macro is used when
building the C++ library.

__ABI_CHANGES_FOR_PLACEMENT_DELETE

This macro is set to TRUE, meaning that the
ABI changes for placement delete are
implemented. This macro is used when
building the C++ library.

_ ARRAY_OPERATORS

Defined when array newand del et e are
enabled. This is the default.

__BASE_FILE__

Similarto __FILE__ but indicates the primary
source file rather than the current one (i.e.,
when the current file is an included file).

__BIG_ENDIAN__

Expands to 1 if big-endian mode is selected
(option --endianness=big), otherwise
unrecognized as macro.

_BOOL

Defined when bool is a keyword. This is the
default.

__BUILD__

Identifies the build number of the C++
compiler, composed of decimal digits for the
build number, three digits for the major branch
number and three digits for the minor branch
number. For example, if you use build 1.22.1
of the compiler, _ BUILD__ expands to
1022001. If there is no branch number, the
branch digits expand to zero. For example,
build 127 results in 127000000.

__CHAR_MIN/__CHAR_MAX

Usedinlimts. h to define the
minimum/maximum value of a plain char
respectively.

__CHAR16_T_AND_CHAR32_T

Defined when char 16_t and char 32_t are
keywords. These keywords are enabled when
you use C++ compiler option --uliterals.

__CHAR16_TYPE__

Defined as the underlying type for char 16_t
(GNU version 40400 and above, see
--gnu-version).

51

TASKING VX-toolset for ARM User Guide

Macro

Description

__CHAR32_TYPE__

Defined as the underlying type for char 32_t
(GNU version 40400 and above, see
--ghu-version).

__CPARM__

Identifies the C++ compiler. You can use this
symbol to flag parts of the source which must
be recognized by the cparm C++ compiler
only. It expands to 1.

__cplusplus

Always defined.

CPU__

Expands to a string with the CPU supplied with
the option --cpu. When no --cpu is supplied,
this symbol is not defined.

_ DATE__

Defined to the date of the compilation in the
form "Mmm dd yyyy".

__DELTA_TYPE

Defines the type of the offset field in the virtual
function table. This macro is used when
building the C++ library.

_ DOUBLE_FP__

Expands to 1 if you did not use option
--no-double (Treat ‘double’ as ‘float’),
otherwise unrecognized as macro.

__embedded_cplusplus

Defined as 1 in Embedded C++ mode.

_ EXCEPTIONS Defined when exception handling is enabled
(--exceptions).

__FILE__ Expands to the current source file name.

__FUNCTION__ Defined to the name of the current function.
An error is issued if it is used outside of a
function.

__func__ Same as __ _ FUNCTION__ in GNU mode.

__IMPLICIT_USING_STD

Defined when the standard header files should
implicitly do a using-directive on the st d
namespace (--using-std).

__JMP_BUF_ELEMENT_TYPE

Specifies the type of an element of the setjmp
buffer. This macro is used when building the
C++ library.

__JMP_BUF_NUM_ELEMENTS

Defines the number of elements in the setjmp
buffer. This macro is used when building the
C++ library.

__LINE__

Expands to the line number of the line where
this macro is called.

__ LITTLE_ENDIAN__

Expands to 1 if little-endian mode is selected
(option --endianness=little), otherwise
unrecognized as macro. This is the default.

52

C++ Language

Macro

Description

__ NAMESPACES

Defined when namespaces are supported (this
is the default, you can disable support for
namespaces with --no-namespaces).

__NO_LONG_LONG

Defined when the | ong | ong type is not
supported. This is the default.

__NULL_EH_REGION_NUMBER

Defines the value used as the null region
number value in the exception handling tables.
This macro is used when building the C++
library.

_ PLACEMENT_DELETE

Defined when placement delete is enabled.

_ PRETTY_FUNCTION__

Defined to the name of the current function.
This includes the return type and parameter
types of the function. An error is issued if it is
used outside of a function.

__PTRDIFF_MIN/__PTRDIFF_MAX

Used in st di nt . h to define the
minimum/maximum value of apt rdi ff _t
type respectively.

__PTRDIFF_TYPE__

Defined to be the type of pt rdi ff _t.

__ REGION_NUMBER_TYPE

Defines the type of a region number field in
the exception handling tables. This macro is
used when building the C++ library.

__REVISION__

Expands to the revision number of the C++
compiler. Digits are represented as they are;
characters (for prototypes, alphas, betas) are
represented by -1. Examples: v1.0r1 -> 1,
v1.0rb ->-1

__RTTI

Defined when RTTI is enabled (--rtti).

_ RUNTIME_USES_NAMESPACES

Defined when the run-time uses namespaces.

__SIGNED_CHARS__

Defined when plain char is signed.

__SINGLE_FP__

Expands to 1 if you used option --no-double
(Treat ‘double’ as ‘float’), otherwise
unrecognized as macro.

__SIZE_MIN/__SIZE_MAX

Used in st di nt . h to define the
minimum/maximum value of a si ze_t type
respectively.

__ SIZE_TYPE__

Defined to be the type of si ze_t.

__STDC__

Always defined, but the value may be
redefined.

__STDC_VERSION__

Identifies the ISO-C version number. Expands
to 199901L for ISO C99, but the value may be
redefined.

53

TASKING VX-toolset for ARM User Guide

Macro

Description

_STLP_NO_IOSTREAMS

Defined when option --io-streams is not used.
This disables I/O stream functions in the
STLport C++ library.

__TASKING__ Always defined for the TASKING C++
compiler.

__ _THUMB__ Expands to 1 if you used option --thumb,
otherwise unrecognized as macro.

__TIME__ Expands to the compilation time: “hh:mm:ss”

__TYPE_TRAITS_ENABLED

Defined when type traits pseudo-functions (to
ease the implementation of ISO/IEC TR
19768; e.g., __i s_uni on) are enabled. This
is the default in C++ mode.

__VAR_HANDLE_TYPE

Defines the type of the variable-handle field
in the exception handling tables. This macro
is used when building the C++ library.

_ VARIADIC_TEMPLATES

Defined when C++11 variadic templates are
supported (option --variadic-templates).

__VERSION__

Identifies the version number of the C++
compiler. For example, if you use version 2.1r1
of the compiler, __VERSION___ expands to
2001 (dot and revision number are omitted,
minor version number in 3 digits).

__VIRTUAL_FUNCTION_INDEX_TYPE

Defines the type of the virtual function index
field of the virtual function table. This macro
is used when building the C++ library.

__ WCHAR_MIN/_ WCHAR_MAX

Used in st di nt . h to define the
minimum/maximum value of awchar _t type
respectively.

_WCHAR_T

Defined when wchar _t is a keyword.

2.9. Precompiled Headers

It is often desirable to avoid recompiling a set of header files, especially when they introduce many lines
of code and the primary source files that #i ncl ude them are relatively small. The C++ compiler provides
a mechanism for, in effect, taking a snapshot of the state of the compilation at a particular point and writing
it to a disk file before completing the compilation; then, when recompiling the same source file or compiling
another file with the same set of header files, it can recognize the "snapshot point", verify that the
corresponding precompiled header (PCH) file is reusable, and read it back in. Under the right
circumstances, this can produce a dramatic improvement in compilation time; the trade-off is that PCH

files can take a lot of disk space.

54

C++ Language

2.9.1. Automatic Precompiled Header Processing

When --pch appears on the command line, automatic precompiled header processing is enabled. This
means the C++ compiler will automatically look for a qualifying precompiled header file to read in and/or
will create one for use on a subsequent compilation.

The PCH file will contain a snapshot of all the code preceding the "header stop" point. The header stop
point is typically the first token in the primary source file that does not belong to a preprocessing directive,
but it can also be specified directly by #pragma hdrstop (see below) if that comes first. For example:

#i ncl ude "xxx. h"
#i ncl ude "yyy. h"
int i;

The header stop pointisi nt (the first non-preprocessor token) and the PCH file will contain a snapshot
reflecting the inclusion of xxx. h and yyy. h. If the first non-preprocessor token or the #pr agrma hdr st op
appears within a #i f block, the header stop point is the outermost enclosing #i f . To illustrate, heres a

more complicated example:

#i ncl ude "xxx.h"
#i fndef YYY_H
#define YYY_H 1
#i ncl ude "yyy. h"
#endi f

#if TEST

int i;

#endi f

Here, the first token that does not belong to a preprocessing directive is again i nt, but the header stop
point is the start of the #i f block containing it. The PCH file will reflect the inclusion of xxx. h and
conditionally the definition of YYY_Hand inclusion of yyy. h; it will not contain the state produced by #i f
TEST.

A PCH file will be produced only if the header stop point and the code preceding it (mainly, the header
files themselves) meet certain requirements:

» The header stop point must appear at file scope -- it may not be within an unclosed scope established
by a header file. For example, a PCH file will not be created in this case:

/1 xxx.h
class A {

/1 xxx.C
#i ncl ude "xxx.h"
int i; };

» The header stop point may not be inside a declaration started within a header file, nor (in C++) may it
be part of a declaration list of a linkage specification. For example, in the following case the header
stop point is int, but since it is not the start of a new declaration, no PCH file will be created:

55

TASKING VX-toolset for ARM User Guide

/Il yyy.h
static

Il yyy.C
#i ncl ude "yyy. h"

int i;
 Similarly, the header stop point may not be inside a #i f block or a #def i ne started within a header
file.

» The processing preceding the header stop must not have produced any errors. (Note: warnings and
other diagnostics will not be reproduced when the PCH file is reused.)

» No references to predefined macros __DATE__ or __TI ME__ may have appeared.
* No use of the #] i ne preprocessing directive may have appeared.
» #pragma no_pch (see below) must not have appeared.

» The code preceding the header stop point must have introduced a sufficient number of declarations to
justify the overhead associated with precompiled headers. The minimum number of declarations required
is 1.

When the host system does not support memory mapping, so that everything to be saved in the
precompiled header file is assigned to preallocated memory (MS-Windows), two additional restrictions

apply:

» The total memory needed at the header stop point cannot exceed the size of the block of preallocated
memory.

» No single program entity saved can exceed 16384, the preallocation unit.

When a precompiled header file is produced, it contains, in addition to the snapshot of the compiler state,
some information that can be checked to determine under what circumstances it can be reused. This
includes:

» The compiler version, including the date and time the compiler was built.
» The current directory (i.e., the directory in which the compilation is occurring).
» The command line options.

» The initial sequence of preprocessing directives from the primary source file, including #i ncl ude
directives.

» The date and time of the header files specified in #i ncl ude directives.

This information comprises the PCH prefix. The prefix information of a given source file can be compared
to the prefix information of a PCH file to determine whether the latter is applicable to the current compilation.

As an illustration, consider two source files:

56

C++ Language

/1 a.cc
#i ncl ude "xxx.h"
/] Start of code
/1l b.cc
#i ncl ude "xxx.h"
/] Start of code

When a. cc is compiled with --pch, a precompiled header file named a. pch is created. Then, when b. cc
is compiled (or when a. cc is recompiled), the prefix section of a. pch is read in for comparison with the
current source file. If the command line options are identical, if xxx. h has not been modified, and so
forth, then, instead of opening xxx. h and processing it line by line, the C++ compiler reads in the rest of
a. pch and thereby establishes the state for the rest of the compilation.

It may be that more than one PCH file is applicable to a given compilation. If so, the largest (i.e., the one
representing the most preprocessing directives from the primary source file) is used. For instance, consider
a primary source file that begins with

#i ncl ude "xxx.h"
#i ncl ude "yyy. h"
#i nclude "zzz. h"

If there is one PCH file for xxx. h and a second for xxx. h and yyy. h, the latter will be selected (assuming
both are applicable to the current compilation). Moreover, after the PCH file for the first two headers is
read in and the third is compiled, a new PCH file for all three headers may be created.

When a precompiled header file is created, it takes the name of the primary source file, with the suffix
replaced by an implementation-specified suffix (pch by default). Unless --pch-dir is specified (see below),
it is created in the directory of the primary source file.

When a precompiled header file is created or used, a message such as
"test.cc": creating preconpiled header file "test.pch"
is issued. The user may suppress the message by using the command line option --no-pch-messages.

When the option --pch-verbose is used the C++ compiler will display a message for each precompiled
header file that is considered that cannot be used giving the reason that it cannot be used.

In automatic mode (i.e., when --pch is used) the C++ compiler will deem a precompiled header file obsolete
and delete it under the following circumstances:

« if the precompiled header file is based on at least one out-of-date header file but is otherwise applicable
for the current compilation; or

« ifthe precompiled header file has the same base name as the source file being compiled (e.g., xxx. pch
and xxx. cc) but is not applicable for the current compilation (e.g., because of different command line
options).

This handles some common cases; other PCH file clean-up must be dealt with by other means (e.g., by
the user).

57

TASKING VX-toolset for ARM User Guide

Support for precompiled header processing is not available when multiple source files are specified in a
single compilation: an error will be issued and the compilation aborted if the command line includes a
request for precompiled header processing and specifies more than one primary source file.

2.9.2. Manual Precompiled Header Processing

Command line option --create-pch=file-name specifies that a precompiled header file of the specified
name should be created.

Command line option --use-pch=file-name specifies that the indicated precompiled header file should
be used for this compilation; if it is invalid (i.e., if its prefix does not match the prefix for the current primary
source file), a warning will be issued and the PCH file will not be used.

When either of these options is used in conjunction with --pch-dir, the indicated file name (which may
be a path name) is tacked on to the directory name, unless the file name is an absolute path name.

The options --create-pch, --use-pch, and --pch may not be used together. If more than one of these
options is specified, only the last one will apply. Nevertheless, most of the description of automatic PCH
processing applies to one or the other of these modes -- header stop points are determined the same
way, PCH file applicability is determined the same way, and so forth.

2.9.3. Other Ways to Control Precompiled Headers

There are several ways in which the user can control and/or tune how precompiled headers are created
and used.

» #pragma hdrstop may be inserted in the primary source file at a point prior to the first token that does
not belong to a preprocessing directive. It enables you to specify where the set of header files subject
to precompilation ends. For example,

#i ncl ude "xxx. h"
#i ncl ude "yyy. h"
#pragma hdr st op
#i nclude "zzz. h"

Here, the precompiled header file will include processing state for xxx. h and yyy. h but not zzz. h.
(This is useful if the user decides that the information added by what follows the #pragma hdrstop
does not justify the creation of another PCH file.)

» #pragma no_pch may be used to suppress precompiled header processing for a given source file.

» Command line option --pch-dir=directory-name is used to specify the directory in which to search for
and/or create a PCH file.

Moreover, when the host system does not support memory mapping and preallocated memory is used

instead, then one of the command line options --pch, --create-pch, or --use-pch, if it appears at all, must
be the first option on the command line.

58

C++ Language

2.9.4. Performance Issues

The relative overhead incurred in writing out and reading back in a precompiled header file is quite small
for reasonably large header files.

In general, it does not cost much to write a precompiled header file out even if it does not end up being
used, and if it is used it almost always produces a significant speedup in compilation. The problem is that
the precompiled header files can be quite large (from a minimum of about 250K bytes to several megabytes
or more), and so one probably does not want many of them sitting around.

Thus, despite the faster recompilations, precompiled header processing is not likely to be justified for an
arbitrary set of files with nonuniform initial sequences of preprocessing directives. Rather, the greatest
benefit occurs when a number of source files can share the same PCH file. The more sharing, the less
disk space is consumed. With sharing, the disadvantage of large precompiled header files can be
minimized, without giving up the advantage of a significant speedup in compilation times.

Consequently, to take full advantage of header file precompilation, users should expect to reorder the
#i ncl ude sections of their source files and/or to group #i ncl ude directives within a commonly used
header file.

Below is an example of how this can be done. A common idiom is this:

#i nclude "commfile.h"
#pragma hdr st op
#i nclude ...

where comfi | e. h pulls in, directly and indirectly, a few dozen header files; the #pr agma hdr st op is
inserted to get better sharing with fewer PCH files. The PCH file produced for connfi | e. h can be a bit
over a megabyte in size. Another idiom, used by the source files involved in declaration processing, is
this:

#i nclude "comfile.h"
#i ncl ude "decl _hdrs. h"
#pragma hdr st op

#i nclude ...

decl _hdr s. h pulls in another dozen header files, and a second, somewhat larger, PCH file is created.
In all, the source files of a particular program can share just a few precompiled header files. If disk space
were at a premium, you could decide to make commfi | e. h pull in all the header files used -- then, a
single PCH file could be used in building the program.

Different environments and different projects will have different needs, but in general, users should be
aware that making the best use of the precompiled header support will require some experimentation
and probably some minor changes to source code.

59

TASKING VX-toolset for ARM User Guide

60

Chapter 3. Assembly Language

This chapter describes the most important aspects of the TASKING assembly language for ARM and
contains a detailed description of all built-in assembly functions and assembler directives. For a complete
overview of the architecture you are using and a description of the assembly instruction set, refer to the
target's core reference manual (for example the ARM Architecture Reference Manual ARM DDI 0100l
[2005, ARM Limited]).

3.1. Assembly Syntax

An assembly program consists of statements. A statement may optionally be followed by a comment.
Any source statement can be extended to more lines by including the line continuation character (\) as
the last character on the line. The length of a source statement (first line and continuation lines) is only
limited by the amount of available memory.

Mnemonics, directives and other keywords are case insensitive. Labels, symbols, directive arguments,
and literal strings are case sensitive.

The syntax of an assembly statement is:

[label [:]] [instruction | directive | macro_call] [;conmment]

label A label is a special symbol which is assigned the value and type of the current
program location counter. A label can consist of letters, digits and underscore
characters (). The first character cannot be a digit. The label can also be a
number. A label which is prefixed by whitespace (spaces or tabs) has to be
followed by a colon (:). The size of an identifier is only limited by the amount of
available memory.

number is a number ranging from 1 to 255. This type of label is called a numeric
label or local label. To refer to a numeric label, you must put an n (next) or p
(previous) immediately after the label. This is required because the same label
number may be used repeatedly.

Examples:
LABl1: ; This label is followed by a colon and
; can be prefixed by whitespace
LAB1 ; This label has to start at the beginning
;o of aline
1: b 1p ; This is an endl ess | oop

; using nuneric |abels

61

TASKING VX-toolset for ARM User Guide

instruction

directive

macro_call

comment

An instruction consists of a mnemonic and zero, one or more operands. It must
not start in the first column.

All instructions of the ARM Unified Assembler Language (UAL) are supported.
With assembler option --old-syntax you can specify to use the pre-UAL syntax.
VFP instructions are only supported in the UAL syntax.

Operands are described in Section 3.3, Operands of an Assembly Instruction.
The instructions are described in the target's core Architecture Reference Manual.

The instruction can also be a so-called 'generic instruction'. Generic instructions
are pseudo instructions (no instructions from the instruction set). Depending on
the situation in which a generic instruction is used, the assembler replaces the
generic instruction with appropriate real assembly instruction(s). For a complete
list, see Section 3.11, Generic Instructions.

With directives you can control the assembler from within the assembly source.
Except for preprocessing directives, these must not start in the first column.
Directives are described in Section 3.9, Assembler Directives.

A call to a previously defined macro. It must not start in the first column. See
Section 3.10, Macro Operations.

Comment, preceded by a ; (semicolon).

You can use empty lines or lines with only comments.

3.2. Assembler Significant Characters

You can use all ASCII characters in the assembly source both in strings and in comments. Also the
extended characters from the 1ISO 8859-1 (Latin-1) set are allowed.

Some characters have a special meaning to the assembler. Special characters associated with expression
evaluation are described in Section 3.6.3, Expression Operators. Other special assembler characters

are:

Character [Description

; Start of a comment

\ Line continuation character or macro operator: argument concatenation
? Macro operator: return decimal value of a symbol

% Macro operator: return hex value of a symbol

N Macro operator: override local label

" Macro string delimiter or quoted string . DEFI NE expansion character
' String constants delimiter

@ Start of a built-in assembly function

$ Location counter substitution

Immediate addressing

62

Assembly Language

Character |Description

++ String concatenation operator

[1 Load and store addressing mode

3.3. Operands of an Assembly Instruction

In an instruction, the mnemonic is followed by zero, one or more operands. An operand has one of the
following types:

Operand Description

symbol A symbolic name as described in Section 3.4, Symbol Names. Symbols can also occur
in expressions.

register Any valid register as listed in Section 3.5, Registers.

expression Any valid expression as described in Section 3.6, Assembly Expressions.

address A combination of expression, register and symbol.

Addressing modes

The ARM assembly language has several addressing modes. These are described in detail in the target's
core Architecture Reference Manual.

3.4. Symbol Names

User-defined symbols
A user-defined symbol can consist of letters, digits and underscore characters (). The first character
cannot be a digit. The size of an identifier is only limited by the amount of available memory. The case

of these characters is significant. You can define a symbol by means of a label declaration or an equate
or set directive.

Predefined preprocessor symbols

These symbols start and end with two underscore characters, __symbol__, and you can use them in your
assembly source to create conditional assembly. See Section 3.4.1, Predefined Preprocessor Symbols.

Labels

Symbols used for memory locations are referred to as labels. It is allowed to use reserved symbols as
labels as long as the label is followed by a colon or starts at the first column.

63

TASKING VX-toolset for ARM User Guide

Reserved symbols

Symbol names and other identifiers beginning with a period (.) are reserved for the system (for example
for directives or section names). Instructions and registers are also reserved. The case of these built-in
symbols is insignificant.

Examples
Valid symbol names:

| oop_1
ENTRY
a_B c
_aBC

Invalid symbol names:

1 | oop ; starts with a nunber
. DEFI NE ; reserved directive nane

3.4.1. Predefined Preprocessor Symbols

The TASKING assembler knows the predefined symbols as defined in the table below. The symbols are
useful to create conditional assembly.

Symbol Description
__ASARM__ Expands to 1 for the ARM toolset, otherwise unrecognized as macro.
__BUILD__ Identifies the build number of the assembler, composed of decimal digits for

the build number, three digits for the major branch number and three digits
for the minor branch number. For example, if you use build 1.22.1 of the
assembler, _ BUILD___ expands to 1022001. If there is no branch number,
the branch digits expand to zero. For example, build 127 results in
127000000.

_ REVISION__ Expands to the revision number of the assembler. Digits are represented
as they are; characters (for prototypes, alphas, betas) are represented by
-1. Examples: v1.0r1 -> 1, v1.0rb -> -1

__TASKING__ Identifies the assembler as a TASKING assembler. Expands to 1 if a
TASKING assembler is used.
__VERSION__ Identifies the version number of the assembler. For example, if you use

version 2.1r1 of the assembler, _ VERSION__ expands to 2001 (dot and
revision number are omitted, minor version number in 3 digits).

Example

i f @lefined(' __ASARM ')
; this part is only for the asarm assenbl er

.endif

64

Assembly Language

3.5. Registers

The following register names, either uppercase or lowercase, should not be used for user-defined symbol
names in an assembly language source file:

RO .. Ri15 (general purpose registers)
IP (alias for R12)
SP (alias for R13)
LR (alias for R14)
PC (alias for R15)

3.6. Assembly Expressions

An expression is a combination of symbols, constants, operators, and parentheses which represent a
value that is used as an operand of an assembler instruction (or directive).

Expressions can contain user-defined labels (and their associated integer or floating-point values), and
any combination of integers, floating-point numbers, or ASCII literal strings.

Expressions follow the conventional rules of algebra and boolean arithmetic.

Expressions that can be evaluated at assembly time are called absolute expressions. Expressions where
the result is unknown until all sections have been combined and located, are called relocatable or relative
expressions.

When any operand of an expression is relocatable, the entire expression is relocatable. Relocatable
expressions are emitted in the object file and evaluated by the linker. Relocatable expressions can only
contain integral functions; floating-point functions and numbers are not supported by the ELF/DWARF
object format.

The assembler evaluates expressions with 64-bit precision in two's complement.
The syntax of an expression can be any of the following:

* numeric constant

* string

* symbol

» expression binary_operator expression

* unary_operator expression

» (expression)

« function call

All types of expressions are explained in separate sections.

65

TASKING VX-toolset for ARM User Guide

3.6.1. Numeric Constants

Numeric constants can be used in expressions. If there is no prefix, by default the assembler assumes

the number is a decimal number. Prefixes can be used in either lowercase or uppercase.

Base Description Example

Binary A 0Ob prefix followed by binary digits (0,1). Or use a b suffix. 0B1101
11001010b

Hexadecimal A 0x prefix followed by hexadecimal digits (0-9, A-F, a-f). Or use |Ox12FF

a h suffix. 0x45
0f al0h
Decimal integer Decimal digits (0-9). 12
1245
Decimal Decimal digits (0-9), includes a decimal point, or an 'E' or ‘e’ 6E10
floating-point followed by the exponent. .6
3.14
2.7e10

3.6.2. Strings

ASCII characters, enclosed in single (') or double (") quotes constitute an ASCII string. Strings between
double quotes allow symbol substitution by a . DEFI NE directive, whereas strings between single quotes
are always literal strings. Both types of strings can contain escape characters.

Strings constants in expressions are evaluated to a number (each character is replaced by its ASCII
value). Strings in expressions can have a size of up to 8 characters or less depending on the operand of
an instruction or directive; any subsequent characters in the string are ignored. In this case the assembler
issues a warning. An exception to this rule is when a string is used in a . DB assembler directive; in that
case all characters result in a constant value of the specified size. Null strings have a value of 0.

Examples
' ABCD 7 (0x44434241)
79 ; to enclose a quote double it
"Al"BC ; or to enclose a quote escape it
"AB' +1 ; (0x4341) string used in expression
v ; null string
. DW " abcdef" ; (0x64636261) 'ef' are ignored

; warning: string value truncated
"ab' ++' cd' ; you can concatenate

66

; two strings with the ' ++
: This results in 'abcd'

oper ator.

3.6.3. Expression Operators

Assembly Language

The next table shows the assembler operators. They are ordered according to their precedence. Operators
of the same precedence are evaluated left to right. Parenthetical expressions have the highest priority
(innermost first).

Valid operands include numeric constants, literal ASCII strings and symbols.

Most assembler operators can be used with both integer and floating-point values. If one operand has
an integer value and the other operand has a floating-point value, the integer is converted to a floating-point
value before the operator is applied. The result is a floating-point value.

Type Operator Name Description

O parenthesis Expressions enclosed by parenthesis are evaluated
first.

Unary + plus Returns the value of its operand.

- minus Returns the negative of its operand.

~ one's complement Integer only. Returns the one’s complement of its
operand. It cannot be used with a floating-point
operand.

! logical negate Returns 1 if the operands' value is O; otherwise 0.
For example, if buf is 0 then ! buf is 1. If buf has
a value of 1000 then ! buf is 0.

Arithmetic * multiplication Yields the product of its operands.

/ division Yields the quotient of the division of the first operand
by the second. For integer operands, the divide
operation produces a truncated integer result.

% modulo Integer only. This operator yields the remainder from
the division of the first operand by the second.

+ addition Yields the sum of its operands.

- subtraction Yields the difference of its operands.

Shift << shift left Integer only. Causes the left operand to be shifted
to the left (and zero-filled) by the number of bits
specified by the right operand.

>> shift right Integer only. Causes the left operand to be shifted

to the right by the number of bits specified by the
right operand. The sign bit will be extended.

67

TASKING VX-toolset for ARM User Guide

Type Operator Name Description
Relational < less than Returns an integer 1 if the indicated condition is
-— less than or equal TRUE or an integer 0 if the indicated condition is
FALSE.
> greater than
- greater than or equal For example, if D has a value of 3 qnd E ha; avalue
of 5, then the result of the expression D<Eis 1, and
== equal the result of the expression D>E is 0.
I= not equal o)))
Use tests for equality involving floating-point values
with caution, since rounding errors could cause
unexpected results.
Bitwise & AND Integer only. Yields the bitwise AND function of its
operand.
[OR Integer only. Yields the bitwise OR function of its
operand.
A exclusive OR Integer only. Yields the bitwise exclusive OR function
of its operands.
Logical && logical AND Returns an integer 1 if both operands are non-zero;
otherwise, it returns an integer 0.
[logical OR Returns an integer 1 if either of the operands is
non-zero; otherwise, it returns an integer 1

The relational operators and logical operators are intended primarily for use with the conditional assembly
. i f directive, but can be used in any expression.

3.7.Working with Sections

Sections are absolute or relocatable blocks of contiguous memory that can contain code or data. Some
sections contain code or data that your program declared and uses directly, while other sections are
created by the compiler or linker and contain debug information or code or data to initialize your application.
These sections can be named in such a way that different modules can implement different parts of these
sections. These sections are located in memory by the linker (using the linker script language, LSL) so
that concerns about memory placement are postponed until after the assembly process.

All instructions and directives which generate data or code must be within an active section. The assembler
emits a warning if code or data starts without a section definition. The compiler automatically generates
sections. If you program in assembly you have to define sections yourself.

For more information about locating sections see Section 7.7.8, The Section Layout Definition: Locating
Sections.

Section definition

Sections are defined with the . SECTI ON. ENDSEC directive and have a name. The names have a special
meaning to the locating process and have to start with a predefined name, optionally extended by a dot

68

Assembly Language

"."and a user defined name. Optionally, you can specify the at () attribute to locate a section at a specific
address.

. SECTI ON nane[, at (addr ess)]
; instructions etc.
. ENDSEC

See the description of the . SECTI ON directive for more information.
Examples
. SECTION . dat a ; Declare a .data section
. ENDSEC

. SECTI ON . data. abs, at(0x0) ; Declare a .data.abs section at

; an absol ute address

. ENDSEC

3.8. Built-in Assembly Functions

The TASKING assembler has several built-in functions to support data conversion, string comparison,
and math computations. You can use functions as terms in any expression.

Syntax of an assembly function
@ unction_nanme([argunent[,argunment]...])
Functions start with the '@' character and have zero or more arguments, and are always followed by

opening and closing parentheses. White space (a blank or tab) is not allowed between the function name
and the opening parenthesis and between the (comma-separated) arguments.

The names of assembly functions are case insensitive.

Overview of assembly functions

Function Description

@ALUPCREL (expr,group[,check]) PC-relative ADD/SUB with operand split

@\RGE ' symbol' | expr) Test whether macro argument is present

@3l GENDI AN() Test if assembler generates code for big-endian mode
@CNT() Return number of macro arguments

@CPU(" architecture') Test if current CPU matches architecture

@EFI NED(' symbol' | symbol) Test whether symbol exists

@.-SB(expr) Least significant byte of the expression

@.SH(expr) Least significant half word of the absolute expression

69

TASKING VX-toolset for ARM User Guide

Function Description

@ SW expr) Least significant word of the expression

@/BB(expr) Most significant byte of the expression

@VBH(expr) Most significant half word of the absolute expression

@/BW expr) Most significant word of the expression

@PRE_UAL() Test if the assembler runs in pre-UAL syntax mode or in UAL
syntax mode by default (option --old-syntax)

@5TRCAT(strl, str2) Concatenate strl and str2

@TRCMP(strl, str2) Compare strl with str2

@TRLEN(string) Return length of string

@TRPOS(strl, str2[, start]) Return position of str2 in strl

@ TRSUB(str, exprl, expr2) Return substring

@rHUVB() Test if the assembiler runs in Thumb mode or in ARM mode by
default (option --thumb)

Detailed Description of Built-in Assembly Functions

@ALUPCREL (expression,groupl[,check])

This function is used internally by the assembler with the generic instructions ADR, ADRL and ADRLL.
This function returns the PC-relative address of the expression for use in these generic instructions. group
is 0 for ADR,1 for ADRL or 2 for ADRLL.

With check you can specify to check for overflow (1 means true, 0 means false). If check is omitted, the
default is 1.

Example:

; The instruction "ADRAL R1, | abel" expands to
ADRAL R1, PC, GALUPCREL(| abel, 0, 1)

@ARG('symbol’ | expression)
Returns integer 1 if the macro argument represented by symbol or expression is present, 0 otherwise.

You can specify the argument with a symbol name (the hame of a macro argument enclosed in single
guotes) or with expression (the ordinal number of the argument in the macro formal argument list). If you
use this function when macro expansion is not active, the assembler issues a warning.

Example:

I F @G\RGE' TWDDLE') ;is argunment tw ddl e present?
I F @GARE(1) ;is first argunent present?

70

Assembly Language

@BIGENDIAN()

Returns 1 if the assembler generates code for big-endian mode, returns 0 if the assembler generates
code for little-endian mode (this is the default).

@CNT()

Returns the number of macro arguments of the current macro expansion as an integer. If you use this
function when macro expansion is not active, the assembler issues a warning.

Example:

ARGCOUNT . SET @NT() ; reserve argunent count

@CPU(‘architecture’)

Returns 1 if architecture corresponds to the architecture that was specified with the option
--cpu=architecture; 0 otherwise. See also assembler option --cpu (Select architecture).

Example:

I F @PY(' ARM7EM) ; true if you specified option --cpu=ARM/7EM
;. code for the ARWT7EM

.ELIF @PU(' ARMW6M) ; true if you specified option --cpu=ARM/6M
;. code for the ARW6-M

. ELSE
; code for other architectures

. ENDI F

@DEFINED('symbol' | symbol)

Returns 1 if symbol has been defined, O otherwise. If symbol is quoted, it is looked up as a . DEFI NE
symbol; if it is not quoted, it is looked up as an ordinary symbol, macro or label.

Example:
.| F @EFI NED(' ANGLE') :is synbol ANGLE defi ned?
. | F @EFI NED(ANGLE) ; does | abel ANGLE exist?

@LSB(expression)

Returns the least significant byte of the result of the expression. The result of the expression is calculated
as 16 bits.

Example:
.DB @.SB(0x1234) ;. stores 0x34
.DB @BB(0x1234) ;. stores 0x12

71

TASKING VX-toolset for ARM User Guide

@LSH(expression)

Returns the least significant half word (bits 0..15) of the result of the absolute expression. The result of
the expression is calculated as a word (32 bits).

@LSW(expression)

Returns the least significant word (bits 0..31) of the result of the expression. The result of the expression
is calculated as a double-word (64 bits).

Example:
.DW @QSW 0x12345678) ; stores 0x5678
.DW @/BW 0x123456) ; stores 0x0012

@MSB (expression)

Returns the most significant byte of the result of the expression. The result of the expression is calculated
as 16 hits.

@MSH(expression)
Returns the most significant half word (bits 16..31) of the result of the absolute expression. The result of

the expression is calculated as a word (32 bits). @/SH(expr essi on) is equivalent to
((expression>>16) & Oxffff).

@MSW(expression)

Returns the most significant word of the result of the expression. The result of the expression is calculated
as a double-word (64 bits).

@PRE_UAL()

Returns 1 if the assembler runs in pre-UAL syntax mode by default, or O if the assembler runs in UAL
syntax mode (default). This function reflects the setting of the assembler option --old-syntax.

Example:
.1 F @RE_UAL() ; true if you specified option --old-syntax
; old code
. ELSE
. ; new code, UAL syntax
. ENDI F

@STRCAT(string1,string2)

Concatenates stringl and string2 and returns them as a single string. You must enclose stringl and
string2 either with single quotes or with double quotes.

Example:

72

Assembly Language

.DEFINE I D "@TRCAT(' TAS' ,"KING)" ; ID = "'TASKI NG

@STRCMP(string1,string2)

Compares string1 with string2 by comparing the characters in the string. The function returns the difference
between the characters at the first position where they disagree, or zero when the strings are equal:

<0 if string1 < string2
0 if stringl == string2
>0 if stringl > string2
Example:

.IF (@TRCWP(STR 'MAIN))==0 ; does STR equal 'MAIN ?

@STRLEN(string)

Returns the length of string as an integer.
Example:

SLEN . SET @TRLEN(' string') . SLEN = 6

@STRPOS(string1,string?2[,start])

Returns the position of string2 in string1 as an integer. If string2 does not occur in stringl, the last string
position + 1 is returned.

With start you can specify the starting position of the search. If you do not specify start, the search is
started from the beginning of string1.

Example:
ID.set @TRPOS(' TASKING ,"ASK') ; ID=1
ID.set @TRPOS(' TASKING ,'BUG) ; ID=7

@STRSUB(string,expressionl,expression?2)

Returns the substring from string as a string. expressionl is the starting position within string, and
expression?2 is the length of the desired string. The assembler issues an error if either expressionl or
expression2 exceeds the length of string. Note that the first position in a string is position 0.

Example:

.DEFINE ID "@TRSUB(' TASKING ,3,4)" ;ID = "KING

73

TASKING VX-toolset for ARM User Guide

@THUMB()

Returns 1 if the assembler runs in Thumb mode by default or O if the assembler runs in ARM mode
(default). This function reflects the setting of the assembler option --thumb. So, it does not depend on
the . CODE16, . CODE32, . ARMor . THUVB directive.

If you are in a . CODE32 part and you specified --thumb, @'HUMB() still returns 1.

3.9. Assembler Directives

An assembler directive is simply a message to the assembler. Assembler directives are not translated
into machine instructions. There are three main groups of assembler directives.

Assembler directives that tell the assembler how to go about translating instructions into machine code.
This is the most typical form of assembly directives. Typically they tell the assembler where to put a
program in memory, what space to allocate for variables, and allow you to initialize memory with data.
When the assembly source is assembled, a location counter in the assembler keeps track of where
the code and data is to go in memory.

The following directives fall under this group:

» Assembly control directives

« Symbol definition and section directives

« Data definition / Storage allocation directives
» High Level Language (HLL) directives

Directives that are interpreted by the macro preprocessor. These directives tell the macro preprocessor
how to manipulate your assembly code before it is actually being assembled. You can use these
directives to write macros and to write conditional source code. Parts of the code that do not match the
condition, will not be assembled at all. Unlike other directives, preprocessor directives can start in the
first column.

Some directives act as assembler options and most of them indeed do have an equivalent assembler
(command line) option. The advantage of using a directive is that with such a directive you can overrule
the assembler option for a particular part of the code. Directives of this kind are called controls. A typical
example is to tell the assembler with an option to generate a list file while with the directives . NOLI ST
and . LI ST you overrule this option for a part of the code that you do not want to appear in the list file.
Directives of this kind sometimes are called controls.

Each assembler directive has its own syntax. Some assembler directives can be preceded with a label.
If you do not precede an assembler directive with a label, you must use white space instead (spaces or
tabs). You can use assembler directives in the assembly code as pseudo instructions. The assembler
recognizes both uppercase and lowercase for directives.

74

Assembly Language

3.9.1. Overview of Assembler Directives

The following tables provide an overview of all assembler directives. For a detailed description of these
directives, refer to Section 3.9.2, Detailed Description of Assembler Directives.

Overview of assembly control directives

Directive Description

. END Indicates the end of an assembly module
. I NCLUDE Include file

. MESSAGE Programmer generated message
Overview of symbol definition and section directives
Directive Description

. ALI AS Create an alias for a symbol

. EQU Set permanent value to a symbol

. EXTERN Import global section symbol

. GLOBAL Declare global section symbol

. SECTI QN, . ENDSEC Start a new section

. SET Set temporary value to a symbol

. Sl ZE Set size of symbol in the ELF symbol table
. SOURCE Specify name of original C source file

. TYPE Set symbol type in the ELF symbol table
. VIEAK Mark a symbol as 'weak’

Overview of data definition / storage allocation directives

Directive Description

. ALI GN Align location counter

. BS, . BSB, . BSH, . BSW |Define block storage (initialized)

. BSD

. DB Define byte

. DH Define half word (16 bits)

. DW Define word (32 bits)

. DD Define double-word (64 bits)

. DOUBLE Define a 64-bit floating-point constant
. DS, . DSB, . DSH, . DSW |Define storage

. DSD

. FLOAT Define a 32-bit floating-point constant

75

TASKING VX-toolset for ARM User Guide

Directive Description

. OFFSET Move location counter forwards

Overview of macro preprocessor directives

Directive Description

. DEFI NE Define substitution string

. BREAK Break out of current macro expansion

. REPEAT, . ENDREP Repeat sequence of source lines

. FOR, . ENDFOR Repeat sequence of source lines n times
.IF,.ELIF,.ELSE Conditional assembly directive

. ENDI F End of conditional assembly directive

. MACRO, . ENDM Define macro

. UNDEF Undefine . DEFI NE symbol or macro

Overview of listing control directives

Directive Description

. LI ST, . NOLI ST Print / do not print source lines to list file

. PAGE Set top of page/size of page

. TITLE Set program title in header of assembly list file

Overview of HLL directives

Directive Description
. CALLS Pass call tree information and/or stack usage information
. M SRAC Pass MISRA C information

Overview of ARM specific directives

Directive Description

. CCDE16, . CODE32 Treat instructions as Thumb or ARM instructions using pre-UAL syntax
. THUMB, . ARM Treat instructions as Thumb or ARM instructions using UAL syntax

. LTORG Assemble current literal pool immediately

3.9.2. Detailed Description of Assembler Directives

76

Assembly Language

ALIAS

Syntax

al i as-name . ALI AS synbol - nane
Description

With the . ALI AS directive you can create an alias of a symbol. The C compiler generates this directive
when you use the #pragma al i as.

Example

exit .ALIAS _Exit

Related information

Pragmaal i as

77

TASKING VX-toolset for ARM User Guide

ALIGN

Syntax

. ALI GN expression

Description

With the . ALI GNdirective you instruct the assembler to align the location counter. By default the assembler
aligns on one byte.

When the assembler encounters the . ALI GN directive, it advances the location counter to an address
that is aligned as specified by expression and places the next instruction or directive on that address.
The alignment is in minimal addressable units (MAUs). The assembler fills the ‘gap’ with NOP instructions
for code sections or with zeros for data sections. If the location counter is already aligned on the specified
alignment, it remains unchanged. The location of absolute sections will not be changed.

The expression must be a power of two: 2, 4, 8, 16, ... If you specify another value, the assembler changes
the alignment to the next higher power of two and issues a warning.

The assembler aligns sections automatically to the largest alignment value occurring in that section.
A label is not allowed before this directive.
Example

. SECTI ON . text

.ALIGN 4 ; the assenbler aligns
instruction ; this instruction at 4 MAUs and

; fills the "gap' with NOP instructions.
. ENDSEC
. SECTION .text
.ALIGN 3 ; WRONG not a power of two, the
instruction ; assenbler aligns this instruction at

; 4 MAUs and issues a warning.
. ENDSEC

78

Assembly Language

.BREAK

Syntax

. BREAK

Description

The . BREAK directive causes immediate termination of a macro expansion, a . FOR loop expansion or a
. REPEAT loop expansion. In case of nested loops or macros, the . BREAK directive returns to the previous
level of expansion.

The . BREAK directive is, for example, useful in combination with the . | F directive to terminate expansion
when error conditions are detected.

The assembler does not allow a label with this directive.

Example

. FOR MYVAR I N 10 TO 20

; assenbly source lines
I F MYVAR > 15
. BREAK

. ENDI F
. ENDFOR

79

TASKING VX-toolset for ARM User Guide

.BS, .BSB, .BSH, .BSW, .BSD

Syntax

[label] .BS count[, val ue]

[l abel] .BSB count[, val ue]
[l abel] .BSH count[, val ue]
[l abel] .BSW count[, val ue]
[l abel] .BSD count[, val ue]

Description

With the . BS directive the assembler reserves a block of memory. The reserved block of memory is
initialized to the value of value, or zero if omitted.

With count you specify the number of minimum addressable units (MAUs) you want to reserve, and how
much the location counter will advance. The expression must be an integer greater than zero and cannot
contain any forward references to address labels (labels that have not yet been defined).

With value you can specify a value to initialize the block with. Only the least significant MAU of value is
used. If you omit value, the default is zero.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

You cannot initialize of a block of memory in sections with prefix . bss. In those sections, the
assembler issues a warning and only reserves space, just as with . DS.

The . BSB, . BSH, . BSWand . BSDdirectives are variants of the . BS directive. The difference is the number
of bits that are reserved for the count argument:

Directive Reserved bits
. BSB 8

. BSH 16

. BSW 32

. BSD 64

Example

The . BSB directive is for example useful to define and initialize an array that is only partially filled:

.section .data

.DB 84,101, 115,116 ; initialize 4 bytes
. BSB 96, OxFF ; reserve another 96 bytes, initialized with OXFF
. endsec

80

Assembly Language

Related Information
. DB (Define Memory)

. DS (Define Storage)

81

TASKING VX-toolset for ARM User Guide

.CALLS

Syntax
.CALLS "caller’,’ callee’
or

. CALLS "caller’,’’, stack_usage[,...]

Description

The first syntax creates a call graph reference between caller and callee. The linker needs this information
to build a call graph. caller and callee are names of functions.

The second syntax specifies stack information. When callee is an empty name, this means we define the
stack usage of the function itself. The value specified is the stack usage in bytes at the time of the call
including the return address. A function can use multiple stacks.

This information is used by the linker to compute the used stack within the application. The information
is found in the generated linker map file within the Memory Usage.

This directive is generated by the C compiler. Use the . CALLS directive in hand-coded assembly when
the assembly code calls a C function. If you manually add . CALLS directives, make sure they connect
to the compiler generated . CALLS directives: the name of the caller must also be named as a callee in
another directive.

A label is not allowed before this directive.

Example
. CALLS 'nmain', ' nfunc'

Indicates that the function mai n calls the function nf unc.
. CALLS 'main','"',8

The function mai n uses 8 bytes on the stack.

82

Assembly Language

.CODE16, .CODE32, .THUMB, .ARM

Syntax

. CODE16
. CODE32
. THUMB
. ARM

Description

With the . CODE16 directive you instruct the assembler to interpret subsequent instructions as 16-bit
Thumb instructions using the pre-UAL syntax until it encounters another mode directive or till it reaches
the end of the active section. This directive causes an implicit alignment of two bytes.

The . THUMB directive is the same as the . CODE16 directive except that the UAL syntax is expected.

With the . CODES32 directive you instruct the assembler to interpret subsequent instructions as 32-bit ARM
instructions using the pre-UAL syntax until it encounters another mode directive or till it reaches the end
of the active section. This directive causes an implicit alignment of four bytes. The assembler issues an
error message if . CODE32 is used in combination with option --cpu=ARMvV7M.

The . ARMdirective is the same as the . CODE32 directive except that the UAL syntax is expected.

These directives are useful when you have files that contain both ARM and Thumb instructions. The
directive must appear before the instruction change and between a . SECTI ON. ENDSEC. The default
instruction set at the start of a section depends on the use of assembler option --thumb.

Example

.section .text
. code32

;following instructions are ARMinstructions
. endsec

Related Information

Assembler option --thumb (Treat input as Thumb instructions)

83

TASKING VX-toolset for ARM User Guide

.DB, .DH, .DW, .DD

Syntax

[label] .DB argunent[,argunent]. ..
[label] .DH argunent[,argunent]. ..
[l abel] .DWargunent[,argunent]. ..
[l abel] .DD argunent[,argunent]. ..

Description

With these directive you can define memory. With each directive the assembler allocates and initializes
one or more bytes of memory for each argument.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

An argument can be a single- or multiple-character string constant, an expression or empty. Multiple
arguments must be separated by commas with no intervening spaces. Empty arguments are stored as
0 (zero).

The following table shows the number of bits initialized.

Directive Bits
. DB 8

. DH 16

. DW 32

. DD 64

The value of the arguments must be in range with the size of the directive; floating-point numbers are not
allowed. If the evaluated argument is too large to be represented in a half word / word / double-word, the
assembler issues a warning and truncates the value.

String constants

Single-character strings are stored in a byte whose lower seven bits represent the ASCII value of the
character, for example:

.DB 'R ;= 0x52

Multiple-character strings are stored in consecutive byte addresses, as shown below. The standard C
language escape characters like \n’ are permitted.

.DB "AB',,'C ; = 0x41420043 (second argunent is enpty)
Example

When a string is supplied as argument of a directive that initializes multiple bytes, each character in the
string is stored in consecutive bytes whose lower seven bits represent the ASCII value of the character.
For example:

84

Assembly Language

HTBL: .DH "'ABC ,,'D ; results in 0x424100004400 , the 'C is truncated
WIBL: .DW' ABC ; results in 0x43424100

Related Information
. BS (Block Storage)

. DS (Define Storage)

85

TASKING VX-toolset for ARM User Guide

.DEFINE

Syntax

. DEFI NE synbol string

Description

With the . DEFI NE directive you define a substitution string that you can use on all following source lines.
The assembler searches all succeeding lines for an occurrence of symbol, and replaces it with string. If
the symbol occurs in a double quoted string it is also replaced. Strings between single quotes are not
expanded.

This directive is useful for providing better documentation in the source program. A symbol can consist
of letters, digits and underscore characters (_), and the first character cannot be a digit.

Macros represent a special case. . DEFI NE directive translations will be applied to the macro definition
as it is encountered. When the macro is expanded, any active . DEFI NE directive translations will again
be applied.

The assembler issues a warning if you redefine an existing symbol.

A label is not allowed before this directive.

Example

Suppose you defined the symbol LEN with the substitution string "32":
. DEFI NE LEN " 32"

Then you can use the symbol LEN for example as follows:

. DS LEN
. MESSACE "The length is: LEN'

The assembler preprocessor replaces LEN with "32" and assembles the following lines:

. DS 32
. MESSACGE "The length is: 32"

Related Information
. UNDEF (Undefine a .DEFINE symbol)

. MACRO, . ENDM(Define a macro)

86

.DS, .DSB, .DSH, .DSW, .DSD

Syntax

[l abel] .DS expression
[l abel] .DSB expression
[l abel] .DSH expression
[l abel] .DSW expression
[l abel] .DSD expression
Description

Assembly Language

With the . DS directive the assembler reserves a block in memory. The reserved block of memory is not
initialized to any value.

With the expression you specify the number of MAUs (Minimal Addressable Units) that you want to
reserve, and how much the location counter will advance. The expression must evaluate to an integer
greater than zero and cannot contain any forward references (symbols that have not yet been defined).

If you specify the optional label, it gets the value of the location counter at the start of the directive

processing.

The . DSB, . DSH, . DSWand . DSDdirectives are variants of the . DS directive. The difference is the number

of bits that are reserved per expression argument:

Directive Reserved bits

. DSB 8

. DSH 16

. DSW 32

. DSD 64

Example
.section .bss

RES: .DS 5+3 ; allocate 8 bytes
. endsec

Related Information
. BS (Block Storage)

. DB (Define Memory)

87

TASKING VX-toolset for ARM User Guide

.END

Syntax

. END

Description

With the optional . END directive you tell the assembler that the end of the module is reached. If the
assembler finds assembly source lines beyond the . END directive, it ignores those lines and issues a
warning.

You cannot use the . END directive in a macro expansion.
The assembler does not allow a label with this directive.
Example

.section .text
; source lines
. endsec
. END ; End of assenbly nodul e

88

Assembly Language

.EQU

Syntax

synbol . EQU expression

Description

With the . EQU directive you assign the value of expression to symbol permanently. The expression can
be relative or absolute. Once defined, you cannot redefine the symbol. With the . GLOBAL directive you
can declare the symbol global.

Example

To assign the value 0x400 permanently to the symbol MYSYMBOL:

MYSYMBOL . EQU 0x4000

You cannot redefine the symbol MYSYMBOL after this.

Related Information

. SET (Set temporary value to a symbol)

89

TASKING VX-toolset for ARM User Guide

.EXTERN
Syntax

. EXTERN synbol [, synbol]. ..
Description

With the . EXTERNdirective you define an external symbol. It means that the specified symbol is referenced
in the current module, but is not defined within the current module. This symbol must either have been
defined outside of any module or declared as globally accessible within another module with the . GLOBAL
directive.

If you do not use the . EXTERN directive and the symbol is not defined within the current module, the
assembler issues a warning and inserts the . EXTERN directive.

A label is not allowed with this directive.

Example

. EXTERN AA, CC, DD ;defined el sewhere

Related Information

. GLOBAL (Declare global section symbol)

90

Assembly Language

.FLOAT, .DOUBLE

Syntax
[l abel]. FLOAT expression[, expression]...

[l abel] . DOUBLE expression[, expression]...

Description

With the . FLOAT or . DOUBLE directive the assembler allocates and initializes a floating-point number
(32 hits) or a double (64 bits) in memory for each argument.

An expression can be:
« afloating-point expression
* NULL (indicated by two adjacent commas: ,,)

You can represent a constant as a signed whole number with fraction or with the 'e’ format as used in the
C language. For example, 12. 457 and +0. 27E- 13 are legal floating-point constants.

If the evaluated argument is too large to be represented in a single word / double-word, the assembler
issues an error and truncates the value.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example

FLT: . FLOAT 12. 457, +0. 27E- 13
DBL: .DOUBLE 12.457,+0.27E-13

Related Information

. DS (Define Storage)

91

TASKING VX-toolset for ARM User Guide

.FOR, .ENDFOR

Syntax

[label] .FOR var IN expression[,expression]...
| ENDFOR

or:

[label] .FOR var IN start TO end [STEP st ep]
. ENDFOR
Description

With the . FOR/ . ENDFOR directive you can repeat a block of assembly source lines with an iterator. As
shown by the syntax, you can use the . FOR/ . ENDFOR in two ways.

1. In the first method, the block of source statements is repeated as many times as the number of
arguments following | N. If you use the symbol var in the assembly lines between . FORand . ENDFOR,
for each repetition the symbol var is substituted by a subsequent expression from the argument list. If
the argument is a null, then the block is repeated with each occurrence of the symbol var removed. If
an argument includes an embedded blank or other assembler-significant character, it must be enclosed
with single quotes.

2. In the second method, the block of source statements is repeated using the symbol var as a counter.
The counter passes all integer values from start to end with a step. If you do not specify step, the
counter is increased by one for every repetition.

If you specify label, it gets the value of the location counter at the start of the directive processing.

Example

In the following example the block of source statements is repeated 4 times (there are four arguments).
With the . DB directive you allocate and initialize a byte of memory for each repetition of the loop (a word
for the . DWdirective). Effectively, the preprocessor duplicates the . DB and . DWdirectives four times in
the assembly source.

.FOR VARL IN 1,2+3, 4,12
. DB VARL
. DW (VARL* VAR1)

. ENDFOR

In the following example the loop is repeated 16 times. With the . DWdirective you allocate and initialize
four bytes of memory for each repetition of the loop. Effectively, the preprocessor duplicates the . DW
directive 16 times in the assembled file, and substitutes VAR2 with the subsequent numbers.

_FOR VAR2 IN 1 to 0x10
. DW (VARL* VAR1)
. ENDFOR

92

Assembly Language

Related Information

. REPEAT, . ENDREP (Repeat sequence of source lines)

93

TASKING VX-toolset for ARM User Guide

.GLOBAL
Syntax

. GLOBAL synbol [, synbol]. ..
Description

All symbols or labels defined in the current section or module are local to the module by default. You can
change this default behavior with assembler option --symbol-scope=global.

With the . GLOBAL directive you declare one of more symbols as global. It means that the specified
symbols are defined within the current section or module, and that those definitions should be accessible
by all modules.

To access a symbol, defined with . GLOBAL, from another module, use the . EXTERN directive.

Only program labels and symbols defined with . EQU can be made global.

If the symbols that appear in the operand field are not used in the module, the assembler gives a warning.
The assembler does not allow a label with this directive.

Example

LOOPA .EQU 1 ; definition of synbol LOOPA
.GLOBAL LOCPA ; LOOPA will be globally
; accessi bl e by other nodul es
Related Information

. EXTERN (Import global section symbol)

94

Assembly Language

IF, .ELIF, .ELSE, .ENDIF

Syntax

.1 F expression

[.ELIF expression] ; the .ELIF directive is optional
[. ELSE] ; the .ELSE directive is optional
. ENDI F

Description

With the . | F/. ENDI F directives you can create a part of conditional assembly code. The assembler
assembles only the code that matches a specified condition.

The expression must evaluate to an absolute integer and cannot contain forward references. If expression
evaluates to zero, the IF-condition is considered FALSE, any non-zero result of expression is considered
as TRUE.

If the optional . ELSE and/or . ELI F directives are not present, then the source statements following the
. | Fdirective and up to the next . ENDI F directive will be included as part of the source file being assembled
only if the expression had a non-zero result.

If the expression has a value of zero, the source file will be assembled as if those statements between
the . | F and the . ENDI F directives were never encountered.

If the . ELSE directive is present and expression has a nonzero result, then the statements between the
. | Fand . ELSE directives will be assembled, and the statement between the . ELSE and . ENDI F directives
will be skipped. Alternatively, if expression has a value of zero, then the statements between the . | F and
. ELSE directives will be skipped, and the statements between the . ELSE and . ENDI F directives will be
assembled.

You can nest . | F directives to any level. The . ELSE and . ELI F directive always refer to the nearest
previous . | F directive.

A label is not allowed with this directive.
Example

Suppose you have an assemble source file with specific code for a test version, for a demo version and
for the final version. Within the assembly source you define this code conditionally as follows:

I F TEST
. ; code for the test version
. ELI F DEMO

. ; code for the denp version
. ELSE

95

TASKING VX-toolset for ARM User Guide

; code for the final version
. ENDI F

Before assembling the file you can set the values of the symbols TEST and DEMOin the assembly source
before the . | F directive is reached. For example, to assemble the demo version:

TEST .SET 0O
DEMO . SET 1

Related Information

Assembler option --define (Define preprocessor macro)

96

Assembly Language

.INCLUDE

Syntax

. I NCLUDE "fil ename" | <fil enane>

Description

With the . | NCLUDE directive you include another file at the exact location where the . | NCLUDE occurs.
This happens before the resulting file is assembled. The . | NCLUDE directive works similarly to the

#i ncl ude statement in C. The source from the include file is assembled as if it followed the point of the
. | NCLUDE directive. When the end of the included file is reached, assembly of the original file continues.

The string specifies the filename of the file to be included. The filename must be compatible with the
operating system (forward/backward slashes) and can contain a directory specification. If you omit a
filename extension, the assembler assumes the extension . asm

If an absolute pathname is specified, the assembler searches for that file. If a relative path is specified
or just a filename, the order in which the assembler searches for include files is:

1. The current directory if you use the "filename" construction.
The current directory is not searched if you use the <filename> syntax.
2. The path that is specified with the assembler option --include-directory.
3. The path that is specified in the environment variable ASARM NC when the product was installed.
4. The default i ncl ude directory in the installation directory.
The assembler does not allow a label with this directive.

The state of the assembler is not changed when an include file is processed. The lines of the include file
are inserted just as if they belong to the file where it is included.

Example
Suppose that your assembly source file t est . sr ¢ contains the following line:
. I NCLUDE "c:\ nyi ncl udes\ nyi nc. i nc"
The assembler issues an error if it cannot find the file at the specified location.
. I NCLUDE "nyi nc.inc"
The assembler searches the file myi nc. i nc according to the rules described above.
Related Information

Assembler option --include-directory (Add directory to include file search path)

97

TASKING VX-toolset for ARM User Guide

.LIST, .NOLIST
Syntax
. NOLI ST

; assenbly source lines
.LIST

Description

If you generate a list file with the assembler option --list-file, you can use the directives . LI ST and
. NOLI ST to specify which source lines the assembler must write to the list file. Without the assembler
option --list-file these directives have no effect. The directives take effect starting at the next line.

The assembler prints all source lines to the list file, until it encounters a . NOLI ST directive. The assembler
does not print the . NOLI ST directive and subsequent source lines. When the assembler encounters the
. LI ST directive, it resumes printing to the list file.

It is possible to nest the . LI ST/. NOLI ST directives.

Example
Suppose you assemble the following assembly code with the assembler option --list-file:

. SECTI ON . t ext
.. ; source line 1
. NOLI ST

.. ; source line 2
.LIST

.. ; source line 3
. ENDSEC

The assembler generates a list file with the following lines:

. SECTI ON . t ext

; source line 1
.. ; source line 3
. ENDSEC

Related Information

Assembler option --list-file (Generate list file)

98

Assembly Language

.LTORG

Syntax

. LTORG
Description
With this directive you force the assembler to generate a literal pool (data pocket) at the current location.
All literals from the LDR= pseudo-instructions (except those which could be translated to MOV or MVN
instructions) between the previous literal pool and the current location will be assembled in a new literal

pool using . DWdirectives.

By default, the assembler generates a literal pool at the end of a code section, i.e. the . ENDSEC directive
at the end of a code section causes an implicit . LTORG directive. However, the default literal pool may
be out-of-reach of one or more LDR= pseudo-instructions in the section. In that case the assembler issues
an error message and you should insert . LTORG directives at proper locations in the section.

Example

.section .text

LDR r1, =0x12345678

;. code
.ltorg ; literal pool contains the literal &0x12345678
.endsec ; default literal pool is empty

Related Information
LDR= ARM generic instruction

LDR= Thumb generic instruction

99

TASKING VX-toolset for ARM User Guide

.MACRO, .ENDM

Syntax

macr o_nanme . MACRO [argunent [, argument]...]
rracr o_definition_statenents
. ENDM

Description

With the . MACROdirective you define a macro. Macros provide a shorthand method for handling a repeated
pattern of code or group of instructions. You can define the pattern as a macro, and then call the macro
at the points in the program where the pattern would repeat.

The definition of a macro consists of three parts:

» Header, which assigns a name to the macro and defines the arguments (. MACRO directive).
» Body, which contains the code or instructions to be inserted when the macro is called.

» Terminator, which indicates the end of the macro definition (. ENDMdirective).

The arguments are symbolic names that the macro processor replaces with the literal arguments when
the macro is expanded (called). Each formal argument must follow the same rules as symbol names: the
name can consist of letters, digits and underscore characters (_). The first character cannot be a digit.
Argument names cannot start with a percent sign (%).

Macro definitions can be nested but the nested macro will not be defined until the primary macro is
expanded.

You can use the following operators in macro definition statements:

Operator [Name Description

\ Macro argument concatenation | Concatenates a macro argument with adjacent
alphanumeric characters.

? Return decimal value of symbol | Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

% Return hex value of symbol Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

“ Macro string delimiter Allows the use of macro arguments as literal strings.

A Macro local label override Prevents name mangling on labels in macros.

Example
The macro definition:

macro_a .MACRO argl, arg2 : header
.db argl ; body

100

.dw (argl*arg2)
. ENDM

The macro call:

.section far
macro_a 2,3
. endsec

The macro expands as follows:

.db 2
dw (2*3)

Related Information
Section 3.10, Macro Operations

. DEFI NE (Define a substitution string)

;term nator

Assembly Language

101

TASKING VX-toolset for ARM User Guide

.MESSAGE

Syntax

. MESSAGE type [{str]|exp}[,{str|exp}]...]

Description

With the . MESSAGE directive you tell the assembiler to print a message to st der r during the assembling
process.

With type you can specify the following types of messages:

I Information message. Error and warning counts are not affected and the assembler continues
the assembling process.

\W Warning message. Increments the warning count and the assembler continues the assembling
process.

Error message. Increments the error count and the assembler continues the assembling process.

F Fatal error message. The assembler immediately aborts the assembling process and generates
no object file or list file.

An arbitrary number of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified to describe the nature of the generated message. If you use expressions,
the assembler outputs the result. The assembler outputs a space between each argument.

The error and warning counts will not be affected. The . MESSAGE directive is for example useful in
combination with conditional assembly to indicate which part is assembled. The assembling process
proceeds normally after the message has been printed.

This directive has no effect on the exit code of the assembler.

A label is not allowed with this directive.

Example

. MESSACGE | ' Generating tables'

ID.EQU 4
.MESSAGE E ' The value of IDis',ID

. DEFI NE LONG " SHORT"
.MESSACE | 'This is a LONG string'
.MESSACE | "This is a LONG string"

Within single quotes, the defined symbol LONGis not expanded. Within double quotes the symbol LONG
is expanded so the actual message is printed as:

This is a LONG string
This is a SHORT string

102

Assembly Language

.MISRAC

Syntax

. M SRAC string

Description

The C compiler can generate the . M SRAC directive to pass the compiler's MISRA C settings to the object
file. The linker performs checks on these settings and can generate a report. It is not recommended to
use this directive in hand-coded assembly.

Example

.M SRAC ' M SRA- C: 2004, 64, e2, Ob, e, el1, 27, 6, ef 83, el, ef , 66, cb75, af 1, ef f, e7,
e7f, 8d, 63, 87ff7, 6ff3, 4

Related Information
Section 4.6.2, C Code Checking: MISRA C

C compiler option --misrac

103

TASKING VX-toolset for ARM User Guide

.OFFSET

Syntax

. OFFSET expressi on

Description

With the . OFFSET directive you tell the assembler to give the location counter a new offset relative to the
start of the section.

When the assembler encounters the . OFFSET directive, it moves the location counter forwards to the
specified address, relative to the start of the section, and places the next instruction on that address. If
you specify an address equal to or lower than the current position of the location counter, the assembler
issues an error.

A label is not allowed with this directive.

Example

. SECTI ON . t ext
nop
nop
nop
. OFFSET 0x20 ; the assenbl er places
nop ; this instruction at address 0x20
; relative to the start of the section.
. ENDSEC

. SECTI ON .t ext

nop

nop

nop

. OFFSET 0x02 ; WRONG the current position of the
nop ; location counter is 0xO0C.

. ENDSEC

Related Information

. SECTI ON (Start a new section)

104

Assembly Language

.PAGE
Syntax
. PAGE [pagewi dt h[, pagel engt h[, bl ankl eft[, bl ankt op[, bl ankbtn]]]]
Default
. PAGE 132,72,0,0,0
Description

If you generate a list file with the assembler option --list-file, you can use the directive . PAGE to format
the generated list file.

The arguments may be any positive absolute integer expression, and must be separated by commas.

pagewidth Number of columns per line. The default is 132, the minimum is 40.

pagelength Total number of lines per page. The default is 72, the minimum is 10.
As a special case, a page length of 0 turns off page breaks.

blankleft Number of blank columns at the left of the page. The default is 0, the
minimum is 0, and the maximum must maintain the relationship: blankleft
< pagewidth.

blanktop Number of blank lines at the top of the page. The default is 0, the

minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) < (pagelength - 10).

blankbtm Number of blank lines at the bottom of the page. The default is 0, the
minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) < (pagelength - 10).

If you use the . PAGE directive without arguments, it causes a 'formfeed': the next source line is printed
on the next page in the list file. The . PAGE directive itself is not printed.

You can omit an argument by using two adjacent commas. If the remaining arguments after an argument
are all empty, you can omit them.

Example
. PAGE ; fornfeed, the next source line is printed
; on the next page in the list file.
. PAGE 96 ; set page width to 96. Note that you can

; omt the last four argunents.
.PAGE ,,,3,3 ; use 3 line top/bottom nmargins.

Related Information

. TI TLE (Set program title in header of assembler list file)

105

TASKING VX-toolset for ARM User Guide

Assembler option --list-file

106

Assembly Language

.REPEAT, .ENDREP

Syntax

[l abel] . REPEAT expression
. ENDREP

Description

With the . REPEAT/. ENDREP directive you can repeat a sequence of assembly source lines. With expression
you specify the number of times the loop is repeated. If the expression evaluates to a number less than
or equal to O, the sequence of lines will not be included in the assembler output. The expression result
must be an absolute integer and cannot contain any forward references (symbols that have not already
been defined). The . REPEAT directive may be nested to any level.

If you specify label, it gets the value of the location counter at the start of the directive processing.

Example

In this example the loop is repeated 3 times. Effectively, the preprocessor repeats the source lines (. DB
10) three times, then the assembler assembles the result:

. REPEAT 3
.DB 10 ; assenbly source |ines
. ENDFOR

Related Information

. FOR, . ENDFOR (Repeat sequence of source lines n times)

107

TASKING VX-toolset for ARM User Guide

.SECTION, .ENDSEC

Syntax

. SECTI ON nane[, at (address)]

. ENDSEC

Description

With the . SECTI ON directive you define a new section. Each time you use the . SECTI ON directive, a
new section is created. It is possible to create multiple sections with exactly the same name.

If you define a section, you must always specify the section name. The names have a special meaning
to the locating process and have to start with a predefined name, optionally extended by a dot'.' and a
user defined name. The predefined section name also determines the type of the section (code, data or
debug). Optionally, you can specify the at () attribute to locate a section at a specific address.

You can use the following predefined section names:

Section name [Description Section type
text Code sections code

.data Initialized data data

.bss Uninitialized data (cleared) data

.rodata ROM data (constants) data

.debug Debug sections debug

Sections of a specified type are located by the linker in a memory space. The space names are defined
in a so-called 'linker script file' (files with the extension . | sl) delivered with the product in the directory
installation-dir\include.lsl.

Example

. SECTI ON . dat a

. ENDSEC

. SECTI ON . dat a. abs, at (0x0)

. ENDSEC

Related Information

. OFFSET (Move location counter forwards)

108

Decl are a .data section

Decl are a .data.abs section at
an absol ute address

Assembly Language

SET

Syntax

synbol .SET expression
. SET synbol expression

Description

With the . SET directive you assign the value of expression to symbol temporarily. If a symbol was defined
with the . SET directive, you can redefine that symbol in another part of the assembly source, using the
. SET directive again. Symbols that you define with the . SET directive are always local: you cannot define
the symbol global with the . GLOBAL directive.

The . SET directive is useful in establishing temporary or reusable counters within macros. expression
must be absolute and cannot include a symbol that is not yet defined (no forward references are allowed).

Example

COUNT .SET O ; Initialize count. Later on you can
; assign other values to the synbol

Related Information

. EQU (Set permanent value to a symbol)

109

TASKING VX-toolset for ARM User Guide

SIZE

Syntax
.Sl ZE synbol , expression
Description
With the . SI ZE directive you set the size of the specified symbol to the value represented by expression.

The . SI ZE directive may occur anywhere in the source file unless the specified symbol is a function. In
this case, the . Sl ZE directive must occur after the function has been defined.

Example
.section . text
. gl obal main
.arm
.align 4
; Function main
mai n: .type func

. SI ZE mai n, $- mai n
. endsec

Related Information

. TYPE (Set symbol type)

110

Assembly Language

.SOURCE
Syntax
. SOURCE string

Description

With the . SOURCE directive you specify the name of the original C source module. This directive is
generated by the C compiler. You do not need this directive in hand-written assembly.

Example

. SOURCE "nai n. c"

111

TASKING VX-toolset for ARM User Guide

.TITLE
Syntax

.TITLE ["string"]
Default

.TITLE ""
Description

If you generate a list file with the assembler option --list-file, you can use the . TI TLE directive to specify
the program title which is printed at the top of each page in the assembler list file.

If you use the . TI TLE directive without the argument, the title becomes empty. This is also the default.
The specified title is valid until the assembler encounters a new . Tl TLE directive.

The . Tl TLE directive itself will not be printed in the source listing.
If the page width is too small for the title to fit in the header, it will be truncated.
Example
.TITLE "This is the title"
Related Information
. PAGE (Format the assembler list file)

Assembler option --list-file

112

Assembly Language

.TYPE
Syntax
synbol .TYPE typeid

Description

With the . TYPE directive you set a symbol's type to the specified value in the ELF symbol table. Valid
symbol types are:

FUNC The symbol is associated with a function or other executable code.
OBJECT The symbol is associated with an object such as a variable, an array, or a structure.
FILE The symbol name represents the filename of the compilation unit.

Labels in code sections have the default type FUNC. Labels in data sections have the default type OBJECT.
Example
Afunc: .type func

Related Information

. Sl ZE (Set symbol size)

113

TASKING VX-toolset for ARM User Guide

.UNDEF

Syntax

. UNDEF synbol

Description

With the . UNDEF directive you can undefine a substitution string that was previously defined with the
. DEFI NE directive. The substitution string associated with symbol is released, and symbol will no longer
represent a valid . DEFI NE substitution or macro.

The assembler issues a warning if you redefine an existing symbol.
The assembler does not allow a label with this directive.
Example

The following example undefines the LEN substitution string that was previously defined with the . DEFI NE
directive:

. UNDEF LEN
Related Information
. DEFI NE (Define a substitution string)

. MACRO, . ENDM (Define a macro)

114

Assembly Language

WEAK
Syntax

. EEAK synbol [, synbol J. ..
Description

With the . VEAK directive you mark one or more symbols as 'weak'. The symbol can be defined in the
same module with the . GLOBAL directive or the . EXTERN directive. If the symbol does not already exist,
it will be created.

A 'weak' external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference.

You can overrule a weak definition with a . GLOBAL definition in another module. The linker will not
complain about the duplicate definition, and ignore the weak definition.

Only program labels and symbols defined with . EQU can be made weak.

Example

LOOPA . EQU 1 ; definition of synbol LOOPA
.GLOBAL LOOPA ; LOOPA will be globally
; accessi bl e by other nodul es
. VEAK LOGPA ; mark synbol LOOPA as weak

Related Information
. EXTERN (Import global section symbol)

. GLOBAL (Declare global section symbol)

115

TASKING VX-toolset for ARM User Guide

3.10. Macro Operations

Macros provide a shorthand method for inserting a repeated pattern of code or group of instructions. You
can define the pattern as a macro, and then call the macro at the points in the program where the pattern
would repeat.

Some patterns contain variable entries which change for each repetition of the pattern. Others are subject
to conditional assembly.

When a macro is called, the assembler executes the macro and replaces the call by the resulting in-line
source statements. 'In-line' means that all replacements act as if they are on the same line as the macro
call. The generated statements may contain substitutable arguments. The statements produced by a
macro can be any processor instruction, almost any assembler directive, or any previously-defined macro.
Source statements resulting from a macro call are subject to the same conditions and restrictions as any
other statements.

Macros can be nested. The assembler processes nested macros when the outer macro is expanded.

3.10.1. Defining a Macro
The first step in using a macro is to define it.
The definition of a macro consists of three parts:
» Header, which assigns a name to the macro and defines the arguments (. MACROdirective).
» Body, which contains the code or instructions to be inserted when the macro is called.
» Terminator, which indicates the end of the macro definition (. ENDMdirective).
A macro definition takes the following form:
nmacro_nanme . MACRO [argunent[, argunent]...]
lm-a;:ro_defi nition_statenents
- ENDM
For more information on the definition see the description of the . MACRO directive.

3.10.2. Calling a Macro

To invoke a macro, construct a source statement with the following format:

[l abel] macro_name [argunent[,argunment]...] [; comment]

where,

label An optional label that corresponds to the value of the location counter
at the start of the macro expansion.

macro_name The name of the macro. This may not start in the first column.

116

Assembly Language

argument One or more optional, substitutable arguments. Multiple arguments

must be separated by commas.

comment An optional comment.

The following applies to macro arguments:

Each argument must correspond one-to-one with the formal arguments of the macro definition. If the
macro call does not contain the same number of arguments as the macro definition, the assembler
issues a warning.

If an argument has an embedded comma or space, you must surround the argument by single quotes
0-

You can declare a macro call argument as null in three ways:

enter delimiting commas in succession with no intervening spaces

macronane ARGL, , ARG3 ; the second argunent is a null argunent

terminate the argument list with a comma, the arguments that normally would follow, are now
considered null

macr onane ARGL, ; the second and all follow ng argunents are null

declare the argument as a null string

No character is substituted in the generated statements that reference a null argument.

3.10.3. Using Operators for Macro Arguments

The assembler recognizes certain text operators within macro definitions which allow text substitution of
arguments during macro expansion. You can use these operators for text concatenation, numeric
conversion, and string handling.

Operator |[Name Description

\

Macro argument concatenation | Concatenates a macro argument with adjacent
alphanumeric characters.

Return decimal value of symbol | Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

% Return hex value of symbol Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

“ Macro string delimiter Allows the use of macro arguments as literal strings.

n Macro local label override Prevents name mangling on labels in macros.

117

TASKING VX-toolset for ARM User Guide

Example: Argument Concatenation Operator -\
Consider the following macro definition:

MAC_A . MACRO reg, val
sub r\reg, r\reg, #val
. ENDM

The macro is called as follows:

MAC A 2,1

The macro expands as follows:
sub r2,r2,#1

The macro preprocessor substitutes the character '2' for the argument r eg, and the character '1' for the
argument val . The concatenation operator (\) indicates to the macro preprocessor that the substitution
characters for the arguments are to be concatenated with the characters 'r'.

Without the '\' operator the macro would expand as:
sub rreg, rreg, #1

which results in an assembler error (invalid operand).

Example: Decimal Value Operator - ?

Instead of substituting the formal arguments with the actual macro call arguments, you can also use the
value of the macro call arguments.

Consider the following source code that calls the macro MAC_A after the argument AVAL has been set to
1.

AVAL . SET 1
MAC_A 2, AVAL

If you want to replace the argument val with the value of AVAL rather than with the literal string ' AVAL' ,
you can use the ? operator and modify the macro as follows:

MAC_A . MACRO r eg, val
sub r\reg, r\reg, #?val
. ENDM

Example: Hex Value Operator - %

The percent sign (%) is similar to the standard decimal value operator (?) except that it returns the
hexadecimal value of a symbol.

118

Assembly Language

Consider the following macro definition:

GEN_LAB . MACRO LAB, VAL, STMI
LAB\ %/AL STMT
. ENDM

The macro is called after NUMhas been set to 10:

NUM . SET 10
GEN_LAB HEX, NUM NCP

The macro expands as follows:
HEXA NOP

The %/AL argument is replaced by the character 'A’ which represents the hexadecimal value 10 of the
argument VAL.

Example: Argument String Operator - "

To generate a literal string, enclosed by single quotes ('), you must use the argument string operator (*)
in the macro definition.

Consider the following macro definition:

STR_MAC . MACRO STRI NG
. DB " STRI NG’
. ENDM

The macro is called as follows:
STR_MAC ABCD

The macro expands as follows:
. DB ' ABCD

Within double quotes . DEFI NE directive definitions can be expanded. Take care when using constructions
with single quotes and double quotes to avoid inappropriate expansions. Since . DEFI NE expansion
occurs before macro substitution, any . DEFI NE symbols are replaced first within a macro argument string:

. DEFI NE LONG 'short'

STR_MAC . MACRO STRI NG
.MESSAGE | 'This is a LONG STRI NG
.MESSAGE | "This is a LONG STRI NG'
. ENDM

If the macro is called as follows:

STR_MAC sentence

119

TASKING VX-toolset for ARM User Guide

it expands as:

.MESSAGE | 'This is a LONG STRI NG
.MESSAGE | 'This is a short sentence'

Macro Local Label Override Operator -~

If you use labels in macros, the assembler normally generates another unique name for the labels (such
as LOCAL__M_L000001).

The macro ~-operator prevents name mangling on macro local labels.
Consider the following macro definition:

INNT . MACRO addr
LOCAL: |dr r 0, ~addr
. ENDM

The macro is called as follows:

LOCAL:
INI T LOCAL

The macro expands as:
LOCAL__M L0O00001: |dr rO, LOCAL

If you would not have used the * operator, the macro preprocessor would choose another name for LOCAL
because the label already exists. The macro would expand like:

LOCAL__M L000001: Idr rO, LOCAL__M LO00001

3.11. Generic Instructions

The assembler supports so-called 'generic instructions'. Generic instructions are pseudo instructions (no
instructions from the instruction set). Depending on the situation in which a generic instruction is used,
the assembler replaces the generic instruction with appropriate real assembly instruction(s).

3.11.1. ARM Generic Instructions

The ARM assembler recognizes the following generic instructions in ARM mode:

ADR, ADRL, ADRLL ARM generics

Load a PC-relative address into a register. The address is specified as a target label. The assembler
generates one (ADR), two (ADRL) or three (ADRLL) generic DPR instruction (called ADR) and one, two
or three PC-relative relocation types for the target label. The linker evaluates the relocation types (calculate
the PC-relative offset) and generates one, two or three add or sub instructions each with an 8-bitimmediate
operand plus a 4-bit rotation. If the offset cannot be encoded the linker generates an error message.

120

Assembly Language

Instruction Replacement
ADRcond Rd,label |ADRcond Rd, PC, @ALUPCREL(label,0,1)

ADRLcond Rd,label [ADRcond Rd, PC, @ALUPCREL(label,0,0)
ADRcond Rd, Rd, @ALUPCREL (label,1,1)

ADRLLcond Rd,label{ADRcond Rd, PC, @ALUPCREL(label,0,0)
ADRcond Rd, Rd, @ALUPCREL(label,1,0)
ADRcond Rd, Rd, @ALUPCREL(label,2,1)

3.11.2. ARM and Thumb-2 32-bit Generic Instructions

LDR= ARM and Thumb-2 generic

Load an address or a 32-bit constant value into a register. If the constant or its bitwise negation can be
encoded, then the assembler will generate a MOV or a MVN instruction. Otherwise the assembler places
the constant or the address in a literal pool and generates a PC-relative LDR instruction that loads the
value from the literal pool.

Instruction Replacement Remarks
LDRcond MOVcond Rd, #expr If expr can be encoded
Rd,=expr MVNcond Rd,#@LSW(~(expr)) If ~expr can be encoded
LDRcond Rd, |t pool If expr is external or PC-relative, or cannot
;; code be encoded
| t pool :
. DW expr

The PC-relative offset from the LDR instruction to the value in the literal pool must be positive and less
than 4 kB. By default the assembler will place a literal pool at the end of each code section. If the default
literal pool is out-of-range you will have to ensure that there is another literal pool within range by means
of the . LTORG directive.

VLDR= ARM and Thumb-2 generic

Load a 32-bit or 64-bit floating-point constant value into a register. The assembler places the constant in
a literal pool and generates a PC-relative VLDR instruction that loads the value from the literal pool.

Instruction Replacement
VLDRcond Sd,=expr VLDRcond Sd, | t pool
;; code
| t pool :
. FLOAT expr
VLDRcond Dd,=expr VLDRcond Dd, |t pool
;; code
It pool :
. DOUBLE expr

121

TASKING VX-toolset for ARM User Guide

MOV32 ARM and Thumb-2 generic

Load an address or a 32-bit constant value into a register.

Instruction
MOV32cond Rd,=expr

Replacement Remarks

MOVWcond Rd, #@LSH(expr)
MOVTcond Rd, #@MSH(expr)

MOVWcond Rd, #expr
MOVTcond Rd, #expr

If expr is internal and absolute

If expr is external or relocatable

ARM and Thumb-2 generic DPR inversions for immediate operands

For data processing instructions (DPR) which operate on an immediate operand, the operand value must
be encoded as an 8-bit value plus a 4-bit even rotation value. If a value does not fit in such an encoding,
it could be possible that the negated value (-value) or the bitwise negated value (~value) does fit in such
an encoding. In that case the assembler will replcace the DPR instruction by its inverse DPR instruction

operating on the negated value.

Instruction

Replacement (if #imm or #~imm can be encoded)

ADDcond Rd,Rn,#imm32

SUBcond Rd,Rn,#- (imm32)

ADDcondS Rd,Rn,#imm32

SUBcondS Rd,Rn,#- (imm32)

ADDWcond Rd,Rn,#imm12

SUBWocond Rd,Rn,#- (imm12)

SUBcond Rd,Rn,#imm32

ADDcond Rd,Rn,#- (imm32)

SUBcondS Rd,Rn,#imm32

ADDcondS Rd,Rn,#- (imm32)

SUBWcond Rd,Rn,#imm12

ADDWcond Rd,Rn #- (imm12)

ADCcond Rd,Rn,#imm32

SBCcond Rd,Rn #- (imm32)

ADCcondS Rd,Rn,#imm32

SBCcondS Rd,Rn,#- (imm32)

SBCcond Rd,Rn,#imm32

ADCcond Rd,Rn,#- (imm32)

SBCcondS Rd,Rn,#imm32

ADCcondS Rd,Rn,#- (imm32)

ANDcond Rd,Rn,#imm32

BICcond Rd,Rn#@LSW(~(imm32))

ANDcondS Rd,Rn,#imm32

BICcondS Rd,Rn,#@LSW(~(imm32))

BICcond Rd,Rn,#imm32

ANDcond Rd,Rn,#@LSW/(~(imm32))

BICcondS Rd,Rn,#imm32

ANDcondS Rd,Rn,#@LSW(~(imm32))

CMNcond Rn,#imm32

CMPcond Rn,#- (imm)

CMPcond Rn,#imm32

CMNcond Rn,#- (imm)

MOVcond Rd,#imm32

MVNcond Rd,#@LSW(~(imm32))

MOVcondS Rd,#imm32

MVNcondS Rd,#@LSW(~(imm32))

MVNcond Rd,#imm32

MOVcond Rd,#@LSW(~(imm32))

MVNcondS Rd,#imm32

MOVcondS Rd,#@LSW(~(imm32))

122

Assembly Language

Note that the built-in function @LSW/() must be used on the bitwise negated immediate value because
all values are interpreted by the assembler as 64-bit signed values. The @LSW() function returns the
lowest 32 bits.

3.11.3. Thumb 16-bit Generic Instructions

The ARM assembler recognizes the following generic instructions in Thumb mode:

ADR Thumb 16-bit generic

Load a PC-relative address into a low register. The address is specified as a target label. The PC-relative
offset must be less than 1 kB. The target label must be defined locally, must be word-aligned and must
be in the same code section as the instruction. The assembler will not emit a relocation type for the target
label. If the offset is out-of-range or the target label is external or in another section, then the assembler
generates an error message.

LDR=Thumb 16-bit generic

Load an address or a 32-bit constant value into a low register. If the constant is in the range [0,255] the
assembler will generate a MOV instruction. Otherwise the assembler places the constant or the address
in a literal pool and generates a PC-relative LDR instruction that loads the value from the literal pool.

Instruction |Replacement Remarks
LDR Rd,=expr|MOV Rd, #expr If expr is in range
LDR Rd, | t pool If expr is external or PC-relative, or not in
;; code range
It pool :
. DW expr

The PC-relative offset from the LDR instruction to the value in the literal pool must be positive and less
than 1 kB. By default the assembler will place a literal pool at the end of each code section. If the default
literal pool is out-of-range you will have to ensure that there is another literal pool within range by means
of the . LTORG directive.

Bcond inversion Thumb 16-bit generic

The PC-relative conditional branch instruction has a range of (-256,+255) bytes.